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Preface

Let f(A) be a matrix function, with A a sparse matrix and f a regular enough scalar
function. This thesis first analyzes the decay phenomenon, i.e., the phenomenon in
which the magnitude of f(A)’s elements decays exponentially to zero in certain parts
of the matrix function. Second, it describes and studies the use of Krylov subspace
methods for approximating the bilinear form wHf(A)v, connecting the methods with
the Gauss quadrature. The decay phenomenon and results on the Gauss quadrature
are at the core of a new approach to compute (symbolically and numerically) the time-
ordered exponential, a time-dependent generalization of the matrix function concept
emerging from the solution of systems of linear non-autonomous ordinary differential
equations. This new approach is illustrated in the third part of the thesis.

The main part of the thesis contains a selection of 11 published papers contributing
to these topics co-authored by Stefano Pozza (Charles University). They are the results
of the collaborations with Pierre-Louis Giscard (University of the Littoral Opal Coast),
Davide Palitta (Bologna University), Miroslav Pranić (Banja Luka University), Vale-
ria Simoncini (Bologna University), Zdeněk Strakoš (Charles University), Francesco
Tudisco (Edinburgh University), and Niel Van Buggenhout (University Carlos III).

The thesis explains how to extend several properties and techniques from the case
in which A is a Hermitian matrix to the non-Hermitian and the time-dependent ones.
To exemplify the content, consider the linear ordinary differential equation

∂

∂t
u(t) = Au(t), u(0) = v, t ≥ 0,

whose solution is given through the matrix exponential as u(t) = exp(At)v. When A is
Hermitian, the bilinear form vH exp(At)v can be approximated by running the Lanczos
algorithm with A, b as inputs. The nth iteration of the algorithm produces the smaller
n× n tridiagonal matrix Jn giving the approximation

vH exp(At)v ≈ eT1 exp(Jnt)e1,

with e1 the first vector of the canonical basis. Since A is Hermitian, vH exp(At)v is
equivalent to a certain Riemann-Stieltjes integral and eT1 exp(Jn)e1 to the related Gauss
quadrature, as well-explained in [60]. Moreover, the off-diagonal elements of exp(Jn)
decay to zero, moving away from the diagonal. This decay can be exploited to enhance
Krylov subspace methods [17]. Extending these results to non-Hermitian matrices is
not trivial since many valuable properties are lost, e.g., vH exp(At)v is not a Riemann-
Stieltjes integral anymore. The extension becomes even more cumbersome when the
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matrix A is time-dependent, i.e., the A’s coefficients are functions of t. In this case,
the differential equation becomes the non-autonomous equation:

∂

∂t
u(t) = A(t)u(t), u(0) = v, t ≥ 0.

The solution u(t) is no longer given in terms of the matrix exponential but through the
so-called time-ordered exponential. This requires the use of more convoluted expres-
sions for u(t) and a larger computational cost. The thesis also studies the extension of
decays and approximation results to the rational Krylov subspace method.

Chapter 1 summarizes our contributions to analyzing the decay of the entries of non-
Hermitian matrix functions and of the reduced-order matrix produced by the rational
Krylov subspace method. It includes the following three papers:

[C1] S. Pozza, and F. Tudisco, On the stability of network indices defined by means
of matrix functions, SIAM J. Matrix Anal. Appl. 39 (4) (2018), pp. 1521–1546.
DOI: 10.1137/17M1133920

[C2] S. Pozza, and V. Simoncini, Inexact Arnoldi residual estimates and decay prop-
erties for functions of non-Hermitian matrices, BIT 59 (2019), pp. 969–986.
DOI: 10.1007/s10543-019-00763-6

[C3] S. Pozza, and V. Simoncini, Functions of rational Krylov space matrices and
their decay properties, Numer. Math. 148 (2021), pp. 99–126.
DOI: 10.1007/s00211-021-01198-4

The paper [C2] presents upper bounds to describe the decay phenomenon in banded
non-Hermitian matrix functions. The bounds are then exploited to obtain residual-type
estimates for the Arnoldi’s algorithm approximation of a matrix function, which are,
in turn, employed to improve the inexact version of the Arnoldi’s algorithm. Similar
bounds are used in the paper [C1], where the decay phenomenon is exploited to estimate
the changes in a matrix function f(A) when A is subjected to a sparse perturbation.
The estimate is useful in network analysis, where matrix functions are employed to
identify the “most important” nodes, and a sparse perturbation of the matrix corre-
sponds to modifying a few network edges. Paper [C3] derives upper bounds for the
entries of functions of the reduced-order matrix produced by the rational Krylov sub-
space method. In contrast to the analogous reduced-order matrix of Arnoldi’s algorithm
treated in [C2], the rational Krylov reduced-order matrix is generally not sparse.

Chapter 2 outlines our work on the connections between the Lanczos algorithm and
the Gauss quadrature in the non-Hermitian case. It also presents our contribution to
the rational Lanczos algorithm and briefly points out the connection with the rational
Gauss quadrature. It includes the following four papers:

[C4] S. Pozza, M. S. Pranić, and Z. Strakoš, Gauss quadrature for quasi-definite
linear functionals, IMA J. Numer. Anal. 37 (3) (2017), pp. 1468–1495.
DOI: 10.1093/imanum/drw032

[C5] S. Pozza, M. S. Pranić, and Z. Strakoš, The Lanczos algorithm and complex
Gauss quadrature, Electron. Trans. Numer. Anal. 50 (2018), pp. 1–19.
DOI: 10.1553/etna vol50s1
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[C6] S. Pozza, and M. S. Pranić, The Gauss quadrature for general linear func-
tionals, Lanczos algorithm, and minimal partial realization, Numer. Algorithms 88
(2021), pp. 647–678.
DOI: 10.1007/s11075-020-01052-y

[C7] D. Palitta, S. Pozza, and V. Simoncini, The short-term rational Lanczos
method and applications, SIAM J. Sci. Comput. 44 (4) (2022), pp. A2843–A2870.
DOI: 10.1137/21M1403254

The papers [C4, C5, C6] explain how to extend the main results of the monograph
[60] to the non-Hermitian case, specifically, the extension of the Gauss quadrature to
linear functional approximation and its connection with the non-Hermitian Lanczos
algorithm. As it is well-known, the non-Hermitian Lanczos algorithm is affected by
breakdowns. In [C6], we illustrate the relation between breakdowns and the extended
Gauss quadrature and how the look-ahead strategy theoretically resolves the breakdown
problem from the Gauss quadrature point of view. The paper [C7] proposes a more
efficient implementation of the rational Lanczos algorithm, explains the connection
with the rational Gauss quadrature, and discusses several applications. Moreover,
it presents preliminary results on the loss of orthogonality of the algorithm in finite
precision arithmetic.

Chapter 3 compactly presents our work on the analytical expression and numerical
computation of the time-ordered exponential. It includes the following four papers:

[C8] P-L. Giscard, and S. Pozza, Tridiagonalization of systems of coupled linear
differential equations with variable coefficients by a Lanczos-like method, Linear
Algebra Appl. 624 (2021), pp. 153–173.
DOI: 10.1016/j.laa.2021.04.011

[C9] P-L. Giscard, and S. Pozza, A Lanczos-like method for non-autonomous linear
ordinary differential equations, Boll. Unione Mat. Ital. 16 (2023), pp. 81–102.
DOI: 10.1007/s40574-022-00328-6

[C10] S. Pozza, A new closed-form expression for the solution of ODEs in a ring of
distributions and its connection with the matrix algebra, Linear Multilinear Algebra
(2024), online.
DOI: 10.1080/03081087.2024.2303058

[C11] S. Pozza, and N. Van Buggenhout, A new Legendre polynomial-based ap-
proach for non-autonomous linear ODEs, Electron. Trans. Numer. Anal. 60 (2024),
pp. 292–326
DOI: 10.1553/etna vol60s292

The papers [C8, C9] provide the first exact expression for the elements of the time-
ordered exponential in terms of a polynomial number of integro-differential equations.
This is done by introducing a new algebra of distributions (the ⋆-algebra [106]) where a
system of non-autonomous linear ordinary differential equations is transformed into a
system of ⋆-algebra linear equations. The ⋆-algebra linear system is then solved through
the so-called ⋆-Lanczos algorithm (a symbolic method). The ⋆-Lanczos algorithm and
the related properties are obtained by extending the results of Chapter 2. In [C10],
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the ⋆-algebra system is transformed into a (usual) linear system involving infinite-
size matrices. These matrices are characterized by an off-diagonal decay phenomenon,
which can be exploited for numerical computations. By appropriately truncating the
infinite-size matrices, the paper [C11] derives and analyzes a new spectral method for
the solution of non-autonomous ordinary differential equations.

Unless otherwise specified, the algorithms are presented as working in exact arith-
metic. Their effectiveness in practical computations is shown by numerical experiments
included in the papers. The numerical analysis of rounding errors in our original meth-
ods, techniques, and variants is an open issue and constitutes a long-term goal for our
work. The main difficulties in this analysis are related to Krylov subspace methods
with short recurrences.

This work has been possible thanks to the support of Charles University Research
programs PRIMUS/21/SCI/009, UNCE/SCI/023, and UNCE/24/SCI/005, and of the
Magica project ANR-20-CE29-0007 funded by the French National Research Agency.

I want to thank Iveta Hnětynková, Václav Kučera, and Zdeněk Strakoš for their
help, precious suggestions, and useful comments. A special thanks also to Alessandro
Benassi and Marguerite G. Farag for their support and their help in the editorial
revision.
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Chapter 1

Matrix functions and decay
phenomenon

1.1 Introduction

In matrix computations, matrices are often characterized as being dense or sparse.
Such categories do not have a formal definition. Still, we can think of a sparse matrix
as having enough zero elements to be conveniently exploitable (while a dense matrix is
a matrix that is not sparse). From the numerical point of view, the notion of sparsity is
useful but limited since it ignores the magnitude of the nonzero elements. By rounding
to zero the elements with a small enough magnitude (truncation), it is possible to reduce
the computational cost with a negligible loss of accuracy. This is especially true when
working with dense matrices where most elements are nearly zero (numerically sparse
matrices). Knowing where the elements are close to zero can substantially improve
numerical techniques for linear systems, eigenvalues, matrix functions, and other matrix
problems; see, for instance, [9] and references therein. The large-magnitude elements of
a numerically sparse matrix are often localized in some parts of the matrix (for example,
the main diagonals). Moving away from these parts, the magnitude of the elements
typically tends to decay to zero. This is known as decay phenomenon. A classical case
is the inverse of banded matrices (first analyzed in [43]).

Example 1.1 (Matrix inverse decay) Consider the 60× 60 tridiagonal symmetric
positive definite matrix

A =




3 1 0 · · · 0

1 3 1
...

0 1
. . .

. . . 0
...

. . .
. . . 1

0 · · · 0 1 3



.

While A−1 is dense, a closer inspection reveals that the magnitude of most of the el-
ements is negligible; see Figure 1.1, left. The significant elements of A−1 are found
around the band of A (localization). Moreover, the magnitude of the elements expo-
nentially decays to zero with the distance from the main diagonal (off-diagonal decay).
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Figure 1.1: Above: Plots of the magnitude of the matrix inverse elements (loga-
rithmic scale). Below: Spectral intervals of, respectively, A,A− I, and A− 2I.

In Figure 1.1, we can also see the influence of the matrix spectrum on the decay phe-
nomenon. Indeed, the inverses of the shifted matrices A− I, A− 2I display a different
behavior. The elements of (A − I)−1 are barely decaying to zero, while in (A − 2I)−1

the decay phenomenon has disappeared.

The decay phenomenon extends beyond the matrix inverse case to the more gen-
eral case of matrix functions. Matrix functions are well-established tools for modeling
and solving problems (analytically and numerically) emerging from the most diverse
applications; see, e.g., [72]. For instance, the applications considered in this thesis span
from network analysis [10, 12, 14, 46–48] to optimization problems in Gaussian pro-
cesses [101] to systems of non-autonomous differential equations in quantum chemistry
[19, 25, 56, 57, 73, 78].

Matrix functions are defined in several ways that are equivalent under certain as-
sumptions [72, Section 1]. Below, we recall the definitions used in the thesis papers’
reprints. First, let us denote with λi the eigenvalues of the matrix A and with si the
associated index (i.e., the size of the largest Jordan block in which λi appears). A
function f is said to be defined on the spectrum of the matrix A if, for every λi, the
value of the jth derivative f (j)(λi) exists for j = 0, 1, . . . , si − 1. We use the notation
diag(X1, . . . , Xn) to denote a (block) diagonal matrix whose diagonal elements (blocks)
are X1, . . . , Xn.

Definition 1.2 (Matrix function via Jordan canonical form) Let f be a func-
tion defined on the spectrum of the matrix A ∈ Cn×n. Moreover, consider the Jordan
decomposition of A

A = Wdiag(Λ1, . . . ,Λν)W
−1,

where Λ1, . . . ,Λν are the Jordan blocks and W the matrix of the generalized eigenvectors.
The matrix function f(A) is defined as

f(A) = Wdiag(f(Λ1), . . . , f(Λν))W
−1,

10



where

f(Λ) =




f(λ) f ′(λ)
1!

f (2)(λ)
2! . . . f (s−1)(λ)

(s−1)!

0 f(λ) f ′(λ)
1! . . . f (s−2)(λ)

(s−2)!
...

. . .
. . .

. . .
...

...
. . .

. . . f ′(λ)
1!

0 . . . . . . 0 f(λ)




is the function of an s-size Jordan block Λ with eigenvalue λ.

Definition 1.3 (Matrix function via Cauchy integral) Let A ∈ Cn×n and f be
an analytic function on an open set Ω ⊂ C and let Γ ⊂ Ω be a system of Jordan curves
encircling each eigenvalue of A exactly once, with mathematical positive orientation.
Then the matrix function f(A) is defined as

f(A) =

Z

Γ
f(z) (zI −A)−1 dz.

Definitions 1.2 and 1.3 are equivalent when f is analytic; see [72, Theorem 1.12].
Assume that the analytic function f can be expanded into the power series f(z) =P

n≥0 θn z
n for |z| ≤ r, with convergence radius r > 0. If r is larger than the spectral

radius of A, then the expansion
P

n≥0 θnA
n converges to f(A) in the sense of Defin-

tions 1.2 and 1.3; see, e.g., [72, Theorem 4.7]. Note that if f(z) = a0 + a1z + . . . anz
n

is a polynomial of degree n, the matrix function f(A) is in fact the matrix polynomial

f(A) = a0I + a1A+ . . . anA
n,

with I the identity matrix. Moreover, the usual matrix inverse A−1 is a matrix function,
as are the matrix rational functions in the form p(A)(q(A))−1, with p and q polynomials.
Below, we present an introductory example using the matrix exponential exp(A). Other
matrix functions found in the thesis are exp(−

√
A), log(A),

√
A.

exp(A) exp(A− I) exp(A− 2I)

Figure 1.2: Magnitude of the matrix exponential elements (logarithmic scale).
The matrix A is the same as in Figure 1.1.
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Example 1.4 (Matrix Exponential) A classic example of a matrix function is the
matrix exponential exp(A), which is typically introduced using the expansion

exp(A) =

∞X

j=0

Aj

j!
.

Since the exponential is an entire function and the series above converges for every
A ∈ Cn×n, this definition is equivalent to the Definitions 1.2 and 1.3. In this thesis,
the matrix exponential is used in network analysis applications as well as for solving
ordinary differential equations.

Consider the matrix A from Example 1.1. Figure 1.2 displays the decay phenomenon
for exp(A). The decay is similar to the one in A−1 (Figure 1.1) but faster since the
magnitude of the elements decays superexponentially. As explained, e.g., in [8], this is
because the exponential is an entire function. Moreover, note that there is no significant
difference in the decay rate of the exponential of the shifted matrices exp(A−I), exp(A−
2I).

In general, given a large enough banded Hermitian matrix A and a function f
analytic on an ellipse containing the spectrum of A, f(A) shows an off-diagonal expo-
nential decay; see [15]. Similar conditions apply for the off-diagonal decay of banded
non-Hermitian matrix functions; see, e.g., [8, 11] and [C2]. Describing the decay phe-
nomenon a priori, i.e., without computing f(A), is important as it can be used to
devise algorithms with a lower numerical and memory cost; e.g., [9, 16] and [C2].
Other applications are found, for instance, in [104]. The a priori description of the
decay phenomenon usually employs upper bounds in the following, or equivalent, form:

(1.1) |f(A)k,ℓ| ≤ K exp(−α|k − ℓ|), k, ℓ = 1, . . . , n;

for some K,α > 0; see, among many other, [8, 9, 15, 43, 53] and [C2]. The values of α
and K usually depend on i) the upper and lower bandwidths of A, ii) properties of the
function f (e.g., singularities), iii) spectral properties of A (e.g., the spectral interval).
When f is an entire function, α can increase with the distance |k − ℓ|, leading to a
super-exponential decay rate (Figure 1.2); see also [C2, Corollary 2.4] for an example
of a superexponential bound.

Relying on the spectral interval as the only source of spectral information might
be insufficient for nonnormal matrices as it might lead to values of K in (1.1) that are
too large to be meaningful. For this reason, more advanced bounds (for instance, in
[8, 11, C2]) are based on information from the field of values (numerical range), i.e.,
the convex set in the complex field defined as

W (A) := {vHAv | v ∈ Cn, ||v|| = 1}.
The decay phenomenon extends to functions of sparse matrices (Section 1.2) and

even to some special dense matrices (Section 1.3.1). Section 1.3 discusses some of its
uses in Krylov subspace methods.

1.2 Decay phenomenon in network analysis

The decay phenomenon displayed by functions of sparse matrices can be described
using graph theory; see, e.g., [9, 11, 12]. Given a sparse n×n matrix A, the associated
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graph (or network) G(A) is the graph with n nodes which has a directed edge from the
node k to the node ℓ if and only if the matrix element Ak,ℓ is nonzero (if the elements
of A are either 0 or 1, then A is the adjacency matrix of G(A)). Given the nodes k, ℓ
in G(A), the number of edges (the length) of the shortest path from k to ℓ is known as
the geodesic (or shortest-path) distance and denoted by dG(k, ℓ). Then, typically, an
a priori decay bound for a matrix function f(A) is obtained by replacing |k − ℓ| with
dG(k, ℓ) in (1.1), that is,

|f(A)k,ℓ| ≤ K exp(−αdG(k, ℓ)), k, ℓ = 1, . . . , n;

see, e.g., [11].
In network analysis, the centrality index of a node is a value displaying the node’s

“importance” with respect to the edge structure of the network. In other words, the
centrality index shows which node is more likely to be at the center of information
flux; see [12, 14, 45–48]. In particular, the so-called subgraph centrality index is defined
through matrix functions as

SC(k) := [f(A)]k,k,

that is the kth element of the diagonal of a matrix function. Typically, f is either
the resolvent f(A) = (I − αA)−1 or the exponential f(A) = exp(A) [46, 47]. The
off-diagonal elements of f(A) define the so-called subgraph communicability.

Computing SC(k) can be costly when the size of A is huge, as often happens in
network analysis. This becomes even more problematic when the network is subjected
to frequent changes or perturbation since, in principle, the nodes’ centrality index must
be updated. In [C1], with Francesco Tudisco, we showed that the centrality index of a
node k is not substantially affected by edge perturbation if the perturbed edges are far
away from k. More in detail, suppose a few edges are added, removed, or modified in
G(A). Then, we get the perturbed network G(Ã) with adjacency matrix eA = A+∆A,
where ∆A is a very sparse matrix. By exploiting the decay phenomenon, in [C1], we
derived bounds of the kind:

|f(A)k,k − f(Ã)k,k| ≤ K

�
1

τ

�δ+2

, k = 1, . . . , n,

for a certain τ > 1 and K > 0, where δ is the geodesic distance between k and the set of
nodes whose edges have been perturbed. These bounds explain why peripheral changes
in the network G(A) do not significantly influence the subgraph centrality index of the
most important nodes. The paper [C1] also extends these results to communicability
indexes.

1.3 Arnoldi’s residual estimates and decay phe-

nomenon

We start briefly recalling the basic concepts of Arnoldi’s method; the reader can refer
to the monographs [89, 107] for more information. Given a matrix A ∈ RN×N and
a vector v ̸= 0, Arnoldi’s method constructs an orthogonal matrix Um = [u1, . . . , um]
whose columns are a basis of the (polynomial) Krylov subspace

Km(A, v) := span
�
v,A v, . . . , Am−1 v

	
.
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Arnoldi’s method is a Gram-Schmidt orthogonalization process defined by the recur-
rences

hj+1,juj+1 = Auj −
jX

i=1

hi,jui, j = 1, . . . ,m, u1 = v/∥v∥,(1.2)

hi,j = uHi Auj , hj+1,j = ∥uj+1∥,(1.3)

which are long recurrences since the number of terms increases at each iteration. The
recurrences can be compactly rewritten in the matrix form

(1.4) AUm = UmHm + hm+1,mum+1e
T
m,

where Hm is the m ×m upper Hessenberg matrix with the coefficients hi,j as entries
(em is the mth vector of the canonical basis). Moreover, by Um orthogonality, it holds
Hm = UH

mAUm. The matrix Hm plays two roles:

• It represents the orthogonalization process since it contains the coefficients hi,j ;

• It represents the action of A in the Krylov subspace Km(A, v) since UmHmUH
m =

UmUH
mAUmUH

m , with UmUH
m orthogonal projector onto Km(A, v).

When A is a large sparse matrix, the upper Hessenberg matrix Hm can be used for the
approximation of matrix functions through the formula

(1.5) f(A)v ≈ ∥v∥Umf(Hm)e1,

where the problem f(Hm)e1 is of reduced size and hence easier to compute (model
reduction); see, e.g., [72, 96]. Note that when f(z) = z−1, this approach is mathemat-
ically equivalent to the Full Orthogonalization Method (FOM). Since Hm is a banded
matrix (in its lower triangular part), f(Hm) elements may decay. In this case, a priori
decay bounds can be used, for instance, for devising relaxed approaches and stopping
criteria for iterative solvers in matrix function evaluations and matrix equation prob-
lems; see, e.g., [70, 85, 113, 123, 124]. In [C2], with Valeria Simoncini, we derived an
a priori bound for the residual of the Arnoldi approximation (1.5) of certain matrix
functions f(A). The residual bound was derived through a bound for the elements’
decay in f(Hm) based on information on the field of values W (A).

The inexact Arnoldi’s method is a variant of Arnoldi’s method in which the matrix-
vector product Auj in the iterations (1.2)–(1.3) is not computed accurately (e.g., be-
cause A is not explicitly known). Given a requested tolerance for the norm of the
residual, it is possible to increasingly relax the accuracy of the matrix-vector product
as Arnoldi’s iterations proceed without significantly changing the residual convergence
behavior [110, 113]. In [C2], the introduced decay bound for f(Hm) is also used to
devise a strategy for setting the iteration accuracy of the inexact Arnoldi’s method
when approximating non-Hermitian matrix functions by (1.5).

1.3.1 Rational Krylov subspace method

The model-reduction approach for matrix-function approximation in (1.5) corresponds
to a polynomial approximation of f(A)v since ∥v∥Umf(Hm)e1 is a vector in the (poly-
nomial) Krylov subspace. When the polynomial approximation is insufficient (for ex-
ample, the number of Arnoldi iterations is too large), a rational Krylov approxima-
tion may work. Hereafter, we summarize the basics of rational Krylov approximation.
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More information can be found in [68, 69, 105]. Analogously to the Arnoldi’s algo-
rithm, the rational Krylov subspace method (RKSM) produces the orthogonal matrix
Vm = [v1, . . . , vm] basis of the the rational Krylov subspace

Rm(A, v,σ):=span



v, (A−σ1I)

−1 v, . . . ,
m−1Y

j=1

(A−σjI)
−1 v



 ,

for the given shifts σ = [σ1, . . . ,σm−1] not in the spectrum of A. The RKSM is a
Gram-Schmidt orthogonalization process defined by the recurrences

hj+1,jvj+1 = (A− σjI)
−1vj −

jX

i=1

hi,jvi, v1 = v/∥v∥,(1.6)

hi,j = vHi (A− σjI)
−1vj , hj+1,j = ∥vj+1∥,(1.7)

for j = 1, . . . ,m. By defining Hm as the upper Hessenberg matrix with entries hi,j ,
and Km = (I + Hm diag(σ1, . . . ,σm)), these long recurrences can be rewritten in the
matrix form

(1.8) AVmHm = VmKm − hm+1,m(A− σmI)vm+1e
T
m.

In RKSM, the matrix Hm represents the orthogonalization process (it contains the
coefficients hi,j). On the other side, the so-called reduced-order matrix is defined as

Jm := V H
m AVm = KmH−1

m − hm+1,mV H
m (A− σmI) vm+1e

T
mH−1

m ,

and it represents the action of A in Rm(A, v,σ). As such, the approximation of matrix
functions is given by the formula

f(A)v ≈ ∥v∥Vmf(Jm)e1,

analogously to (1.5); e.g., [68]. Contrary to the Hessenberg matrix in (1.5), the ma-
trix Jm is generally dense. Despite this, the entries’ magnitude of Jm and of matrix
functions f(Jm) typically decay in their lower triangular part. In [C3], with Valeria
Simoncini, we mathematically described the decay phenomenon in Jm and f(Jm) by
introducing a priori decay bounds, so proving that the matrix Jm is numerically banded
and opening the way to improvements, such as new residual estimates and novel inex-
act approaches. The results in [C3] also helped us to analyze RKSM finite precision
convergence behavior in [C7]; see Section 2.4. The a priori bounds were obtained by
exploiting i) the hidden sparsity structure of Jm (a consequence of the orthogonaliza-
tion process) ii) rational function approximation iii) the domain of analyticity of f iv)
the field of values of A.

Another related application is the Lyapunov matrix equations of the kind

AX +XAH = ccH ,

with c a vector of norm 1. Its solution can be approximated by solving the reduced-order
equation

(1.9) JmYm + Ym JH
m = e1e

T
1 , X ≈ VmYmV H

m ;

see [68, 82, 111, 112]. Interestingly, the matrix Ym is also localized in the upper left
corner, as we proved in [C3] by providing a further a priori decay bound.
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Chapter 2

Matrix functions, Krylov
subspace methods, and the
complex Gauss quadrature

2.1 The Gauss quadrature and Lanczos algo-

rithm

We begin summarizing well-known results on the connection between matrix function
approximation, the Gauss quadrature, and the Lanczos algorithm, as presented in
the monograph [60]. Consider the Riemann-Stieltjes integral with respect to a non-
decreasing distribution µ

Iµ(f) :=
Z

R
f(λ)dµ(λ),

and assume that the moments m0,m1,m2, . . . of Iµ are finite, i.e.,

mj :=

Z

R
λjdµ(λ) < ∞, j = 0, 1, 2, . . . .

Then, the integral Iµ(f) is well-defined for every f in P, the space of the polynomials
with complex coefficients. Given a function f for which Iµ(f) is well-defined, the
integral can be approximated by an n-node quadrature

Z

R
f(λ) dµ(λ) ≈

nX

j=1

f(θj)ωj =: Gn(f),

determined by the nodes θj and weights ωj . In particular, Gn is a Gauss quadrature
when its degree of exactness is 2n−1, the maximal one (it is exact for every polynomial
f of degree smaller or equal to 2n − 1). We recall that the nodes θj of the Gauss
quadrature Gn are the roots of the n-degree orthogonal polynomial pn with respect
to the distribution µ (once the nodes are determined, so are the weights ωj since the
Gauss quadrature is interpolatory). We refer to [37, 55] for more information.

Consider an N × N Hermitian matrix A and a vector v such that ∥v∥ = 1. For
simplicity, assume that A’s eigenvalues λ1 < · · · < λN are distinct, and denote the
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associated eigenvectors with q1, . . . , qN . Let us define the discrete distribution

(2.1) µ(λ) :=





0, if λ < λ1Pi
j=1 |qHj v|2, if λi ≤ λ < λi+1, i = 1, . . . , N − 1,PN
j=1 |qHj v|2, if λ ≥ λN

.

Then, for every function f defined on the spectrum of A, the bilinear form can be
rewritten as

(2.2) vHf(A)v =

Z λN

λ1

f(λ)dµ(λ) =

NX

i=1

f(λi)|qHi v|2.

Thanks to (2.2), we can approximate vHf(A)v by a quadrature rule. Moreover, since
µ is the distribution (2.1), the Gauss quadrature Gn(f) can be evaluated using the
Lanczos algorithm [86, 87] which computes the orthogonal matrix Vn = [v1, . . . , vn]
whose columns form a basis of the Krylov subspaces Kn(A, v). The matrix Jn =
V H
n AVn, is a tridiagonal Hermitian matrix known as Jacobi matrix. As explained in

[60], it holds

(2.3) vHf(A)v =

Z

R
f(λ) dµ(λ) ≈

nX

j=1

f(θj)ωj = eT1 f(Jn)e1.

Therefore, it is possible to compute the Gauss quadrature Gn(f) by running n − 1
iterations of the Lanczos algorithm and then compute the bilinear form eT1 f(Jn)e1.
Note that this is a model reduction approach since Jn has a size smaller than A’s
one. This quadrature-based approach has been successfully applied to matrix function
approximation; see, e.g., [6, 10, 12–15, 48, 49, 60, 114].

The following sections show how to generalize the Gauss quadrature to approximate
general linear functionals L : P → C, presenting the connections with formal orthogonal
polynomials, complex Jacobi matrices, and the non-Hermitian Lanczos algorithm. This
allows extending the approximation (2.3) to non-Hermitian matrices.

2.2 Extending the Gauss quadrature

Let L : P → C be the linear functional determined by the sequence of moments

L(λj) = mj , j = 0, 1, . . . ,

and let us define the bilinear form [·, ·] : P × P → C as [p, q] := L(pq). We say that
a sequence of polynomials p0, . . . , pn with degrees respectively 0, . . . , n is a sequence
of formal orthonormal polynomials (FOPs) when [pi, pj ] = L(pipj) = δij , with δij
the Kronecker delta. If such a sequence exists, then L is said to be quasi-definite
over Pn ⊂ P, the subspace of polynomials with degree at most n; see [37]. Formal
orthonormal polynomials satisfy the three-term recurrences

(2.4) βjpj(λ) = (λ− αj−1)pj−1(λ)− βj−1pj−2(λ), j = 1, . . . , n,

with p−1(λ) = 0, p0(λ) ̸= 0, βj ̸= 0. The recurrences can be rewritten in matrix form:

λp(λ) = Jn p(λ) + βnpn(λ) en
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with

(2.5) Jn =




α0 β1
β1 α1 β2

. . .
. . .

. . .

βn−2 αn−2 βn−1

βn−1 αn−1




, p =




p0(λ)
p1(λ)

...
pn−2(λ)
pn−1(λ)




.

The matrix Jn is known as complex Jacobi matrix [7] (note that it is symmetric but not
generally Hermitian). For more information about FOPs, refer to [31, 37]. Contrary
to the (classical) orthogonal polynomials [55], formal orthogonal polynomials can have
roots with multiplicity larger than 1. Therefore, they generally take the form

pn(λ) = γ(λ− λ1)
s1(λ− λ2)

s2 · · · (λ− λt)
st , s1 + · · ·+ st = n.

Nevertheless, given a regular enough function f , it is possible to use the roots of pn to
define the so-called n-weight complex Gauss quadrature Gn(f) for approximating L(f),
that is

(2.6) Gn(f) :=

tX

i=1

si−1X

j=0

ωi,j f
(j)(λi), n = s1 + · · · + st,

with si the multiplicity of the node λi. Note that the weights are determined by λi and
si since the quadrature is interpolatory (in the Hermite sense).

The complex Gauss quadrature has been introduced in different forms (equivalent
under certain assumptions); see [44, 52, 95] and [C4]. In [C4], with Miroslav Pranić
and Zdeněk Strakoš, we described the complex Gauss quadrature from the FOP point
of view, assuming L to be quasi-definite. Moreover, we identified the following basic
properties that make (2.6) a useful generalization of the Gauss quadrature in numerical
linear algebra.

• G1. Gn has maximal degree of exactness 2n− 1.

• G2. Gn is well-defined and unique. Moreover, Gauss quadratures with a smaller
number of weights also exist and are unique.

• G3. Gn(f) = m0e
T
1 f(Jn) e1, where Jn is the complex Jacobi matrix.

Among other results, in [C4], we proved that m0e
T
1 f(Jn) e1 = L(f), for every poly-

nomial f of degree at most 2n − 1. Other proofs of this property have been given
in different forms and under more restrictive assumptions [38, 52, 62, 89, 115]. We
demonstrated Property G3, i.e., that G(f) = m0e

T
1 f(Jn)e1 for every f ∈ P (in other

words, m0e
T
1 f(Jn)e1 is the matrix form of the complex Gauss quadrature). We further

proved that L is quasi-definite on Pn if and only if G1 and G2 hold. The results in
[C4] opened the way to the connection between the complex Gauss quadrature and the
non-Hermitian Lanczos algorithm described in the following section.
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2.3 The complex Gauss quadrature and Krylov

subspace methods

Let A be a generally non-Hermitian matrix and w, v be vectors such that wHv = 1.
The linear functional

L : P → C, L(f) := wHf(A) v

can be approximated by the complex Gauss quadrature (2.6) assuming that it is quasi-
definite on Pn. By Property G3, the quadrature can be computed through its matrix
representation

(2.7) eT1 f(Jn)e1 =

tX

i=1

si−1X

j=0

ωi,j f
(j)(λi),

note that m0 = 1. In the survey [C5], with Miroslav Pranić and Zdeněk Strakoš,
we examined the connections between the complex Gauss quadrature for L(f) :=
wHf(A) v, and the non-Hermitian Lanczos algorithm. Assuming no breakdowns, the
non-Hermitian Lanczos algorithm computes the matrices Vn = [v1, . . . , vn] and Wn =
[w1, . . . , wn] whose columns are bases, respectively, of the Krylov subspaces Kn(A, v)
and Kn(A

H , w). The matrices satisfy the biorthogonality conditions WH
n Vn = I, but

they are not, generally, orthogonal. Since L is quasi-definite on Pn, the associated
FOPs p0, p1, . . . , pn exist. Then, the non-Hermitian Lanczos algorithm bases can be
expressed as

vj+1 = pj(A)v and wH
j+1 = wHpj(A), j = 0, . . . , n− 1.

As a consequence, the non-Hermitian Lanczos recurrences

βjvj = (A− αj−1)vj−1 − βj−1vj−2.(2.8)

β̄jwj = (AH − ᾱj−1)wj−1 − β̄j−1wj−2,(2.9)

are obtained by the FOPs recurrences (2.4); see, e.g., [31, 60, 65, 66, 89, 107]. Op-
posite to Arnoldi’s method, which is based on the long recurrences (1.2)–(1.3), the
non-Hermitian Lanczos algorithm has short recurrences, meaning that they have a
small fixed number of terms per iteration. The reduced-order (or projected) matrix
Jn = WH

n AVn is the complex Jacobi matrix (2.5). Note that it is possible to build
it by simply storing the coefficients of the recurrences (2.8)–(2.9) while running the
non-Hermitian Lanczos algorithm. Consequently, the non-Hermitian Lanczos algo-
rithm corresponds to computing the complex Gauss quadrature (2.7). The survey [C5]
presents the connections between the non-Hermitian Lanczos algorithm and the com-
plex Gauss quadrature. To our knowledge, it provides the first comprehensive overview
on the matter by putting together the many results scattered in the literature and thus
presenting the extension of the well-known results for Hermitian matrices in Section 2.1
to the non-Hermitian ones.

2.3.1 General linear functionals and Lanczos breakdowns

In the survey [C6], with Miroslav Pranić, we completed our study on the Gauss quadra-
ture extension addressing the case of linear functionals that are not quasi-definite. A
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regular formal orthogonal polynomial pn is defined as the polynomial of degree n sat-
isfying

L(pnλj) = 0, j = 0, . . . , n− 1.

Note that pn is unique up to nonzero rescaling and that it is not generally orthonormal
since L((pn)2) can be equal to zero. If L is not quasi-definite, then some FOPs do not
exist. In this case, we denote with ν(k), k = 0, 1, . . . , the degrees for which a regular
formal orthogonal polynomial pν(k) exists. In order to have a complete basis for P, the
gaps in the sequence pν(0), pν(1), pν(2), . . . are filled with the so-called quasi-orthogonal
polynomials. Given pν(k), a quasi-orthogonal polynomial pn of degree ν(k) < n <
ν(k + 1) is defined as pn := qn−ν(k)pν(k), where qn−ν(k) is a polynomials of degree
n− ν(k).

The sequence of regular formal orthogonal polynomials and quasi-orthogonal poly-
nomials p0, . . . , pn satisfy the recurrence relation [44, 62]

λp(λ) = Tnp(λ) + enpn(λ)

where Tn is the block tridiagonal matrix

Tn =




A0
βν(1)

γν(2)
A1 . . .

. . .

. . .
βν(ℓ)

γn
An

ℓ




, p(λ) =




p0(λ)
...

...

pn−2(λ)

pn−1(λ)




When the linear functional is quasi definite, the blocks A0, . . . , Aℓ have size 1; that is, Tn

is tridiagonal. When the polynomials p0, . . . , pn are orthonormal, Tn is also symmetric;
hence, it is the complex Jacobi matrix (2.5).

The roots of pν(k) determine the quadrature Gν(k) as in (2.6); see [44]. In [C6],
we identified the following fundamental properties of Gν(k) (weaker forms of Properties
G1–G3).

1. The complex Gauss quadrature Gν(k) has the maximal degree of exactness ν(k)+
ν(k + 1)− 2 ≥ 2ν(k)− 1.

2. The quadrature Gν(k) is well-defined and unique.

3. The quadrature can be written in the form Gν(k)(f) = µmν(1)−1 e
T
1 f(Tν(k)) eν(1),

with µ−1 = β1 · · ·βν(n−1)−1 for ν(1) > 1 or µ = 1 for ν(1) = 1.

In virtue of such properties, we refer to Gν(k) as an extension of the Gauss quadrature.

The vectors vj+1 := pj(A) v and wH
j+1 := wHpj(A), j = 0, . . . , n−1, are respectively

bases of the Krylov subspaces Kn(A, v) and Kn(A
H , w). When the linear functional

L(f) = wHf(A)v is quasi-definite, we saw in the previous section that these bases are
mathematically equivalent to the ones computed by the non-Hermitian Lanczos algo-
rithm (up to rescaling). However, for a general linear functional L(f) = wHf(A)v,
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if L(p2j ) = 0, then the non-Hermitian Lanczos algorithm has a breakdown at the jth
iteration. In this case, if p0, . . . , pn−1 is the sequence of regular formal orthogonal poly-
nomials and quasi-orthogonal polynomials described above, the bases Vn = [v1, . . . , vn]
and Wn = [w1, . . . , wn] are equivalent to the ones obtained by employing the look-
ahead strategy ; refer to [32, 50, 51, 99]. The non-Hermitian Lanczos algorithm with a
look-ahead strategy then produces the approximation:

(2.10) wHf(A)v ≈ µmν(1)−1 e
T
1 f(Tn) eν(1) = Gν(k)(f), n = ν(k), . . . , ν(k + 1)− 1.

The look-ahead Lanczos algorithm corresponds to computing the extended Gauss quadra-
ture.

A so-called incurable breakdown [99, 116] appears at the nth iteration when pn is
the last regular formal orthogonal polynomial. In this case, the approximation (2.10)
is exact for every f ∈ P. In [C6], we used this fact to give a new proof of the Mismatch
Theorem, i.e., if an incurable breakdown occurs, then each of Tn eigenvalues are A
eigenvalues [98, 99, 116].

The survey [C6] provides a unified description of the connections between the Gauss
quadrature, orthogonal polynomials’ extensions, and the look-ahead non-Hermitian
Lanczos algorithm. To our knowledge, the rest of the literature on this topic is frag-
mented, and the results are explained from many diverse perspectives (linear algebra,
control theory, matrix computations, approximation theory), often without showing
the connections. The survey also clarifies the connection with the minimal realization
problem [62].

2.4 Rational Lanczos algorithm

To be consistent with the notation of paper [C7], in this section, we consider the
following definition of the rational Krylov subspace

Rm(A, v, ξ):=span



v,

�
I − ξ−1

1 A
�−1

v, . . . ,

m−1Y

j=1

�
I − ξ−1

j A
�−1

v



 ,

which is mathematically equivalent to the one in Section 1.3.1 assuming ξj = σj ̸= 0.
The Rational Krylov subspace method is characterized by the long recurrences (1.6)–
(1.7). When A is Hermitian, a reformulation of RKSM was devised so that the matrices
Hm,Km in (1.8) are tridiagonal [36, 41, 67], leading to the so-called rational Lanczos
algorithm characterized by the three-term recurrences

βj

�
I − ξ−1

j A
�
qj+1 = Aqj − αj

�
I − ξ−1

j−1A
�
qj − βj−1

�
I − ξ−1

j−2A
�
qj−1, j = 1, . . . n;

see [67]. Setting

r := (I − ξ−1
j A)−1(Aqj + βj−1ξ

−1
j−2Aqj−1)− βj−1qj−1,

s := (I − ξ−1
j A)−1(I − ξ−1

j−1A)qj ,

the coefficients αj and βj are given by

αj = (rT qj)/(s
T qj), βj = ∥r − αjs∥.
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Note that, for Hermitian matrices, the basis q1, . . . , qn is mathematically equivalent
to the basis v1, . . . , vn produced by the long RKSM recurrences (1.6)–(1.7). About
short recurrences in rational Krylov subspace computations, we refer the reader also to
[54, 64, 103, 118].

The rational Lanczos algorithm requires solving two linear systems per iteration.
This appears to make the short recurrences not competitive compared to the RKSM
algorithm, which only requires the solution of one linear system per iteration. In [C7],
with Davide Palitta and Valeria Simoncini, we proposed a new implementation of the
rational Lanczos algorithm that i) reduces the computational costs of the two systems
combining them into a single one with two right-hand sides ii) computes the entries of
the reduced order matrix

Rn := QT
nAQn

as the iterations proceed, without storing the whole basis Qm = [q1, . . . , qn]. Moreover,
[C7] illustrates the advantages of the new implementation with several applications and
discusses the loss of orthogonality of the basis Qm in finite precision arithmetic. We
obtained preliminary considerations on finite precision arithmetic computations indi-
cating that the rational Lanczos algorithm behaves similarly to its polynomial coun-
terpart thanks also to the results on the decay phenomenon of functions of the matrix
Rn (Section 1.3.1 and [C2]).

Among other applications, [C7] deals with the approximation of the bilinear form
vT f(A) v, with ∥v∥ = 1, by the formula

vT f(A) v ≈ eT1 f(Rn)e1.

As we have seen in Section 2.1, the classical (polynomial) Lanczos algorithm produces
the Jacobi matrix Jm for which the approximant eT1 f(Jn)e1 is exact for every polynomial
f of degree at most 2n−1. Correspondingly, in the rational case, the following property
holds for every polynomial p of degree at most 2n− 1.

(2.11) vT p(A)q(A)−2 v ≈ eT1 p(Rn)q(Rn)
−2e1, q(x) =

n−1Y

j=1

�
1− x

ξj

�
.

To our knowledge, this result was first stated in [68, Remark 3.2]. However, it is also a
consequence of Theorem 2 in [54]. In [C7], we gave a new proof based on ideas borrowed
from Vorobjev’s problem of moments [89]; see also [104]. Since vT p(A)q(A)−2 v can be
expressed as a Riemann-Stieltjes integral Iµ(pq

−2) as in (2.2), the approximation (2.11)
can be seen as a rational Gauss quadrature; see [40, 42, 68, 81, 90, 103].
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Chapter 3

Computing the time-ordered
exponential

3.1 Introduction

Consider the matrix-valued function Ã(t) ∈ CN×N analytic on the bounded interval I =
[a, b] and let Ũ(t) ∈ CN×N be the solution of the non-autonomous ordinary differential
equation

(3.1)
∂

∂t
Ũ(t) = Ã(t)Ũ(t), Ũ(a) = I, t ∈ I = [a, b].

When Ã(t) commutes with itself at different times, i.e., Ã(t1)Ã(t2) = Ã(t2)Ã(t1), the
solution is given through the matrix exponential as

Ũ(t) = exp

�Z t

a
Ã(τ)dτ

�
, t ∈ [a, b].

However, in the general case, there is no explicit formula for Ũ(t) in terms of usual ma-
trix functions. The solution Ũ(t) instead is known as time-ordered exponential (TOE),
denoted T exp(Ã), and can be seen as a generalization of the matrix function concept
to the time-dependent case. Among the possible applications, we focus on quantum
chemistry where the quantum spin dynamics are often modeled by non-autonomous
ODEs (Schrödinger equation); see, e.g., [84]. As no general explicit expression of Ũ(t)
is accessible, analytic approaches are typically based on Floquet formalism [79, 109],
Magnus series [26, 91], or hybrids of these with ad-hoc approximate/numerical methods
[33, 92–94, 119]. These analytic approaches rarely provide exact solutions in a finite
number of steps, might suffer from convergence issues [26], and be intractable [39].
There is a perception in the physics community that no exact solutions are achievable
[61]. This also influences the development of numerical solvers since the most advanced
numerical methods are typically built on analytical approaches [26, 73, 79]. As noted
by M. Grifoni and P. Hänggi in [63]: “Solving the time-dependent Schrödinger equa-
tion necessitates the development of novel analytic and computational schemes [...] in
a nonperturbative manner” – a remark still relevant today.

In the following sections, we first present the results obtained in collaboration with
Pierre-Louis Giscard. Together, we derived an entirely original symbolic method that
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allows expressing the time-ordered exponential in a finite number of steps. The method
is based on a combination of two mathematical novelties. The first is the ⋆-algebra
(Section 3.2), a Frechet-Lie algebra on bivariate distributions equipped with the so-
called ⋆-product. The second one is the ⋆-Lanczos algorithm, a symbolic method able to
transform the matrix Ã(t) into a tridiagonal matrix in the ⋆-algebra (Section 3.3). Then,
with Niel Van Buggenhout, we used these results to devise a new class of numerical
ODE solvers (Section 3.4). In Section 3.4.1, we conclude with some remarks on the
decay phenomenon of time-ordered exponentials.

3.2 The ⋆-product

For the scope of this thesis, we restrict the definition of the ⋆-product to a product
defined on the set A(I) of the bivariate distributions for which there exists a finite k
so that

f(t, s) = f̃−1(t, s)Θ(t− s) + f̃0(t, s)δ(t− s) + · · ·+ f̃k(t, s)δ
(k)(t− s),

where f̃−1(t, s), . . . , f̃k(t, s) are functions analytic both in t and s over the interval
I = [a, b], Θ(t−s) is the Heaviside function (Θ(t−s) = 1 for t ≥ s, and 0 otherwise), and
δ(t−s), δ′(t−s), δ(2)(t−s), . . . are the Dirac delta and its derivatives. Note that in [106],
the ⋆-product is defined over a larger group of distributions. We also define the subset
AΘ(I) ⊂ A(I) composed of the distributions of the kind f(t, s) = f̃−1(t, s)Θ(t− s).

The ⋆-product of f1, f2 ∈ A(I) is the non-commutative product defined as

(f1 ⋆ f2)(t, s) :=

Z

I
f1(t, τ)f2(τ, s) dτ ∈ A(I).

The product is an extension of Volterra compositions [120–122]. A similar extension to
distributions of the Volterra compositions appeared in [58], and the first results on the
⋆-product and its inverse appeared in [59] in connection with the works [C8, C9]. These
works led to the formalization of the ⋆-product by Manon Ryckebusch (University of
the Littoral Opal Coast) in [106]. The ⋆-resolvent of x ∈ AΘ(I) is defined as

R⋆(x) :=

∞X

j=0

x⋆j .

Note that R⋆(x) is well-defined (i.e., convergent) for every x ∈ AΘ(I) [58]. In Table 3.1,
we list essential properties of the ⋆-product and the definition of related objects.

The ⋆-product straightforwardly extends to a matrix-matrix (matrix-vector) ⋆-
product for given matrices with compatible sizes, composed of elements from A(I).
We denote with AN×M (I) the space of the N ×M matrices with elements from A(I)
(we define analogously the subset AN×M

Θ (I)). Note that I⋆ = Iδ(t− s) is the identity
matrix in AN×N (I). As shown in [58], the solution Ũ(t) of the ODE (3.1) can then be
expressed as

(3.2) Ũ(t) = U(t, a), U(t, s) = Θ(t− s) ⋆R⋆
�
Ã(t)Θ(t− s)

�
, t ∈ I = [a, b].

see also [C8, C9]. In particular, for a given vector v ∈ CN , consider the ODE

(3.3)
∂

∂t
ũ(t) = Ã(t)ũ(t), ũ(a) = v, t ∈ I = [a, b].

26



Table 3.1: Main properties of the ⋆-product and related definitions (f, g, x ∈
A(I)).

Name Symbol Definition Comments / Properties

⋆-identity δ f ⋆ δ = δ ⋆ f = f

⋆-inverse f−⋆ f ⋆ f−⋆ = f−⋆ ⋆ f = δ Existence [59, 106]

Dirac 1st derivative δ′ δ′(t− s) δ′ ⋆Θ = Θ ⋆ δ′ = δ

Dirac derivatives δ(j) δ(j)(t− s) δ(j) ⋆ δ(i) = δ(i+j)

⋆-powers f⋆j f ⋆ f ⋆ · · · ⋆ f , j times f⋆0 := δ, by convention

⋆-resolvent R⋆(x)
P∞

j=0 x
⋆j , x ∈ AΘ(I) R⋆(x) = (δ − x)−⋆

Since

R⋆
�
Ã(t)Θ(t− s)

�
=

�
I⋆(t− s)− Ã(t)Θ(t− s)

�−⋆
,

the solution ũ(t) = Ũ(t)v can be given through the solution of the ⋆-linear equation

(3.4) ũ(t) = u(t, a), u = Θ ⋆ x,
�
I⋆ − ÃΘ

�
⋆ x = ṽδ, t ∈ [a, b];

here and in the following, when needed, we do not explicitly write the arguments t, s
when they are clear from the context.

3.3 The ⋆-Lanczos algorithm

In [C9], we introduced the ⋆-Lanczos algorithm, a (symbolic) algorithm working in
the ⋆-algebra of matrices from AN×N (I). The algorithm is a generalization of the
non-Hermitian Lanczos algorithm (see Section 2.3). Given Ã(t) an N × N time-
dependent matrix analytic over I, v and w time-independent vectors (wHv ̸= 0), and
assuming no breakdown, the nth step of the ⋆-Lanczos algorithm gives the matrices
Vn(t, s),Wn(t, s) ∈ AN×n(I) satisfying the ⋆-biorthogonality condition

Wn(t, s)
H ⋆ Vn(t, s) = I⋆.

Moreover, it produces the tridiagonal matrix

Tn(t, s) :=




α0(t, s) δ(t− s)

β1(t, s) α1(t, s)
. . .

. . .
. . . δ(t− s)

βn−1(t, s) αn−1(t− s)



∈ An×n(I),

such that, denoting A(t, s) := Ã(t)Θ(t− s), it holds

Tn(t, s) = WH
n (t, s) ⋆A(t, s) ⋆ Vn(t, s).
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The “coefficients” α0, . . . ,αn−1 and β1, . . . ,βn−1 are (scalar) distributions appearing in
the ⋆-Lanczos algorithm short recurrences:

bvn = A ⋆ vn−1 − vn−1 ⋆ αn−1 − vn−2,(3.5)

wH
n = wH

n−1 ⋆A− αn−1 ⋆ w
H
n−1 − βn−1 ⋆ w

H
n−2,(3.6)

which are a generalization of the non-Hermitian Lanczos recurrences (2.8)-(2.9). Most
importantly, Tn satisfies the ⋆-matching moment property

wH (A(t, s))⋆k v = eH1 (Tn(t, s))
⋆k e1, k = 0, . . . , 2n− 1;

proved in [C9, Theorem 2.1].

Remark 3.1 In [C9], we defined a ⋆-polynomial p(λ)(t, s) as

p(λ)(t, s) := γ0(t, s) + λ ⋆ γ1(t, s) + λ⋆2 ⋆ γ2(t, s) + · · ·+ λ⋆k ⋆ γk(t, s),

with λ the variable and γ0, . . . , γk ∈ A(I) the coefficients of the polynomial. Then, the
⋆-matching moment property was proved by extending the concept of formal orthogonal
polynomials (Section 2.2) to ⋆-polynomials. The short recurrences (3.5)–(3.6) can also
be derived by applying the strategy presented in Section 2.3 to the ⋆-polynomials case.
Furthermore, note that the ⋆-matching moment property has the same degree of exact-
ness as a Gauss quadrature (in terms of the degree of a ⋆-polynomial). Hence, it might
be possible to extend the Gauss quadrature to the ⋆-framework. This requires proving
the existence of the roots of ⋆-polynomials, a non-trivial problem.

As a consequence of the ⋆-matching moment property, in [C9] we proposed the
following approximation

wHR⋆(A)v =

∞X

k=0

wHA⋆kv ≈
∞X

k=0

eH1 (Tn)
⋆ke1 = eH1 R⋆(Tn)e1.

Therefore, the ⋆-Lanczos algorithm can be used to approximate the bilinear form

ỹ(t) := wH ũ(t),

with ũ(t) the solution of Equation (3.3), by

(3.7) ỹ(t) ≈ yn(t, a), yn = Θ ⋆ eH1 xn, (I⋆ − Tn) ⋆ xn = e1δ, t ∈ [a, b],

that is, by solving a reduced order ⋆-linear system. Moreover, in [C8] we combined the
tridiagonal structure of Tn with the Path-sum method [58] obtaining the expression:

eH1 xn = eH1 R⋆(Tn)e1 = R⋆(α0 +R⋆(α1 +R⋆(· · ·+R⋆(αn−1) ⋆ βn−1) ⋆ · · · ) ⋆ β1),

which is a continued fraction in the ⋆-algebra.
Assuming no breakdowns, in [C8] we proved that for n = N the ⋆-Lanczos algorithm

tridiagonalizes A(t, s) producing the ⋆-factorization

A(t, s) = VN (t, s) ⋆ TN (t, s) ⋆WH
N (t, s),
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implying
R⋆(A) = VN ⋆R⋆(TN ) ⋆WH

N ,

thus showing that ỹ(t) = yN (t, a), t ∈ [a, b], with

yN = Θ ⋆R⋆(α0 +R⋆(α1 +R⋆(· · ·+R⋆(αN−1) ⋆ βn−1) ⋆ · · · ) ⋆ β1).(3.8)

This proves that it is possible to express the solution ỹ(t) = yN (t, a) in a finite num-
ber of ⋆-operations. In particular, the expression in (3.8) requires solving an order
N number of integro-differential equations. The first expression for the solution of
Equation (3.3) given in finitely many integro-differential equations was derived in [58].
Unfortunately, it requires solving a #P-complete problem. Assuming no breakdowns,
the ⋆-Lanczos algorithm solves this issue as the algorithm’s complexity is of order nN2

(it is smaller when Ã(t) is sparse) in terms of the number of usual algebraic sums of
functions, ⋆-products, and ⋆-inverses, i.e., the ⋆-operations. Therefore, for n = N ,
the solution ỹ(t) = yN (t, a) is obtained in an order N3 of ⋆-operations. Furthermore,
[C8] also discusses the breakdown issue, relating it with the breakdown of the usual
non-Hermitian Lanczos algorithm with input Ã(t), v, w, where t ∈ I is fixed.

We remark that rounding errors deeply affect the (usual) Lanczos algorithm by loss
of orthogonality. We expect an analogous behavior in any numerical implementation
of the ⋆-Lanczos algorithm. Therefore, this aspect must be investigated before relying
on any implementation in finite precision arithmetic.

3.4 Numerical methods for the time-ordered ex-

ponential

The ⋆-Lanczos algorithm and the expression in (3.7) require computing ⋆-operations
corresponding to computing integrals and solving integro-differential equations; see [59].
Explicit analytic solutions are, hence, rare. Moreover, in many applications the size
N of the matrix Ã(t) in Equation (3.3) can be huge, making symbolic computations
unachievable. For these reasons, in [C11], we introduced a numerical approach to
compute ⋆-operations.

Numerical solvers for non-autonomous ODEs are commonly used in quantum chem-
istry, e.g., in spin simulations [84]. Among them, we find: Runge-Kutta and Runge-
Kutta-Nyström approaches [22, 29, 117]; splitting and composition approaches (sym-
plectic [24], Magnus [5, 26, 75–77], commutator-free [1, 2, 4, 23, 27, 28], and symmetric
[18, 20, 21]); polynomial-based methods [74, 97]. Many of these and other methods are
classified as geometric integrators, i.e., able to preserve geometrical properties (sym-
metry, unitarity, symplecticity) [19, 71, 78, 83]. Other classes are the global methods
(without interval discretization) [100], and methods characterized by large discretiza-
tion steps [3, 34, 35, 108]. Nevertheless, the computational cost needed to solve ODE
systems is still a bottleneck in many quantum chemistry problems. As stated in [84],
“Time propagation commonly dominates the wall clock time of spin dynamics simula-
tions”.

The numerical approach described below has proved highly competitive in the so-
lution of ODEs related to a specific model, the generalized Rosen-Zener model. In [30],
with Christian Bonhomme (Sorbonne University) and Niel Van Buggenhout, we de-
vised a method whose computational cost scales linearly with the model size (Fig 3.1,
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left). Its cost is also competitive for increasing interval sizes (Fig 3.1, right). These
first results might open the way to more general efficient methods for spin simulations.
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Figure 3.1: Computational time comparison on the generalized Rosen-Zener
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In [C10, C11], we used Legendre polynomials to transform ⋆-algebra operations
into operations in the usual matrix algebra. First, in [C10], we showed that it is
possible to map a subalgebra of the ⋆-algebra into a subalgebra of infinite matrices. For
simplicity, let us consider the interval I = [−1, 1], and let p0(τ), p1(τ), p2(τ), . . . be the
orthonormal Legendre polynomials, i.e., pk, pℓ are polynomials of dregree respectively
k, ℓ satisfying the orthogonality condition:

Z 1

−1
pk(τ)pℓ(τ)dτ = δkℓ.

Then, a bivariate distribution f(t, s) ∈ AΘ(I) can be expanded into the series

f(t, s) = f̃(t)Θ(t− s) =

∞X

k=0

∞X

ℓ=0

αk,ℓpk(t)pℓ(s), t, s ∈ [−1.1], t ̸= s,

with coefficients

αk,l =

Z 1

−1
pk(ρ)

�Z 1

−1
f(τ, ρ)pℓ(τ)dτ

�
dρ.

By defining the following infinite-size matrix and vector

(3.9) F :=



α0,0 α0,1 . . .
α1,0 α1,1 . . .
...

...
. . .


 φ(τ) :=



p0(τ)
p1(τ)
...


 ,

we get the matrix representation of the series:

f(t, s) = φ(t)TF φ(s), t, s ∈ [−1.1], t ̸= s.
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The matrix F is known as coefficient matrix. We denote with Dt(I) ⊂ A(I) the
subring generated by the identity δ and all the distributions f ∈ AΘ(I) such that
f(t, s) = f̃(t)Θ(t − s). Given f, g, p ∈ Dt(I) so that p = f ⋆ g, and let F,G, P be the
respective coefficient matrices, in [C10], we showed that

(3.10) P = FG,

i.e., the infinite matrix-matrix product FG is well-defined and represents the ⋆-product.

Remark 3.2 The well-definiteness of the product (3.10) was proved by exploiting the
fact that the element’s magnitude of F and G decay exponentially moving away from the
diagonal, that is, the matrices display an off-diagonal decay phenomenon (Chapter 1).

Consequently, other matrix algebra operations are well-defined and correspond to
related ⋆-operations. We summarize them in Table 3.2. In particular, the ⋆-resolvent
R⋆(f) corresponds to the matrix resolvent (I − F )−1 since the infinite matrix I − F is
invertible [C10].

⋆-operations/objects matrix operations/objects
p = f ⋆ g P = FG
p = f + g P = F +G
1⋆ = δ(t− s) I, identity matrix
f−⋆ F−1, inverse
R⋆(f) = (1⋆ − f)−⋆ (I − F )−1, resolvent

Table 3.2: Left: ⋆-algebra operations and related objects. Right: The corre-
sponding infinite matrix algebra operations and objects. F,G, P are the coeffi-
cient matrices (3.9) of the distributions f, g, p ∈ Dt(I) respectively.

The relations in Table 3.2 can be extended to DN×N
t (I). Following [C10], let

A(t, s) = [fij(t, s)]
N
i,j=1 be an N × N matrix with elements fij(t) ∈ DN×N

t (I). Each

element fij can be mapped into the related coefficient matrices F (i,j) obtaining the
following N ×N matrix composed of infinite-size blocks

(3.11) A :=




F (1,1) . . . F (1,N)

...
. . .

...

F (N,1) . . . F (N,N)


 .

Then, given A(t, s), B(t, s), C(t, s) ∈ DN×N
t (I) so that C(t, s) = A(t, s) ⋆ B(t, s), the

respective coefficient matrices (3.11), denoted A,B,C, satisfy C = AB. Therefore,
the relations in Table 3.2 are generalized as in Table 3.3.

Denoting with H the coefficient matrix of Θ(t − s), we can finally express the
solution of Equation (3.3) on the interval I = [−1, 1] by transforming the expression in
(3.4) into the infinite matrix formula:

(3.12) ũ(t) = (IN ⊗φ(t)TH)(I −A)−1(v ⊗φ(−1)),
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⋆-operations/objects matrix operations/objects
C = A ⋆ B C = AB
C = A+B C = A+B
I⋆ = δ(t− s)IN I, identity matrix
A−⋆ A−1, inverse
R⋆(f) = (I⋆ − A)−⋆ (I −A)−1, resolvent

Table 3.3: Left: ⋆-algebra operations and related objects. Right: The correspond-
ing infinite matrix algebra operations and objects. A,B,C are the coefficient
matrices (3.11) of the distribution matrices A,B,C ∈ DN×N

t (I) respectively.

with A the coefficient matrix of A(t, s) = Ã(t)Θ(t− s) and ⊗ the Kronecker product.
More in general, the time-ordered exponential Ũ(t) (solution of the Equation (3.1)) can
be expressed by

(3.13) Ũ(t) = (IN ⊗φ(t)T )U (IN ⊗φ(−1)T ), U = (IN ⊗H)(I −A)−1,

for t ∈ I = [−1, 1].
In [C11], with Niel Van Buggenhout, we obtained a new computational approach

for ODEs by truncating the coefficient matrices involved in the expression in (3.12).
For simplicity, the paper restricts the analysis to the scalar case, i.e., the case in which
the matrix Ã(t) has size 1. Given f ∈ Dt(I), it introduces an efficient method to
compute the M ×M leading submatrix FM of the coefficient matrix (3.9). Moreover,
it shows that the truncation error can be kept under control by defining the matrix
FM by setting to zero the last L rows of FM , with L the numerical bandwidth of FM .
Then, the solution of the (scalar) ODE

(3.14)
∂

∂t
ũ(t) = f̃(t)ũ(t), ũ(−1) = 1, t ∈ [−1, 1]

is approximated by the formula

ũ(t) ≈ ũM (t) := φM (t)THM (IM − FM )−1φM (−1),

where φM (−1) is the first M elements of φ(−1) and HM is the M ×M leading sub-
matrix of H with the last rows set to zero. Then, the solution is computed by solving
the linear system

(IM − FM )x = φM (−1), ũM (t) = φM (t)THMx.

The approximated solution is then ũM (t) =
PM−1

i=0 ĉipi(t), where the coefficients ĉi are
the components of the vector ĉ = HMx. Assuming the linear system can be computed
exactly, in [C11], we proved that the truncation error |ũ(t) − ũM (t)| can be kept at
a desired precision as long as M is large enough, for t ∈ [−1, 1]. We remark that
ĉ0, . . . , ĉM−1 are the approximations of the first M Legendre coefficients of the solution
ũ(t) =

P∞
i=0 cipi(t). Therefore, the described approach is a spectral method we named

⋆-method. It is summarized as follows.

Algorithm 3.3 (⋆-method – scalar version) Given an analytic function f̃(t), the
method computes the approximated Legendre coefficients ĉ0, . . . , ĉM−1 of ũ(t), the solu-
tion of Equation (3.14).
Procedure:
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1. Determine an appropriate value for the truncation parameter M .

2. Construct the truncated coefficient matrix FM ;

3. Solve the linear system of equations (IM − FM )x = ϕM (−1).

4. Compute ĉ = HMx, obtaining the coefficients ĉ = [ĉ0, . . . , ĉM−1]
T .

As numerically shown in [30, 102], the ⋆-method can be extended to solve the system
of ODEs (3.3) as follows.

Algorithm 3.4 (⋆-method – matrix version) Given an analytic N × N matrix-
valued function Ã(t), a vector v, and setting the interval I = [−1, 1], the method com-
putes the approximated Legendre coefficients ĉ(i−1)M , . . . , ĉiM−1 of the ith component of
Equation (3.3) solution for i = 1, . . . , N , i.e.,

ũi(t) ≈
M−1X

j=0

ĉ(i−1)M+jpj(t), t ∈ [−1, 1], i = 1, . . . , N.

Procedure:

1. Determine an appropriate value for the truncation parameter M .

2. Construct the truncated coefficient matrix AM =
h
F

(i,j)
M

iN
i,j=1

.

3. Solve the linear system of equations (IMN −AM )x = v ⊗ ϕM (−1).

4. Compute ĉ = (IN ⊗HM )x, obtaining the coefficients ĉ = [ĉ0, . . . , ĉMN−1]
T .

In [30], using an ad hoc solver for the equation (IMN −AM )x = v ⊗ ϕM (−1), we were
able to obtain the results in Fig. 3.1.

The numerical results in [30, 102] suggest that the analysis of the truncation error
of Algorithm 3.3 done in [C11] extends to Algorithm 3.4. While a thorough analysis is
needed, the partial results in [C11] are a fundamental step towards it. The analysis of
the computational error of the ⋆-method is an ongoing work that requires i) extending
the truncation error analysis done in [C11] ii) analyzing the error of the algorithm in
finite precision arithmetic, in particular when solving the linear system.

3.4.1 Time-ordered exponential and decay phenomenon

Many of the results presented in [C10, C11] are based on the fact that the coefficient
matrices (3.9) is characterized by an off-diagonal decay; see Remark 3.2. Consider the
matrix composed of infinite-size blocks U = (IN ⊗H)(I −A)−1 in (3.13). Each block
U (i,j) of the matrix U is the coefficient matrix of a distribution from Dt(I). Hence,
U (i,j) is characterized by an off-diagonal decay.

The decay phenomenon does not appear only in each block of U. When the time-
dependent matrix Ã(t) in (3.1) is sparse, we also expect an overall decay phenomenon
since U is obtained from the inverse (I − A)−1. This means that many blocks U (i,j)

are expected to be nearly zero blocks. See Fig. 3.2 for a numerical example. This is
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Figure 3.2: Left: The sparsity pattern of the matrixAM taken from the numerical
experiments in [88, Section 4.2], with M = 40 and N = 32. Right: Magnitude of
the elements of (IN ⊗HM)(I −AM)−1 in logarithmic scale.

not surprising, since Ũ(t) and U are connected by the formula in (3.13) and Ũ(t) is
known to be localized, i.e., its elements’ magnitudes decay with the geodesic distance
in the associated graph [9, 58]; see Section 1.2.

One open issue in the ⋆-method is how to a priori estimate the truncation parameter
M , which must be large enough to well approximate both A and U. The main problem
is with the matrix U since, obviously, it is not accessible before running the method. A
possible approach we are investigating is using a priori bounds like the ones described
in Chapter 1. The a priori bounds might also be used to devise numerical algorithms
for the approximation of Ũ(t), with a numerical cost that is linear in the matrix size
N (under appropriate conditions); see [16].

3.5 Conclusions and outlook

As explained in this chapter, a fundamental connection exists between the ⋆-algebra
and the algebra of matrices. In [C10], this link has enabled us to leverage results on
the decay phenomenon, as introduced in Chapter 1, demonstrating the existence of a
map between a subalgebra of the ⋆-algebra and a corresponding decay algebra. Decay
algebras are algebras of infinite-size matrices characterized by off-diagonal decay [9, 80].
On the one hand, this map allowed us to approximate the ⋆-product by a matrix-matrix
product. On the other hand, we proved that the matrix I − A in (3.12) is invertible
by exploiting the fact that I⋆(t− s)− Ã(t)Θ(t− s) is ⋆-invertible [C10].

Moreover, we described how the formal orthogonal polynomials from Chapter 2
can be generalized within the ⋆-product framework. This led to introducing the ⋆-
Lanczos algorithm, a generalization of the non-Hermitian Lanczos algorithm. This
result paves the way for extending other numerical linear algebra algorithms, such
as the BiCG algorithm [107], to the ⋆-algebra setting. Conversely, investigating the ⋆-
Lanczos algorithm and other ⋆-based techniques may offer insights into improving their
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matrix algebra counterparts. For instance, it may be possible to develop preconditioners
within the ⋆-algebra and then map them to the decay algebra of matrices, potentially
yielding effective preconditioners for solving (3.12).

The novel numerical approach described in Section 3.4 has shown strong perfor-
mance in solving ODEs related to a specific model, the generalized Rosen-Zener model.
In [30], we introduced a new algorithm for these ODEs, which demonstrates a com-
putational cost scaling linearly with the model size (Fig 3.1, left) and maintains high
efficiency for increasing interval sizes (Fig 3.1, right). These results might open the way
to more general efficient methods for spin simulations and optimal control. However,
the spectral properties and structural complexity of other quantum systems present
challenges when solving (3.12). For example, we are currently working on a system
that considers a Nuclear Magnetic Resonance (NMR) application with dipolar interac-
tions [88]. In this case, the strategies used in [30] prove insufficient. To address these
challenges, we are testing randomized approaches (in collaboration with Lorenzo Laz-
zarino, University of Oxford) and tensor methods, which show promising results. The
development of numerical methods with a computational cost that scales linearly with
the problem size could enable the solution of previously intractable NMR problems (e.g.,
systems with ten thousand spins or diffusion in multiphasic materials). This progress
would significantly advance quantum optimal control techniques and the broader field
of quantum simulation.
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