CHARLES UNIVERSITY

Faculty of mathematics

and physics

Simple programming tools
for data exploration

Tomas Petricek

Habilitation Thesis

Computer Science, Software Systems

Prague 2024

Acknowledgements

This thesis presents a selection of my recent research that focuses on making programming
tools for data exploration simpler. The origins of this research direction can be traced to
my involvement with the F# programming language. When Don Syme and the F# team
at Microsoft developed the first versions of the F# type provider mechanism, | started my
first experiments that eventually led to the type providers for structured data presented
as one of the contributions in this thesis. However, seeing how easy working with data in
a programming language can be led me to a further question: Could we make program-
matic data exploration easy enough that it could be done by non-programmers? The rising
popularity of data journalism at the time provided a further practical motivation.

The work presented in this thesis has been done at a number of institutions, starting
towards the end of my PhD at the University of Cambridge and finishing as | was joining the
Department of Distributed and Dependable Systems (D3S) at the Faculty of Mathematics
and Physics. In between, | spent time at Microsoft Research in Cambridge, The Alan Turing
Institute in London and the University of Kent in Canterbury. | am grateful to all those
institutions for enabling me to pursue my research vision.

Although | am the first author of most of the work presented in this thesis, none of
it would be possible without the many collaborators that | was fortunate to meet along
the way. Don Syme not only provided the initial motivation and collaborated with me
on multiple papers but also became my long-term mentor and friend. The work related
to F# received a warm welcome from the friendly F# community and early commercial
adopters. Gustavo Guerra deserves special credit for turning F# Data from a prototype to
a well-engineered (and widely adopted) package.

At The Alan Turing Institute, | was fortunate to meet James Geddes who got me in-
volved in the Al for Data Analytics (AIDA) project. The bridging of different worlds that
James made possible resulted in my involvement in research on notebooks and data prove-
nance with Charles Sutton, but also work on automating data wrangling with Gerrit van
den Burg, Alfredo Nazabal, Taha Ceritli, Ernesto Jiménez-Ruiz and Chris William. The Alan
Turing Institute also provided initial funding for our joint work on data visualization tools
with Roly Perera.

In addition to direct collaborators, the work presented in this thesis benefited from
numerous discussions with my other colleagues and friends. This includes Dominic Or-
chard and Stephen Kell first at the University of Cambridge and then at the University of
Kent, Kenji Takeda, Jomo Fisher, and Keith Battocchi at Microsoft Research and May Yong,
Nick Barlow, Brooks Paige at The Alan Turing Institute. Mathias Brandewinder, Jonathan
Edwards, Nour Boulahcen, Luke Church, Clemens Klokmose, Mariana Marasoiu and Alan
Blackwell also provided ideas, insights, technical contributions and valuable feedback on
some of the works presented as part of this thesis.

The work presented in this thesis also received valuable support from industrial collab-
orators. My research focused on data journalism benefited from discussions with Megan
Lucero from The Bureau of Investigative Journalism. My work on F# was supported by the
wide and enthusiastic F# community and also by Howard Mansell and BlueMountain Cap-
ital. I had the pleasure of presenting many of the ideas at multiple industry conferences,
including NDC in Oslo and London, LambdaDays and DevDay in Krakéw, GOTO in Copen-
hagen and Chicago, CogX London and, most recently, the F# Data Science conference in
Berlin. These presentations were vital not only for enabling industry adoption of some of
the systems presented in this thesis but also provided valuable feedback.

Over time, the work has been financially supported in a number of ways. The Google
Digital News Initiative provided me with a generous individual grant that allowed me to
fully focus on programming tools for data journalism for one and a half years. Microsoft
Research, BlueMountain Capital, the University of Kent, and Charles University paid for
some of my time over the years. At The Alan Turing Institute, | was supported by The UKRI
Strategic Priorities Fund under EPSRC Grant EP/T001569/1, particularly the Tools, Practices
and Systems theme within that grant, through the UK Government’s Defence & Security
Programme and by The Alan Turing Institute under EPSRC grant EP/N510129/1. At Charles
University, | was a part of the Department of Distributed and Dependable Systems and |
was also supported by the PRIMUS grant PRIMUS/24/SCl/021.

Contents

Acknowledgements

Contents
I Commentary
1 Introduction

2

11 Howdatajournalistsexploredata
1.2 Requirements of simple tools for data exploration
1.3 Data exploration as a programming problem
1.4 Utilised research methodologies
1.5 What makes a programming tool simple
1.6 Structure of the thesis contributions
1.7 Researchoutlook,

Type providers

2.1 Information-rich programming,

2.2 Type providers for semi-structureddata
2.2.1 Shape inference and provider structure
2.2.2 Relative safety of checked programs
2.2.3 Stability of providedtypes

2.3 Type providers for query construction
2.3.1 Formalising lazy type provider for data querying
2.3.2 Safety of data acquisition programs

2.4 Contributions e

Data infrastructure

3.1 Notebooks and live programming.

3.2 Live data exploration environment
3.21 Dataexplorationcalculus
3.2.2 Computing previews using a dependency graph

3.3 Live, reproducible, polyglot notebooks
3.3.1 Architecture of a novel notebook system
3.3.2 Dependency graphs for notebooks

3.4 Contributionso

10
1
12
13
14
15
18

19
20
21
23
24
25
26
27
28
28

10

1

12

Iterative prompting

41 Datawranglingand dataanalytics

4.2 lterativeprompting
4.21 lterative prompting for dataquerying
4.2.2 Usability of iterative prompting

4.3 Alassistants e
4.31 MergingdatawithDatadiff
4.3.2 Formalmodelof Alassistants
4.3.3 Practical Alassistants oL,

4.4 Contributions e

Data visualization

5.1 Visualisations to encourage critical thinking

5.2 Composable datavisualisations
5.21 Declarative chart descriptions
5.2.2 RenderingaCompostchart.
5.2.3 Functional abstraction and interactivity

5.3 Automatic linking for data visualizations
5.3.1 Creating linked visualizations using Fluid
5.3.2 Language-based foundation for explainable charts
5.3.3 Bidirectional dependencyanalyses

54 Contributions e

Publications: Type providers

Types from data: Making structured data first-class citizens in F#

Data exploration through dot-driven development

Publications: Data infrastructure
Foundations of a live data exploration environment

Wrattler: Reproducible, live and polyglot notebooks

Publications: Iterative prompting
The Gamma: Programmatic data exploration for non-programmers

Al Assistants: A framework for semi-automated data wrangling

Publications: Data visualization

Composable data visualisations

42
43
44
45
46
47
48
49
50
52

54
55
56
57
58
58
59
60
62
62
63

65

66

81

109
110

147

152
153

161

179

180

13 Linked visualizations via Galois dependencies

VI Conclusions

14 Contributions and outlook
14.1 Contributions to included publications
14.2 Open-source software contributions
14.3 New look atdataexploration
14.4 Towards programming systemsresearch

199

Part |

Commentary

Chapter 1

Introduction

The rise of big data, open government data initiatives (Attard et al., 2015)," and civic data
initiatives mean that there is an increasing amount of raw data available that can be used
to understand the world we live in, while increasingly powerful machine learning algo-
rithms give us a way to gain insights from such data. At the same time, the general public
increasingly distrusts statistics (Davies, 2017) and the belief that we live in a post-truth era
has become widely accepted over the last decade.

While there are complex socio-political reasons for this paradox, from a merely tech-
nical perspective, the limited engagement with data-driven insights should perhaps not
be a surprise. We lack accessible data exploration technologies that would allow non-
programmers such as data journalists, public servants, and analysts to produce transparent
data analyses that can be understood, explored, and adapted by a broad range of end-users
including educators, the public, and the members of the civic society.

The technology gap is illustrated in Figure 1.1. On the one hand, graphical tools such as
spreadsheets are easy to use, but they are limited to small tabular data sets, they are error-
prone (Panko, 2015) and they do not aid transparency. On the other hand, programmatic
tools for data exploration such as Python and R can tackle complex problems but require
expert programming skills for completing even the simplest tasks.

Spreadsheets

Number of users

Programming

M

Complexity

Figure 1.1: The gap between programming and spreadsheets - spreadsheets can be used by many
people, but solve problems of a limited complexity. Programming scales arbitrarily, but has a high
minimal complexity limiting the number of users. Adapted from Edwards (2015).

'See https://data.gov and https://data.gov.uk, but also https://opendata.gov.cz as examples.

https://data.gov
https://data.gov.uk
https://opendata.gov.cz

If Michael Phelps was a country...

Kenya

Mexico

South Africa

Michael Phelps

Mixed Team (1896 to 1904)
Ethiopia

Austria

0 10 20 30 40 50

Figure 1.2: A visualization comparing the number of gold Olympic medals won by Michael Phelps
with countries that won a close number of gold medals. Inspired by e.g., Myre (2016)

The above illustration should not be taken at face value. Although there is no single
accepted solution, there are multiple projects that exist in the gap between spreadsheets
and programming tools. However, the gap provides a useful perspective for positioning
the contributions presented in this thesis. Some of the work | present develops novel tools
that aim to combine the simplicity of spreadsheets with the power of programming for the
specific domain of data exploration, aiming to fill the space in the middle of the gap. Some
of the work | present focuses on making regular programming with data easier, or making
simple programming with data accessible to a greater number of users, reducing the size
of the gap on the side of programming.

1.1 How data journalists explore data

To explain the motivation behind this thesis, | use an example data exploration done in the
context of data journalism (Bounegru and Gray, 2021). Following the phenomenal success
of the swimmer Michael Phelps at the 2016 Olympic games, many journalists produced
charts such as the one in Figure 1.2, which puts Phelps on a chart showing countries with
similar numbers of medals. Even such a simple visualization raises multiple questions. Is
the table counting Gold medals or all medals? How would it change if we used the other
metric? What would it look like if we added more countries or removed the historical
“Mixed Team”? How many top countries were skipped?

This simple example illustrates two challenges that | hinted at earlier. First, producing
this visualization may not be hard for a programmer, but it involves a number of tricky
problems for a non-programmer. The author has to acquire and clean the source data,
aggregate medals by country and join two subsets of the data. Doing so manually in a
spreadsheet is tedious, error-prone and not reproducible, but using Python or R requires
non-trivial programming skills. Second, the non-technical reader of the newspaper article
may want to answer the above follow-up questions. Data journalists sometimes offer a
download of the original dataset, but the reader would then have to redo the analysis
from scratch. If the data analysis was done in Python or R, they could get the source code,
but this would likely be too complex to modify.

This thesis presents a range of tools that allow non-programmers, such as data jour-
nalists, to clean and explore data, such as the table of Olympic medals, and produce data

let data = olympics.’'group data’.’by Team'.'sum Gold’.then
.'sort data’'. by Gold descending’.then
.paging.skip(42).take(6)
.'get series’.’'with key Team’.’and value Gold’

let phelps = olympics.’'filter data’'.’Athlete is’.’Michael Phelps’.then
.'group data’.’'by Athlete’'.’sum Gold'.then
.'get series’.’'with key Athlete’.’and value Gold’

NV 00O NN O BAAWN

)

charts.bar(data.append(phelps).sortValues(true))
.setColors(["#94c8a4","#94c8a4", "#94c8ad","#e30c94"])

—_
=

Figure 1.3: Source code of the data analysis used to produce the visualization in Figure 1.2. The case
study is based on the work presented in Chapter 10.

analyses that are backed by source code in a simple programming language that can be
read and understood without sophisticated programming skills. In some cases, the code
can be produced interactively, by repeatedly choosing one from a range of options offered
by the tool and can then be modified to change the parameters of the visualization.

As an example, the source code of the data analysis used to produce the visualization
above is shown in Figure 1.3. The tools that enable non-programmers to create it will be
discussed later. The key aspect of the code is that it mostly consists of a sequence of
human-readable commands such as 'filter data’.’'Athlete is’.’Michael Phelps’.
Those are iteratively selected from options offered by the system and so the author of the
data analysis can complete most of the analysis without writing code.

The use of a simple programming language also makes it possible to understand the
key aspects of the logic. The analysis counts the number of gold medals (‘' sum Gold’),
skips 42 countries before the ones shown in the visualization, and does not filter out any
other data. Finally, the code can be easily executed (in a web browser), allowing the reader
to easily make small changes, such as picking a different athlete or increasing the number
of displayed countries. Such engagement has the potential to aid the reader’s positive
perception of open, transparent data-driven insights based on facts.

1.2 Requirements of simple tools for data exploration

Although the tools and techniques presented in this thesis are more broadly applicable, the
focus of this thesis is on a narrower domain illustrated by the above motivating example. |
focus on programmatic data exploration tools that can be used to produce accessible and
transparent data analyses that will be of interest to a broader range of readers and allow
them to critically engage with the data.

In the subsequent discussion, | thus distinguish between data analysts who produce
the analyses and readers who consume and engage with the results. The former are tech-
nically skilled and data-literate, but may not have programming skills. The latter are non-
technical domain experts who may nevertheless be interested in understanding and check-
ing the analysis or modifying some of its attributes. This context leads to a number of
requirements for the envisioned data exploration tools:

e Gradual progression from simple to complex. The system must allow non-program-
mers with limited resources to easily complete simple tasks in an interface that al-
lows them to later learn more and tackle harder problems. In the technical dimen-
sions of programming systems framework (Jakubovic et al., 2023), this is described
as the staged levels of complexity approach to the learnability dimension.

e Support transparency and openness. The readers of the resulting data analyses must
be able to understand how the analysis was done and question what processing
steps and parameters have been used in order to critically engage with the problem.

e Enable reproduction and learning by percolation. A reader should be able to see
and redo the steps through which a data exploration was conducted. This lets them
reproduce the results, but also learn how to use the system. As noted by Sarkar and
Gordon (2018), this is how many users learn the spreadsheet formula language.

e Encourage meaningful reader interaction. The reader should not be just a passive
consumer of the data analyses. They should be able to study the analysis, but also
make simple modifications such as changing analysis or visualization parameters, as
is often done in interactive visualizations by journalists (Kennedy et al., 2021).

The criteria point to the technology gap illustrated by Figure 1.1 and there are multi-
ple possible approaches to satisfy the criteria. This thesis explores one particular point in
the design space, which is to treat data analysis as a program with an open source code,
created in a simple programming language with rich tooling.

As I will show, treating data exploration as a programming problem makes it possible to
satisfy the above criteria. Gradual progression from simple to complex can be supported
by a language that provides very high-level abstractions (or domain-specific languages)
for solving simple problems. Transparency, openness, and reproducibility are enabled by
the fact that the source code is always available and can be immediately executed while
learning by percolation can be supported by structuring the program as a sequence of
transformations. Finally, meaningful interaction can be offered by suitable graphical tools
that simplify editing of the underlying source code.

1.3 Data exploration as a programming problem

Data exploration is typically done using a combination of tools including spreadsheets, pro-
gramming tools, online systems, and ad-hoc utilities. Spreadsheets like Excel and business
intelligence tools like Tableau (Wesley et al., 2011) are often used for manual data editing,
reshaping, and visualization. More complex and automated data analyses are done in pro-
gramming languages like R and Python using a range of data processing libraries such as
pandas and Tidyverse (Wickham et al., 2019). Such analyses are frequently done in a com-
putational notebook environment such as RStudio or Jupyter (Kluyver et al., 2016), which
make it possible to interleave documentation, mathematical formulas and code with out-
puts such as visualizations. Online data processing environments like Trifacta provide myr-
iads of tools for importing and transforming data, which are accessible through different
user interfaces or programmatically, but even those have to be complemented with ad-hoc
single-purpose tools, often invoked through a command line interface. Finding a unified
perspective for thinking about such a hotchpotch of systems and tools is a challenge.

Q Key novel perspective. In this thesis, | propose to view systems and tools used

for data exploration as programming tools. This view can offer a unified perspec-
tive on a broad range of systems and tools. It also enables us to apply the powerful
methodology of programming languages research to the problem of data exploration.

If we look at data exploration tools from the perspective of programming languages re-
search, we can adapt and leverage techniques for ensuring program correctness and com-
positional design, as well as rich interaction principles. However, the programs that are
constructed during data exploration have a number of specific characteristics that distin-
guish them from programs typically considered in programming language research:

e Data exists alongside code. Systems such as spreadsheets often mix data and code
in a single environment. In conventional programming, this is done in image-based
systems like Smalltalk, but not in the context of programming languages.

e Concrete inputs are often known. Moreover, data exploration is typically done on a
known collection of concrete input datasets. This means that program analysis can
take this data into account rather than assuming arbitrary unknown inputs.

e Programmers introduce fewer abstractions. Even in programmatic data exploration
using R or Python in a Jupyter notebook, data analysts often write code as a se-
quence of direct operations on inputs or previously computed results, rather than
introducing abstractions such as reusable generic functions.

e Most libraries are externally defined. Finally, data exploration is often done using
libraries and tools that are implemented outside of the tool that the analysts use. For
example, spreadsheet formulas use mostly built-in functions, while data analyses in
Python often use libraries implemented in C/C++ for performance reasons.

The above holds for simple data explorations, such as those done by data journalists
that this thesis is concerned with. The characteristics do not apply to all programs that
work with data. Reusable and parameterized models, general-purpose algorithms and rich
data processing pipelines share structure with conventional programs. However, focusing
on simple data explorations for which the above criteria are true allows us to narrow the
design space and study a range of interesting problems. The narrow focus also makes us
rethink a number of accepted assumptions in programming language research, such as
what are the key primitives of a programming language (in Chapter 8, an invocation of an
external function becomes more important than lambda abstraction).

1.4 Utilised research methodologies

The research presented in this thesis tackles multiple research questions such as: Does
a particular language design rule out certain kinds of programming errors? What is an
efficient implementation technique for a particular language or a tool? Does a newly de-
veloped tool simplify data exploration by reducing the number of manual interventions by
the user? What is a suitable interaction mechanism for completing a particular task? And
can non-programmers effectively use such interaction mechanism? The diversity of the
research questions calls for a corresponding diversity of research methodologies.

Programming language theory. The first methodology used in this thesis is that of theo-
retical programming language research. When using this methodology, a core aspect of a
programming language is described using a small, formally tractable mathematical model
that captures the essential properties of the aspect. The model is then used to formally
study properties of the given aspect, such as whether a programming language that im-
plements it can be used to write programs that exhibit a certain kind of incorrect behavior.

In this thesis, Part Il presents two instances of a programming language extension
mechanism called type providers. To show that code written using type providers will
never result in a particular error condition, | develop a formal model of type providers
and prove a correctness property using the model. The actual system implementation
then closely follows the formal model. Theoretical programming language research meth-
ods are also used to develop a data visualization language in Chapter 13, to formalize the
optimization technique introduced in Chapter 8 and to define the structure of the semi-
automatic data wrangling tools developed in Chapter 11.

Programming systems. The theoretical approach is complemented by a range of applied
programming systems methods. The work using those methodologies often focuses on
designing suitable system architecture, empirical evaluation of measurable characteristics
of the system such as efficiency. It should also be complemented with an open-source
implementation and/or a reproducible software artifact.

| use the programming systems research methodology primarily in Chapter 9, which
presents the architecture and implementation of a novel computational notebook system
for data science. Chapter 8 develops an optimized programming assistance tool and eval-
uates the efficiency empirically. Software systems and libraries presented in this thesis are
available as open-source and are listed below.

Human-computer interaction. Finally, answering questions that concern usability re-
quires a human-centric approach offered by the human-computer interaction (HCl) re-
search methodology, which is increasingly used to study programming languages and sys-
tems (Chasins et al., 2021). The HCI methods include controlled usability studies, qualita-
tive and quantitative user studies, as well as the development and application of heuristic
evaluation frameworks.

| use the HCI methodology in Chapter 10, which introduces the “iterative prompting”
interaction mechanism and conducts a usability study with non-programmers to evaluate
whether they can use it to complete simple data exploration tasks. Chapter 12, which
presents a novel data visualization library, also draws on the HCI methodology, but uses a
comprehensive case study instead of a user study to evaluate the design.

1.5 What makes a programming tool simple

The very title of this thesis refers to the aim of creating programming tools for data explo-
ration that are simple. However, simplicity is difficult to quantify precisely. It is understood
differently by different communities and in different contexts. | thus follow the recommen-
dation of Muller and Ringler (2020) to make explicit how the term should be understood in
the context of this thesis. The notion of simplicity is used as a unifying theme in this com-
mentary. In the papers presented as part of this thesis, the notion takes one of several
more specific and rigorously evaluated forms:

¢ In the context of user-centric work, | refer to a system as simple if it allows non-
programmers to complete tasks that are typically limited to programmers. This is
the case when discussing the iterative prompting interaction principle in Chapters 10
the live programming tools in Chapter 8.

¢ In the context of programming language or library design, | consider the design sim-
ple when it allows expressing complex logic using a small set of highly composable
primitives that are easy to understand. This applies to the language design in Chap-
ter 7 and visualization library design in Chapter 12.

¢ In the context of programmer assistance tools, simple indicates that the user does
not have to perform a task that they would otherwise have to complete manually.
This applies to Al assistants, presented in Chapter 11, which relieve the user from
tedious manual setting of parameters by partly automating the task.

e Finally, I also use the term simple when talking about programming systems and
libraries that provide a high-level interface designed specifically for a particular task.
This is the case for the notebook system presented in Chapter 9, data access library
in Chapter 6, and the language for creating visualizations in Chapter 13. Using such
high-level abstractions means that programmers have to write less code.

The overarching theme of this thesis is thus the design of programming tools for data
exploration that are simple in one or more of the meanings of the term indicated above.
The focus on simplicity aims to fill or reduce the technology gap illustrated in Figure 1.1
and, ultimately, make data exploration accessible to a broader range of users.

1.6 Structure of the thesis contributions

The key novel perspective—to view data exploration tools from the perspective of pro-
gramming language research—can be leveraged for a wide range of different data explo-
ration tools, including tools for data acquisition, data cleaning and data visualization. Cor-
respondingly, the contributions presented in this thesis cover multiple different kinds of
tasks that a data analyst faces when they work with data.

To position the contributions in the broader context of data analytical work, it is useful
to see where they fit in a typical data science lifecycle. For this thesis, it is useful to con-
sider a variant of the lifecycle that distinguishes between the exploration and production
phases as done by Jain and Kushagra (2022) as well as IBM (2020). As shown in Figure 1.4,
the contributions of this thesis focus on the work done in the initial data exploration phase.
Unlike with the later production phase, the programs used in the exploration phase typi-
cally exhibit the unique characteristics discussed in Section 1.3.

The data science lifecycle starts with data acquisition (1), which involves loading data
from a range of sources. This is followed by data cleaning (2), where multiple data sources
are joined, incomplete data is filled or removed and data structure is recovered. In data
exploration (3), the analyst transforms the data to discover interesting patterns and, finally,
in data visualization (4) they produce charts to present their insights. In the production
phase, the insights are then used to develop a model that becomes a part of a production
system. The process can be repeated based on the results of the model evaluation.

Data exploration Data visualization

Iterative prompting (Chapter 10) Compost (Chapter 12)
The Gamma (Chapter 8) Fluid (Chapter 13) Model
S - evaluation
4
Data cleaning 5 Exploration Production & Model
Wrattler (Chapter 9) phase phase deployment

Al Assistants (Chapter 11)

5
1’ pata acquisition Model

F# Data (Chapter 6) development
Dot-driven (Chapter 7)

Figure 1.4: lllustration showing the data science lifecycle, as understood by , alongside with the
contributions of this thesis to the individual steps of the data exploration phase.

The work that constitutes this thesis contributes to each of the four steps of the data
exploration phase. In Part I, | present two papers on type providers, which simplify data
acquisition, while Part V consists of two novel data visualization systems. The four pub-
lications presented in Part Ill and Part IV all focus on working with data, including data
cleaning and exploration. They are not grouped in parts based on the lifecycle step but
based on their research methodology. The publications in Part Ill use programming sys-
tems methods to design new infrastructure, while Part IV introduces a novel interaction
principle and applies it to two problems, one from the domain of data exploration and one
from the domain of data cleaning. The rest of this section summarises the contributions
of the work presented in this thesis in more detail.

Type providers. The type provider mechanism (Syme et al., 2012, 2013) makes it pos-
sible to integrate external data into a statically-typed programming language. The work
presented in Part Il presents two new type providers.

Chapter 6 presents a library of type providers that makes it possible to safely access
structured data in formats such as CSV, XML, and JSON in the F# programming language.
The two key research contributions of the work are, first, a novel inference mechanism that
infers a type based on a collection of sample data and, second, a formulation of a relative
safety property that formally captures the safety guarantees offered by the system.

Chapter 7 takes the idea of type providers further. It uses the mechanism not just for
data access, but for the construction of SQL-like queries over tabular data. The research
contribution is a novel type provider, implemented in The Gamma system, which generates
a type that can be used to group, filter, and sort tabular data. Using a novel formal model,
the presented paper shows that all queries constructed using the type provider are valid.

Data infrastructure. Programmatic data exploration is typically done in notebook sys-
tems such as Jupyter (Kluyver et al., 2016) that make it possible to combine documenta-
tion, formulas, code, and output such as visualizations. Notebook systems are a conve-
nient tool, but they suffer from a number of limitations and issues. The two novel systems
presented in Part Ill address several of those.

Chapter 8 presents a programming environment for The Gamma that makes data ex-
ploration easier by providing instant feedback. The research contributions of the work are
twofold. First, it builds a practical efficient algorithm for displaying live previews. Second,
it develops a formal model of code written to explore data called data exploration calculus
and uses it to show the correctness of the live preview algorithm.

Chapter 9 tackles more directly the problems of notebook systems. It presents Wrat-
tler, which is a novel notebook system that makes it possible to combine multiple pro-
gramming languages and tools in a single notebook resolves the reproducibility issues of
standard systems and stores computation state in a transparent way, allowing for precise
data provenance tracking.

Iterative prompting Treating data analyses as programs makes them transparent and re-
producible, but writing code has an unavoidable basic complexity. Part IV presents a novel
interaction principle for program construction called iterative prompting. The mechanism
is rooted in the work on type providers and makes it possible to construct programs by
repeatedly choosing from one of several options.

Chapter 10 introduces the iterative prompting mechanism from the human-computer
interaction perspective. It shows that the mechanism can be used to construct programs
that explore data in multiple input formats including tables, graphs and data cubes. The us-
ability of the mechanism is evaluated through a user study, showing that non-programmers
can use it to complete a range of data exploration tasks.

Chapter 11 uses the iterative prompting mechanism as the basis of a range of semi-
automatic data cleaning tools. It augments existing Al tools for parsing data, merging data,
inferring data types and semantic information with a mechanism that lets the user guide
the Al tool. Using iterative prompting, the user can correct mistakes and configure the
parameters of the tool. The augmented tools are evaluated empirically, showing that the
correct result can typically be obtained with 1 or 2 manual interventions.

Data visualization. Data visualization is the last step in the exploratory phase of the data
science lifecycle discussed above. Although standard charts are typically easy to build, cre-
ating richer interactive visualizations is a challenging programming task. Part V presents
two systems that make it easier to build interactive data visualizations that encourage crit-
ical thinking about data.

Chapter 12 presents a functional domain-specific language for creating charts that makes
it possible to compose rich interactive charts from basic building blocks (such as lines and
shapes) using a small number of combinators (such as overlaying and nesting of scales).
The simplicity of the approach is illustrated through a range of examples and confirmed by
the publication of the work as a so-called functional pearl (Gibbons, 2010).

Chapter 13 introduces a language-based program analysis technique that makes it pos-
sible to automatically build linked data visualizations that show the relationships between
parts of charts produced from the same input data. The key research contribution is a
novel bidirectional dynamic dependency program analysis, which is formalized and shown
to have a desirable formal structure. The technique is used as the basis for a high-level
programming language Fluid.

Key novel perspective. A close look at how data scientists interact with program-

ming tools forces us to rethink how we conceptualize programming. It shows
that we need to shift our attention from static programming languages to rich, state-
ful, and interactive programming systems. Understanding the theory and practice of
those remains an interesting open problem.

1.7 Research outlook

Viewing data exploration from the perspective of programming language research is ben-
eficial in both directions. Most of this thesis is concerned with the novel data exploration
tools and systems that become conceivable as a result of this perspective. However, an
equally interesting question is whether data exploration forces us to think about (conven-
tional) programming differently. | believe this is the case.

As noted earlier, data scientists often work with concrete data that exists alongside
with code. This is an approach that has existed in image-based programming systems since
the era of Smalltalk. They also often interleave coding with execution, which is how most
modern programs are constructed. Although many programming environments discard
any state of the executing program, hot-reloading is increasingly used to make sure pro-
grammers do not lose state while editing code.

Most contemporary programming language research focuses solely on languages and
ignores such stateful aspects of programming systems, possibly due to the paradigm shift
documented by Gabriel (2012). This ignores an important aspect of the reality of modern
programming. Moreover, the new capabilities presented in this thesis in the context of
data science suggest that the programming systems perspective has the potential to yield
fruitful results about programming in a broader sense. This is also an area that | started
exploring in recent years in joint work with Jakubovic et al. (2023); Edwards and Petricek
(2021); Edwards et al. (2025).

Chapter 2

Type providers

The first step of the data science lifecycle outlined in the previous chapter was data acquisi-
tion. This typically involves reading data in semi-structured formats such as CSV, XML, and
JSON or retrieving data from a database. The aim of the work on type providers, outlined
in this chapter, is to make programmatic data acquisition reliable and simpler.

The lack of reliability arises primarily from the fact that most data access code is written
in dynamically-typed scripting languages. This is largely because using such languages is
easier. A dynamically-typed language does not need to consider the structure of the input
data to check that the program accesses it correctly. If we retrieve a JSON object that
represents a record with fields title and 1ink and parse it into an object i temin JavaScript,
we can then access the fields using just item.title and item.1link. The fields will exist at
runtime, but the language does not need to know at compile-time whether they will be
available, because member access is not statically checked.

In statically-typed programming languages, the situation is no better. The typical ap-
proach, illustrated in Figure 2.1, is equally dynamic, but more verbose. Object fields are
accessed using a string-based lookup, which can easily contain fields that do not exist at
runtime (indeed, there is an uncaught typo on line 6!) and, moreover, the lookup has to
be done using an additional method invocation and may require tedious type conversions.
The first challenge we face is how to make accessing data in semi-structured formats, such
as JSON, XML, and CSV, as simple as in dynamically-typed languages (a matter of just using
a dot), but support checking that will statically guarantee that the accessed fields will be
present at runtime.

However, the simplicity of data access in dynamic scripting language also has its limits.
It is easy to access individual fields, but the code gets more complicated if we want to
perform a simple query over the data. Consider, for example, the query in Figure 2.2.

var url "http://dvd.netflix.com/Topl@@RSS";
var rss = XDocument.Load(topRssFeed);
var channel = rss.Element("rss").Element("channel");

foreach(var item in channel.Elements("item")) {
Console.WriteLine(item.Element("titel").Value);

}

N Ot 0N

Figure 2.1: Printing titles of items from an RSS feed in C#. The snippet uses dynamic lookup to find
appropriate elements in the XML and extracts and prints the title of each item.

18

1 olympics = pd.read_csv("olympics.csv")

2 olympics[olympics["Games"] == "Rio (2016)"]
3 .groupby ("Athlete")

4 .agg({"Gold": sum})

5 .sort_values(by="Gold", ascending=False)
6 .head(8)

Figure 2.2: Data transformation written using pandas in Python. The code loads a CSV file with
Olympic medal history, gets data for Rio 2016 games, groups the data by the athlete, and sums
their number of gold medals and, finally, takes the top 8 athletes.

Despite being widely accepted as simple, the Python code snippet involves a remark-
able number of concepts and syntactic elements that the user needs to master:

e Generalised indexers (. [condition 1) are used to filter the data. This is further
complicated by the fact that == is overloaded to work on a data series and the indexer
accepts a Boolean-valued series as an argument.

e Python dictionaries ({"key": value}) are here used not to specify a lookup table,
but to define a list of aggregation operations to apply on individual columns. It also
determines the columns of the returned data table.

e Well-known names. The user also has to remember the (somewhat inconsistently
named) names of operations such as groupby and sort_values and remember the
column names from their data source such as "Athlete".

To make data acquisition simpler, the user should not need this many concepts and
they should not need to remember the names of operations or the names of columns
in their data source. Moreover, their code should be checked to ensure that it accesses
the correct supported operations and applies them to compatible data that exist in the
data source. As | will show later, this can be achieved using type providers, a concept that
originated in the F# programming language in the early 2010s.

2.1 Information-rich programming

In the 2010s, applications increasingly relied on external data sources and APIs for their
function. The typical solution for accessing such data was either to use a scripting lan-
guage, a dynamic access library (both illustrated above), or a code-generation tool that
would generate code for accessing the data source or an API (although only for data sources
with small enough schema). This provided the motivation for the type provider mecha-
nism in F# (Syme et al., 2012, 2013), which made it possible to make the type checker in a
statically-typed programming language aware of the structure of external data sources.
Technically, a type provider in F# is an extension that is executed by the compiler at
compile-time. A type provider can run arbitrary code, such as accessing a database schema
or another external data source. It then generates a representation of a type that is passed
to the compiler and used to check the user program. For example, the World Bank type
provider (Figure 2.3) retrieves the list of known countries and indicators from the World
Bank database (by querying the REST API provided by the World Bank) and generates a
collection of types. The WorldBank type has a GetDataContext method, which returns an

type WorldBank = WorldBankDataProvider<"World Development Indicators">
let data = WorldBank.GetDataContext()

1
2
3
4 data.Countries.’‘United Kingdom’‘.Indicators

5 ."'Central government debt, total (% of GDP)‘’

Figure 2.3: The World Bank type provider (Syme et al., 2012) provides access to indicators collected
by the World Bank. The countries and indicators are mapped to properties (members) of an F# class
that represents the data.

instance of a type with the Countries member and the type returned by this member has
one member corresponding to each country in the World Bank database. The World Bank
type provider, created by the author of this thesis and presented in a report (Syme et al.,
2012) not included here, shows two important properties of type providers:

e Static type provider parameters. A type provider in F# can take literal values (such
as "World Development Indicators") as parameters. They can be used when the
provider is executed (at compile-time) to guide how types are generated. Here, the
parameter specifies a particular database to use as the source. These can be names
of files with schema, connection strings or live URLs.

e Lazy type generation. The types generated by a type provider are generated lazily,
i.e., the members of a type (and the return types of those members) are only gen-
erated when the type checker encounters the type in code. This makes it possible
to import very large (potentially infinite) external schema into the type system.

There are other interesting aspects of type providers, but the above two features are
crucial for the work included in this thesis. In the following two sections, | review the
key contributions to type providers presented in Part Il make data acquisition reliable and
simpler. The work on type providers included in this thesis develops two kinds of type
providers. The type providers for CSV, JSON, and XML packaged in the F# Data library make
it possible to access data in a statically-checked way using ordinary member access. The
work also makes two theoretical contributions, an algorithm for schema inference from
sample data and a programming language theory of type providers.

The pivot type provider, developed for the experimental programming language The
Gamma, makes it possible to construct queries such as that shown in Figure 2.2 (and was
mentioned briefly in Section 1.1). It adapts the theory developed for the F# Data type
providers to show that only correct queries can be constructed when using it. The full
account of the work can be found in Chapter 6 and Chapter 7, respectively. The following
provides an accessible high-level overview of the contributions.

2.2 Type providers for semi-structured data

The F# Data library implements type providers for accessing data in XML, JSON, and CSV
formats. It is based on the premise that most real-world data sources using those formats
do not have an explicit schema. The type providers thus infer the schema from a sample (or
a collection of samples). The inferred schema is then mapped to F# types through which
the user of the type provider can access the data.

1 // worldbank.json - a sample response used for schema inference
2 [{ "page": 1, "pages": 1, "per_page": "1000", "total": 53 },

3 [{ "indicator": { "id": "GC.DOD.TOTL.GD.ZS" },

4 "country": { "id": "CzZ" },

5 "date": "2011", "value": null },

6 { "indicator": { "id": "GC.DOD.TOTL.GD.ZS" },

7 "country": { "id": "CZ" },

8 "date": "2010", "value": 35.1422970266502 }]]

1 // demo.fsx - a data acquisition script using a type provider

2 type WB = JsonProvider<"worldbank.json">

3 let wb = WB.Load("http://api.worldbank.org/.../GC.DOD.TOTL.GD.ZS?json")
4

5 printf "Total: %d" wb.Record.Total

6 for item in wb.Array do

7 match item.Value with

8 | Some v -> printf "%d %f" item.Date v

9 | - -> 0

Figure 2.4: Using the .JSON type provider for accessing data from a REST API. The inference uses a
local sample file, while at runtime, data is obtained by calling the live service.

The example shown in Figure 2.4 illustrates one typical use. Here, the user is accessing
information from a service that returns data as JSON (incidentally, the service is also the
World Bank, but here we treat it as an ordinary REST service). The user stored a local copy
of a sample response from the service (worldbank. json) and uses it as a static parameter
for the JSON type provider (line 2). They then load data from the live service (line 3) and
print the total number of items (line 5) as well as each year for which there is a value (line
8). Three aspects of the type provider deserve particular attention:

e Real-world schema inference is hard. Here, the response is an array always contain-
ing two items, a record with meta-data and an array with individual data points. The
data records have a consistent structure, although some values may be null.

¢ Inference needs to be stable. The type providers allow adding further samples. If the
user adds further examples, the structure of the provided types should change in a
predictable (and limited) way so that the user code can be easily updated.

e Safety guaranteed by static checks is relative. Static type checking guarantees that
only data available in the sample input can be accessed in user code, but if the data
loaded at runtime has a different structure, this will not prevent errors. We thus
need to specify what exactly can the system guarantee about programs.

The F# Data type providers, presented in full in Chapter 6 offer an answer to all of
these three challenges. They can infer the shape of real-world data, infer types with a
stable structure, and capture the runtime guarantees formally through the relative safety
property. The publication also presented novel programming language theory that made it
possible to analyze type providers formally, which | briefly review in the next three sections.

2.2.1 Shape inference and provider structure

When the type provider for semi-structured data is used, it is given a sample of data that
can be analyzed at compile time (such as the "worldbank. json" file name above). It uses
this to infer the shape of the data. A shape is a structure similar to a type and is composed
from primitive shapes, record shapes, collections, and a few other special shapes:

6 = v{viioy, ..., vpi0n}
| float | int | bool | string
o = nullable(G) | [o] | any | null | L

The inference distinguishes between non-nullable shapes (&) and nullable shapes (o), which
can be inferred even when the collection of inputs contains the null value. The former
consists of primitive shapes (inferred from a corresponding value) and a record shape. The
record shape has an (optional) name v and consists of multiple fields that have their own
respective shapes. A record is the shape inferred for JSON objects, but also XML elements
containing attributes and child elements. A non-nullable shape can be made nullable by
explicitly wrapping it as nullable(s). Other nullable shapes include collections (a null
value is treated as an empty collection) and shapes that represent any data, only null val-
ues, and the bottom shape L, representing no information about the shape. The above
definition does not include the handling of choice shapes (corresponding to sum types),
which is introduced later.

A key technical operation of the shape inference is expressed using the common pre-
ferred shape function written as o1 Voy = o. Given two shapes, the function returns a
shape the most specific shape that can be used to represent the values of both of the two
given shapes. The details are discussed later, but it is worth illustrating how the function
works using two examples.

e intV float = float In this case, the common preferred shape is float. This
may lead to a loss of precision, but it makes accessing the data easier than if we
inferred a shape representing a choice shape. This is one example where the system
favors practical usability over formal correctness.

o {x:int} V{x:int,y:int} = {x:int,y: nullable(int)} In this case, the
common preferred shape is a record where the field that was missing in one of the
shapesis marked as nullable. In general, the system aims to infer records whenever
possible, which is the key for the stability of inferred types discussed below.

When the type provider is used, it receives a sample data value and uses it to infer the
expected shape of data. A data value is modeled formally as a value that can be either a
primitive value (integer 4, floating-point value f, string s, a Boolean or null), a collection
of values or a record with fields that have other values:

d = i| f| s | true | false | null
| [dy;...5dn] | v{vi—=di,...,vn—dy}
The shape inference is then defined as a function S(()d, . .., d,) = o that takes a collec-

tion of data values and infers a single shape o that represents the shape of all the specified
values. (Note that this can always be defined. In cases where values are of incompatible
shape, the system infers the shape any.)

S(i) = int S(null) = null S(true) = bool

S(f) = float S(s) = string S(false) = bool
S([d1;...;dyn]) =[S(d1,...,dy)]

Swi{vi—di,...,vn—=dy}) =v{vi:S(d1),...,vn:S(dn)}
S(di,...,d,) = op,whereoy = L, Vi€ {1..n}.0,-1VS(d;) I oy

The shape inference is primarily defined on individual data values. For those, the system
infers the shape corresponding to the value. For lists, we infer the shape based on all the
values in the list. Finally, the last rule handles multiple sample data values by inferring their
individual shapes and combining them using the v function.

The last aspect of the formal programming language model of type providers is the
logic that, given an inferred shape, produces the corresponding F# type. To explain the
important properties of type providers, we do not need to elaborate on what an F# type is
here, but the most important case is a class with members (properties or methods). A type
provider takes the inferred shape and produces an F# type 7 for the shape, a collection of
classes L that may appear in 7 (typically as types of members in case 7 is a class). The
type provider also needs to generate code that turns a raw data value d passed as input at
runtime into a value of the provided type 7, which is represented as an expression e:

[o] = (r,e,L) (where L,() - e : Data — 7)

The mapping [o] takes an inferred shape o and returns a triple consisting of an F# type 7,
a function turning a data value into a value of type 7 and a collection of classes L.

This brief overview of the formal model of type providers for semi-structured data
makes it possible to formulate the two key results about the F# Data type providers. The
first describes the relative type safety of programs written using a type provider and is a
novel variation on the classic type safety property of programming language research. The
second describes the stability of provided types and concerns the usability of the system.

2.2.2 Relative safety of checked programs

The aim of type systems, in general, is to ensure that programs which passed type checking
do not contain a certain class of errors. This has been characterised by Milner (1978) using
afamous slogan “Well typed programs do not go wrong” (with wrong being a formal entity
in Milner’s system). A code written using a type provider can go wrong if the input obtained
at runtime is of a structure that does not match the structure of the input used as a sample
for shape inference at compile time.

However, thanks to the formal model defined above, the property can be specified
precisely, and most importantly, we can specify for which inputs the programs written
using a type provider will never fail because of invalid data access. The definition relies
on a preferred shape relation T, which captures the fact that one shape is more specific
than another (if 01 C o9 then o1Voy = 03). The theorem is also defined in terms of the
~~ operation, which captures the operational semantics of the programs of the language
used in the formal model. The relation e; ~ e5 specifies that an expression e; reduces to
e in a single step (and ~»* is the transitive closure of ~~).

Theorem 1 (Relative safety). Assume dy,...,d, are samples, o0 = S(di,...,dy) is an
inferred shape and T, e, L = [o] are a type, expression, and class definitions generated by
a type provider.

For all inputs d’ such that S(d') C o and all expressions ¢’ (representing the user code)
such that €’ does not contain any of the dynamic data operations op and any Data values
as sub-expressions and L;y: T = €' : 7/, it is the case that L, e[y < €' d'] ~* v for some
value v and also 0;1- v : /.

In other words, the relative safety property specifies that, for any program that the
user may write using a type provider (without using low-level functions that are only ac-
cessible inside a type provider), if the program is executed with any input whose shape is
more specific than the shape inferred from statically known samples, the program will not
encounter a data-related runtime error. It is, of course, still possible for runtime errors to
happen, but not with a well-chosen sample and, as the wide-ranging adoption of the F#
Data library suggests,’ this is often a sufficient guarantee in practice.

2.2.3 Stability of provided types

When the user of an F# Data type provider gets a runtime error, this is because the data
source they use produces an input of a structure not encountered before. A typical exam-
ple is an input that includes null in a field that previously always had a value. Such errors
are inevitable (without an explicit schema). The programmer can handle this by adding
the new input as a new sample to the collection of samples used for the shape inference.

If they do so, the type provider will provide a new different type. In this case, an im-
portant property of the system is that the newly provided type will have the same general
structure as the type provided before. This means that the data processing code, written
using the provided type, will be easy to adapt. The programmer will need to add handling
of a missing value, but they will not have to restructure their code. (A system based on
statistical analysis of similarity would not have this property as a small change in the input
may affect a decision whether two shapes are sufficiently similar to be unified into a single
type.) Using the formal model, we can capture this property (and later prove that it holds
for the F# Data type providers).

Theorem 2 (Stability of inference). Assume we have a set of samplesdy, ..., d,, aprovided
type based on the samples T1,e1, L1 = [S(di,...,d,)] and some user code e written
using the provided type, such that L1;x : 7, - e : 7. Next, we add a new sample d,, 1 and
consider a new provided type 1o, €2, Lo = [S(dy, ..., dn, dn+1)]-

Now there exists ¢’ such that Lo;x : 5 + €' : 7 and if for some d it is the case that
elx + ey d] ~ v thenalso ¢'[x + ey d] ~ v. Such € is obtained by transforming
sub-expressions of e using one of the following translation rules:

(i) Cle] to C[match e with Some(v) — v | None — exn]
(ii) Cle] to Cle.M] where M = tagof(co) for some o
(iii) Cl[e] to C[int(e)]

The translation rules use a context C'e] to specify that a transformation needs to be
done somewhere in the program. Importantly, all the rules are local meaning that a change

'"The package is one of the most downloaded F# libraries at the https://www.nuget.org package repository and
the open-source project at https://github.com/fsprojects/FSharp.Data has over 100 contributors.

https://www.nuget.org
https://github.com/fsprojects/FSharp.Data

1 olympics

2 .'filter data’.’'Games is'.'Rio (2016)'.then
3 ."group data’.’'by Athlete’.’sum Gold'.then
4 ."sort data’.’'by Gold descending’.then

5 ."paging’ .take(8)

Figure 2.5: Data transformation constructed using the pivot type provider. This implements the
same logic as pandas code in Figure 2.5, computing the top 8 athletes from the Rio 2016 Olympic
games based on their number of gold medals.

isdonein a particular place in the program. The change can be (i) handling of missing value,
(i) accessing a newly introduced member when the change introduces a new choice type
and (iii) adding a conversion of a primitive value.

2.3 Type providers for query construction

The type providers presented in the previous section are designed to allow easy program-
matic access to data in semi-structured formats. The focus is on providing typed direct
access to the data. The pivot type provider, presented in Chapter 7, builds on the same
concepts but focuses on letting users construct queries over tabular data. The user should
not just be able to fetch the data in a typed form, but also use the provided types to filter,
aggregate, and reshape the data.

The use of the pivot type provider is illustrated in Figure 2.5, which implements the
data querying logic written using the pandas Python library in Figure 2.2. The type provider
is implemented in the context of The Gamma programming language, which is a simple
statically typed programming language with class-based object model and type providers
that runs in the web browser.

As the code sample shows, the querying is implemented as a single chain of member
accesses. Except for take, which is a method with a numerical parameter, all the mem-
bers are properties that return another object of another class type with further members
that can be used to continue constructing the query (the symbol ’ is used to wrap names
containing a space). The system has a number of properties:

o Discoverability of members. All querying logic is expressed through member ac-
cesses. The members are statically known (generated by a type provider). When
using the type provider in an editor, the user gets a choice of available members

(auto-completion) when they type “.” and they can thus construct a query simply by
repeatedly choosing one of the offered members.

e Lazy class generation. The classes used in the code are generated lazily. This is nec-
essary because each operation transforms the set of available fields based on which
the subsequent types are generated. For example, calling 'drop Games' would re-
move the field Games from the schema.

e Safety of generated types. Any query constructed using the type provider is correct
meaning that it will not attempt to access a field that does not exist in the data. This
is a variant of the usual type safety property that is formalized below.

The formalization of the type provider follows the same style as that for F# Data, but
it explicitly encodes the laziness of the type provider as illustrated in the next section.

2.3.1 Formalising lazy type provider for data querying

The pivot type provider works on tabular data. In order to generate a type, it needs to have
the schema of the input table (names of fields and their types). In the above example, the
type provider is imported through a configuration rather than code, and olympics refers
to a value of the provided type, but the type is generated using a known schema of the
input data. In the formal model, the schema is written as (with f ranging over the field
names and 7 ranging over a small set of primitive types):

F={fim1,....fa > 7}

When the type provider is invoked, it takes the schema and generates a class for query-
ing data of the given schema. The types of members of the class are further classes that
allow further querying. As the provided class structure is potentially infinite, it needs to
be generated lazily. The structure of the provided class definition, written as L is thus a
function mapping a class name C' to a pair consisting of the class definition and a function
that provides definitions of delayed classes (types used by the members of the class C):

L(C)=typeC(z:7)=m, L

Here, type C'(x : 7) = m is a definition of a class C that consists of a sequence of mem-
bers m and has a constructor taking a variable x of type 7 as an argument. The structure
and evaluation of the resulting object calculus is discussed in Chapter 7 and is loosely mod-
eled after standard object calculi (Igarashi et al., 2001; Abadi and Cardelli, 2012), with the
exception that it includes operations for transforming data as primitives.

The classes provided by the pivot type provider can be used to construct a query, which
is a value of type Query. Expressions of this type are those of relational algebra (projection,
sorting, selection, as well as additional grouping). The type provider constructs classes that
take the query constructed so far as the constructor argument. The provided members fur-
ther refine and build the query. A type provider is formally defined as a function pivot(F’),
which is similar to the function [o] defined for the F# Data type providers:

pivot(F') = C,{C — (type C(x : Query) = ..., L)}
where F' = {f1 — T1,..., fn — Tn}

The full definition given in Chapter 7 uses a number of auxiliary functions to define the
type provider, each of which defines members for specifying a particular query operation.
To illustrate the approach, the following excerpt shows the drop(F") function that is used
to construct operations that let the user drop any of the columns currently in the schema
F'. The generated class has a member 'drop f’ for each of the fields and a member then,
which can be used to complete the selection and return to the choice of other query op-
erations. Each of the drop operations returns a class generated for the newly restricted
domain and passes it a query that applies the selection II operation of the relational alge-
bra on the input data:

drop(F) = C,{C — (I,L'UULy)}

| = type C(x : Query) = Vf € dom(F') where Cy, Ly = drop(F")
member 'drop f' : Cy = Cy(Ilyompr(7)) and F/ ={f' =1 €F, f #+f}
member then : C' = C'(x) where C’, L' = pivot(F)

The formalization of the pivot type provider follows a similar style as that of the F#
Data, although it differs in that it explicitly represents the laziness of the type generation
and also in that the provided types construct more complex code, expressed using a a vari-
ant of relational algebra, that is executed at runtime. The formalization serves to explain
the functioning of the type provider, but also allows us to prove its safety.

2.3.2 Safety of data acquisition programs

The pivot type provider guarantees that the data transformations, which can be constructed
using the types it generates will always be correct. They will never result in an undefined
runtime behavior that one may otherwise encounter when accidentally accessing a non-
existent field. This is an important result because the sequence of operations transforms
the fields in interesting ways. Operations like dropremove fields from the schema, while
group by changes the set of fields and their types (e.g., when we count distinct values of
a string-typed field f in aggregation, the resulting dataset will contain a numerical field f).

To capture the property formally, we again state that any program written by the pro-
grammer using the type provider (without directly accessing the low-level operations of
the relational algebra) will always reduce to a value. The evaluation is defined on datasets
D which map fields to vectors of values, writtenas D = {f1 — (v1.1,...,01m), ..., fn —
(Un,1,- -, Unmy}. Aspecifickind of data value is a data series series(7y, 7,)(D) that con-
tains a vector of keys k£ and a vector of values v. The evaluation is defined as a reduction op-
eration e ~~7 €’ which also has access to class definitions L. Similarly, the typing judgment
L1;T'F e: 1; Ly includes additional handling of lazily generated classes. It states that the
expression e has a type 7 in a variable context I'. The typing is provided with (potentially
unevaluated) class definitions L. It accesses (and evaluates) some of those definitions
and those that are used throughout the typing derivation are represented by Ls.

Theorem 3 (Safety of pivot type provider). Givenaschema F' = {f1 +— 71,..., fn — T},
let C, L = pivot(F') then for any expression e that does not contain relational algebra
operations or Query-typed values as sub-expression, if L;x : C - e : series(r,T2); L’
thenforall D = {fi — (Vi1,...,V1m)s---» fn = (Un1,...,Unm)}suchthattv;;: 7
it holds that e[z < C(D)] ~7, series(ty, To)({fx = ki,... . kr, fo = vi,...,0:})
such that forall j &= k; : 7, and = v; = 7.

In other words, if a programmer uses the provided types to write a program e that
evaluates to a data series and we provide the program with input data D that matches the
schema used to invoke the type provider, the program will always evaluate to a data series
containing values of the correct type. Although the property is not labeled as relative type
safety as in the case of the F# Data type providers, it follows the same spirit. A well-typed
program will not go wrong, as long as the input has the right structure.

2.4 Contributions

In this chapter, | offered a brief overview of the work on type providers that is included
in Part Il. The focus of this part is on simplifying programmatic data acquisition, that is on
making it easier and safer to write code that reads data from external data sources. It con-
sists of a type provider for semi-structured data in XML, JSON and CSV formats (Chapter 6)
and a type provider that makes it possible to express queries over tabular data (Chapter 7).

» Key contributions. The publications included in Part Il include three main con-
tributions. They introduce the novel notion of relative type safety for discussing
correctness of programs that rely on external data, they present type providers for
structured data formats and they a type provider for querying relational databases
that guarantees relative type safety of the resulting program.

Both of the contributions consist of a practical implementation, as a library for the F# lan-
guage and as a component of the web-based programming environment The Gamma, re-
spectively. They combine this with a theoretical analysis using the methodology of theo-
retical programming language research. This makes it possible to precisely capture subtle
aspects of how the type providers work (including shape inference, laziness, and genera-
tion of types for query construction), but also to capture safety guarantees of the gener-
ated types. Given that type providers always access external data, the guarantees are not
absolute as in conventional programming language theory. For this reason, my work intro-
duced a novel notion of relative type safety, stating that programs will “not go wrong” as
long as the input has the correct structure (in a precisely defined sense).

From a broader perspective, the two type providers can be seen as filling a glaring
gap in the theoretical work of statically-typed programs. A theoretician who defines a
type system always uses a top-level typing rule + e : 7 stating that a program e (closed
expression) that does not use any variables has a type 7. While at the top-level, programs
may not use any variables, this is misleading because most real-world programs access the
outside world in some way, but this is typically done in an unchecked way. Monads and
effect systems (Lucassen and Gifford, 1988; Peyton Jones and Wadler, 1993) can be used
to track that some external access is made, but they do not help the static type system
understand the structure of the outside data. With slight notational creativity, we can
say that the static type checking of a program that uses type providers starts with a rule
m(®) F e: 7 where @ (used as the astronomical symbol for the Earth) refers to the entire
outside world and 7 refers to some projection from all the things that exist in the outside
world to program variables with static types that a programming language understands.

The two kinds of type providers discussed in this chapter also differ in how they ap-
proach the technology gap suggested in Figure 1.1. The F# Data type providers aim to make
programming with external data in a statically typed programming language a bit easier. In
other words, they extend the area that can be covered by conventional programming, in-
cluding more users and reducing the complexity. The pivot type provider and The Gamma
programming environment tries to fill a particular space within the gap. It lets a relatively
large number of users (who are not professional programmers) solve problems that are
more complex than simple data wrangling in a spreadsheet system, but much less com-
plex than using a conventional programming tool such as Python and pandas. Its usability
is a topic | will revisit in Chapter 4 and the paper included as Chapter 10.

Chapter 3

Data infrastructure

Data scientists use a wide range of tools when working with data. A large part of what
makes data cleaning and data exploration challenging is that data scientists often need
to switch from one tool to another (Rattenbury et al., 2017). They may use an interactive
online tool like Trifacta to do data cleanup, run an ad-hoc command-line tool to transform
it, and then import it into a Jupyter notebook to create a visualization. Moreover, data
science is an interactive and iterative process. Data scientist need to be able to quickly
review the results of the operation they performed in order to see whether the results
match their expectations and to detect unexpected problems. The interactivity brings a
further challenge, which is the reproducibility of results. If the data scientist quickly tries
multiple different approaches, and reverts some of their earlier experiments, they should
always be able to know what exact steps led to the final result they see on their screen.

In this chapter, | provide an overview of two contributions to the infrastructure for
doing data exploration. The work addresses the three requirements that arise from the
typical way data exploration is done as outlined above:

e Polyglot tooling support. Data scientist need an easy way of integrating multiple
different tools. For example, they should be able to use simple data acquisition tools,
such as the pivot type provider implemented in The Gamma, but then pass the data
to Python for further processing or to a visual interactive tool.

o Live preview support. In order to let data scientists quickly review the results of the
operations they perform, the infrastructure should provide immediate live previews
without unnecessary recomputation.

e Reproducibility and correctness. The results that the data scientist sees on the screen
should always match with the code (or reproducible another trace) they have in
their data exploration environment. If the operations involved are deterministic,
re-running them should produce the same result.

Although each of those challenges has a range of solutions, there are not many systems
that address all of them. This chapter provides an overview of work leading towards such a
system. It consists of two parts. The first is a data exploration environment for The Gamma
that introduces an efficient way of evaluating live previews (presented in full in Chapter 8)
using a method based on maintaining a dependency graph. The second part is a notebook
system for data science called Wrattler (presented in full in Chapter 9) that follows the
same basic approach, but allows integration of multiple languages and tools and also uses
the dependency graph to ensure reproducibility of the data explorations.

29

olympics
.'filter data'.'Games is'.'Rio (2016)'.then
.'group data'.'by Athlete'.'sum Gold'.then
.'sort data'.'by Gold descending'.then.paging.take(4)

olympics filter by group by sort by

4
Athlete Gold
Michael Phelps 5
Katie Ledecky 4
Simone Biles 4
Katinka Hosszu 3

Figure 3.1: A live preview in The Gamma, generated for a code snippet that uses the pivot type
provider for data exploration. The interface also lets the user navigate through the steps of the
transformation and modify parameters of the query.

Methodologically, the work outlined in this chapter combines the programming sys-
tems research methods with programming language theory. Both of the systems are avail-
able as open-source projects and they have been evaluated through a range of realistic
case studies. The publication on live previews for data exploration environments presents
a formal model to explain how live previews are computed using a dependency graph and
to show the correctness of this approach, but it also includes a performance evaluation.
The main contribution of the work on Wrattler is the novel architecture of the system.

3.1 Notebooks and live programming

As noted above, all three of the challenges have been addressed in isolation. The inte-
gration of different tools has been addressed in the context of scientific workflow systems
such as Taverna (Oinn et al., 2004) and Kepler (Altintas et al., 2004) that orchestrate com-
plex scientific pipelines, but such tooling is too heavyweight for basic data exploration
done for example by data journalists. Scientific workflow systems also tackle the problem
of reproducibility as the workflows capture the entire data processing pipeline.

In the context of programming tools, work on live environments that provide immedi-
ate feedback and help the programmer better understand relationships between the pro-
gram code and its outputs have been inspired by the work of Victor (2012b,a). A compre-
hensive review by Rein et al. (2019) includes programming tools and systems that provide
immediate feedback ranging from those for Ul development and image processing to live
coding tools for music. A chief difficulty with providing live feedback as code is modified
lies in identifying what has been changed. This can be done by using a structure editor that
keeps track of code edits (Omar et al., 2019). The approach presented below aims to sup-
port ordinary text-based editing and is based on the idea of reconstructing a dependency
graph from the code.

Finally, the issue of reproducibility has received much attention in the context of note-
books for data science such as Jupyter (Kluyver et al., 2016). Although Jupyter can be used
to produce reproducible notebooks, there are practical barriers to this. In particular, it al-
lows execution of cells out-of-order, meaning that one can run code in a way that modifies
the global state in an unexpected and non-reproducible way. This has been addressed in
multiple systems (Pimentel et al., 2015; Koop and Patel, 2017) and our approach in Wrattler
builds on this tradition.

3.2 Live data exploration environment

The Gamma explores a particular point in the design space of data exploration tools. It is
built around code written in a simple programming language, leveraging the type provider
introduced in Section 2.3. This focus on code makes it easier to guarantee reproducibility
and transparency of data analyses. At the same time, the design raises the question of
how easy can data exploration be when done through a text-based programmatic envi-
ronment. | revisit this problem from the human-computer interaction perspective in the
next chapter, after discussing the infrastructure that makes using The Gamma easier.

One of the lessons learned from spreadsheets is the value of immediate or live feed-
back. To make data exploration in The Gamma easier, the work outlined in this section
develops an efficient method for displaying live previews for The Gamma as illustrated in
Figure 3.1. However, providing live previews in a text-based programming environment is
a challenge (McDirmid, 2007). There are two difficulties:

e Live previews and abstractions. It is difficult to provide live previews for code in-
side functions or classes because variables in such context cannot be easily linked
to concrete values. Even if such abstractions are not used as frequently in data ex-
ploration code, abstractions are often the key concern in conventional theoretical
thinking about programming language design.

e Responding to code changes. Code in a text editor can change in arbitrary ways and
so it is unclear how to update the existing live preview when an edit is made. This
is easier in structure editors where edits are limited and understood by the system,
but live previews for a text-based system need to accommodate large and potentially
breaking changes in code.

In the work included as Chapter 8, | tackle the first challenge by arguing that we need
a better theoretical model of programming languages for data exploration. When data
scientist explore data in a notebook environment, they typically do not introduce new
abstractions and most code is first-order. They often use external libraries, some of which
provide higher-order functions (projection, filtering, etc.) and so code may use functions
and lambda expressions, but those are typically passed directly as arguments to those
functions. My work thus introduces the data exploration calculus, which is a small formal
model of a programming language that corresponds closely to code written to explore data
and can be used to formally study problems in programmatic data exploration tools.

The problem of responding to code changes is tackled by constructing a dependency
graph and caching its nodes. When the code is edited, the new version is parsed, resulting
in a new abstract syntax tree. The nodes of the tree are then analyzed and linked to nodes
in a dependency graph. When the node of the tree corresponds to a dependency graph
node that has been created previously (with the same dependencies), the graph node is

Programs, commands, terms, expressions, and values

pu=Cli...;Cn ti=o0 et | A — e
cu=t | = vi=o|Ar—e
| letz=tt | tm(e,...,e)
Evaluation contexts of expressions
Cel—] = Ce[—]mler,...,en) | om(vy,...,vm,Ce|—],€1,...,€n) | —
Ce[—] = letx=C.]—] | Cc[-]
Cpl—] = o15...5 015 Ce[=]; 15 .05 cn
Let elimination and member reduction
01; ...; O; letx =o0; c1; ...;¢p ~ (let)
01; ...; Ok; 0;C1[T <= 0]; ...;cplx < O
0.m(v1, ..., 0p) ~e 0
; (external)
Cplo.m(vy, ..., v,)] ~ Cplo]

Figure 3.2: Syntax, contexts and reduction rules of the data exploration calculus

reused. Live previews are then computed (and associated with) dependency graph nodes.
As aresult, when dependencies of a particular expression do not change, it is linked to the
same graph node as before and the associated live preview is reused.

In the following two sections, | provide a brief review of the data exploration calculus
and of the dependency graph construction mechanism. In Chapter 8, the data exploration
calculus is then used to formalize the graph construction and show that live previews com-
puted based on the graph are the same as previews that would be computed by directly
evaluating the data exploration calculus expression. The publication also evaluates the ef-
ficiency using live previews, quantifying the reduction in overhead in contrast to two other
evaluation strategies.

3.2.1 Data exploration calculus

The data exploration calculus is a small formal language for data exploration. The calculus is
intended as a small realistic model of how are programming languages used in data explo-
ration scripts and computational notebooks. The calculus itself is not Turing-complete and
models first-order code only, but it supports the notion of external libraries that provide
specific data exploration functionality. This may include standard functions for working
with collections or data frames that are common in Python, but also libraries based on
type providers as in the case of The Gamma.

Figure 3.2 shows the syntax of the calculus. A program p consists of a sequence of com-
mands c. A command can be either a let binding or a term. Let bindings define variables
x that can be used in subsequent commands. As noted earlier, lambda functions can only
appear as arguments in method calls. To model this, the calculus distinguishes between
terms that can appear at the top-level and expressions that can appear as arguments in
an invocation. A term ¢ can be a value, variable, or a member access, while an expression
e can be alambda function or a term. Values defined by external libraries are written as o.

The evaluation is defined by a small-step reduction ~~. Fully evaluating a program
results in an irreducible sequence of objects 01; ...; o, (one object for each command,
including let bindings) which can be displayed as intermediate results of the data analysis.
The operational semantics is parameterized by a relation ~~, that models the functionality
of external libraries. Figure 3.2 defines the reduction rules in terms of ~». and evaluation
contexts; C,, specifies left-to-right evaluation of arguments of a method call, C,. specifies
evaluation of a command and C), defines left-to-right evaluation of a program. The rule
(external) calls a method provided by an external library in a call-by-value fashion, while
(let) substitutes a value of an evaluated variable in all subsequent commands and leaves
the result in the list of commands.

Note that our semantics does not define how X applications are reduced. This is done
by external libraries, which will typically supply functions with arguments using standard
(B-reduction. The result of evaluating an external call is also required to be an object value
o. To illustrate how a definition of an external library looks, consider the following script:

let | = list.range(0, 10)

[.map(Ax — math.mul(z, 10))
An external library provides the 1ist and math objects, as well as numbers n, lists of objects
[01,...,0k], and failed computations L. Next, the external library needs to define the

semantics of the range, mul, and map members through the ~- relation. The following
shows the rules for the map operation on lists:

elz < n;] ~o0; (foralliel...k) (otherwise)

1, ..., ngl.map(Az — €) ~¢ [o1, ..., 0k [P1, .. ng]m(vr, ..o vn) ~e L

When evaluating map, we apply the provided function to all elements of the list using stan-
dard SB-reduction and return a list of resulting objects. The ~- relation is defined on all
member accesses, but non-existent members reduce to the failed computation L.

We require that external libraries satisfy two conditions. First, when a method is called
with observationally equivalent values as arguments, it should return the same value (com-
positionality). Second, the evaluation of o.m(vy, .. ., v,) should be defined for all 0, n and
v; (totality). The above definition satisfies those requirements by using the standard 8-
reduction for reducing lambda functions and by reducing all invalid calls to the L object.
Compositionality implies the deterministic behavior of external libraries and is essential
for implementing an efficient live preview mechanism. The totality of the definition, in
turn, makes it possible to prove the following normalization property:

Theorem 4 (Normalization). For all p, there existsn, o1, ..., 0, such thatp ~* o1;...; 0,
where ~~* is the reflexive, transitive closure of ~.

The value of the data exploration calculus is that it can be used to model the functional-
ity of different tools that support data exploration. The work outlined here (and presented
in full in Chapter 8) uses the calculus to formalize an efficient mechanism for showing live
previews during the editing of data exploration script. As mentioned earlier, the mech-
anism works by constructing a dependency graph, binding expressions to the graph and
associating live previews with the (cached) nodes of the graph. The formal properties of
the data exploration calculus make it possible to prove that live previews computed in
this way are the same as previews that would be obtained by fully re-evaluating the data
exploration script.

val(10) val(15) val(10)

arg(1)
arg(l)T Targ(l) arg(l)T
. arg(0 . arg(0
mem(skip, so) 290 mem(take, s1) mem(skip, so) 290 mem(take, s2)

arg(O)i arg(U)i

var(data) var(data)
(a) Graph constructed from initial expression: (b) Updated graph after changing x to 10:
let x = 15 indata.skip(10).take(x) let x = 10 in data.skip(10).take(x)

Figure 3.3: Dependency graphs formed by two steps of the live programming process.

3.2.2 Computing previews using a dependency graph

Given a program in the data exploration calculus, | now describe the core of a mechanism
that can be used for providing the user with live previews as illustrated in Figure 3.1. The
key idea behind our method is to maintain a dependency graph with nodes representing
individual operations of the computation that can be evaluated to obtain a preview. Each
time the program text is modified, we parse it afresh (using an error-recovering parser) and
bind the abstract syntax tree to the dependency graph. When binding a new expression to
the graph, we reuse previously created nodes as long as they have the same structure and
the same dependencies. For expressions that have a new structure, we create new nodes.

The nodes of the graph serve as unique keys into a lookup table containing previously
evaluated parts of the program. When a preview is requested for an expression, we use the
graph node bound to the expression to find a preview. If a preview has not been evaluated,
we force the evaluation of all dependencies in the graph and then evaluate the operation
represented by the current node.

The nodes of the graph represent individual operations of the computation. A node
indicates what kind of operation the computation performs and is linked to its dependen-
cies through edges. This makes it possible to define computation not just over expressions
of the data exploration calculus, but also over the dependency graph. In order to cache
computed previews with the node as the key, some of the nodes need to be annotated
with a unique symbol. That way, we can create two unique nodes representing, for exam-
ple, access to a member named take which differ in their dependencies. The graph edges
are labeled with labels indicating the kind of dependency. For a method call, the labels are
“first argument”, “second argument” and so on. Writing s for symbols and i for integers,
nodes (vertices) v and edge labels [are defined as:

v = val(o) | var(z) | mem(m,s) | fun(z,s) (Vertices)
[= body | arg(i) (Edge labels)

The val node represents a primitive value and contains the object itself. Multiple occur-
rences of the same value, such as 10, will be represented by the same node. Member
access mem contains the member name, together with a unique symbol s - two member
access nodes with different dependencies will contain a different symbol. Dependencies
of a member access are labeled with arg indicating the index of the argument (0 for the
instance and 1,2, 3, ... for the arguments). Finally, nodes fun and var represent function
values and variables bound by X\ abstraction.

Figure 3.3 illustrates how to build the dependency graph. Node representing take(x)
depends on the argument - the number 15 - and the instance, which is a node represent-
ing skip(10). This, in turn, depends on the instance data and the number 10. Note that
variables bound via 1et binding such as = do not appear as var nodes. The node using it
depends directly on the node representing the expression assigned to x.

After changing the value of =, we create a new graph. The dependencies of the node
mem(skip, sg) are unchanged. The symbol sy attached to the node remains the same
and so the previously computed previews can be reused. This part of the program is not
recomputed. The arg(1) dependency of the take call changed and so we create a new
node mem(skip, s2) with a fresh symbol s,. The preview for this node is then computed
as needed using the already-known values of its dependencies.

The full description of how the dependency graph is constructed can be found in Chap-
ter 8. The construction proceeds recursively over the syntactic structure of the program
in the data exploration calculus. For each expression in the program, it recursively obtains
graph nodes representing its sub-expressions. It then checks the cache to see if a node
representing the current expression with the same dependencies exists already. If so, the
node is reused. If no, a new node (possibly with a new symbol) is created.

The construction of the graph makes it possible to compute previews over the nodes
of the dependency graph and cache the previously computed previews by using the graph
node as the cache key. | illustrate how the evaluation works using two of the reduction
rules. For simplicity, | do not discuss the caching here. | will also write p for evaluated
previews which can be either primitive objects o or functions Az.e (for which we cannot
show a preview directly). Given a dependency graph (V, E') where V' is a set of vertices
v1,v2,...,0, and E is a set of directed labelled edges of the form (v, v2, 1), the evalua-
tion is then defined as a relation v |} p. The following two rules illustrate evaluation for
primitive values and for member access:

val(o) § o e
Vi€ {0...k}.(mem(m,s),v;,arg(i)) € E
v | pi Po-m(P1,- - D) ~e P
(mem-val)
mem(m, 5) 4 p

The (val) rule is simple. If a graph node represents a primitive value, it directly reduces
to the value. The (mem-val) rule illustrates a more interesting case. To evaluate a mem-
ber access, we need to find the graph nodes that represent its arguments (by looking for
links with an appropriate label), reduce those recursively, and then use the external library
reduction ~~, to reduce the member access.

The sketch presented here omits one interesting aspect of the mechanism. In gen-
eral, previews can be provided for all sub-expressions that include variables defined by an
earlier let binding. However, if a sub-expression contains a variable bound by a lambda
expression, we have no way of obtaining a suitable value for the variable. In this case, our
mechanism evaluates a delayed preview [e]r, which represents a partially-evaluated ex-
pression that depends on variables specified by I'. Delayed previews could still be useful if
the user interface allowed the user to specify sample value for the free variables and they
also have an interesting theoretical connection to work on Contextual Modal Type Theory
(Nanevski et al., 2008) and comonads (Gabbay and Nanevski, 2013).

File Edit View Run Kernel Tabs Settings Help
= + * c dependencies.wrattler X
B / examples /
o Neme - Visualizing dependency graph
aiassistants.wrattler
charts.wrattler In this notebook, we create two data frames (one and two), each in a different programming language (Python
_ and R). We then append all three data frames in another language (JavaScript). Once we write this example, we
dependencies.wrattler y . : . .
will load a tool that lets us visualize and explore dependencies between individual cells of the notebook.
o fluid-example.wrattler
imports.wrattler
jstools.wrattler
.wrattl
maps.wrattler 1 one = pd.DataFrame({"name":["Jim"], "age":[511}) -
neonatalTimeseries.wrattler
news.wrattler Evaluate!
pydata.wrattler
rdata.wrattler
readme.wrattler
scenic-analysis.wrattler 1 two <- data.frame(name=c("Jane"), age=c(54)) -
topic_modelling.wrattler
Evaluate!
welcome.wrattler
1 var join = one.concat(two) -
Evaluate!
0 0 & dependencies.wrattler

Figure 3.4: Wrattler running inside the JupyterLab system. The opened notebook passes data be-
tween cells written in three different programming languages (Python, R and JavaScript).

The full paper, included as Chapter 8, uses two research methodologies to evaluate
the work. First, it formalizes how the live preview mechanism works using the model
based on the data exploration calculus as sketched above. The formalization is used to
show that the previews computed over the dependency graph are correct. That is, they
are the same as the values we would obtain by evaluating the data exploration calculus
expressions directly. The formalization is also used to list a number of common edits to a
program that do not invalidate previously computed live previews. Examples of such ed-
its include extracting sub-expression into a let-bound variable, deleting or adding unused
code, or changing unrelated parts of the program. The evaluation also employs program-
ming systems research methods to empirically evaluate the efficiency of the live preview
evaluation method. The paper contrasts the method with standard call-by-value and lazy
evaluation strategies (without caching) and shows the reduction of delays in providing live
previews for a sample coding scenario.

3.3 Live, reproducible, polyglot notebooks

The live data exploration environment discussed in the previous section tackles the prob-
lem of providing rapid feedback to data scientists during data exploration. The other two
challenges that | listed in the opening of this chapter were the need for polyglot tooling
support and the need to make data analyses more reproducible.

The two challenges are addressed by the open-source Wrattler notebook system pre-
sented in full in Chapter 9. Wrattler is an extension of the industry standard JupyterLab
platform. As illustrated in Figure 3.4, Wrattler adds a new type of document format that

Wrattler architecture

Python runtime (server)

Jupyter architecture f@ \
Kernel — Notebook Data store E Notebook
(server) (browser) (server) (browser)
@ TheGamma runtime (browser)

Figure 3.5: In notebook systems such as Jupyter, state and execution are managed by a kernel. In
Wrattler, those functions are split between data store and language runtimes. Language runtimes
can run on the server-side (e.g. Python) or client-side (e.g. The Gamma).

allows programmers to mix cells written in multiple different programming languages in a
single notebook. The extensibility model of Wrattler makes it possible to support not only
new programming languages but also interactive tools that run directly in the notebook
(hosted in a web browser). As a result, it is possible to integrate tools that provide a live
preview mechanism such as The Gamma and also interactive Al assistants that | discuss in
Part IV. The architecture of the Wrattler system is based on two key principles:

e Polyglot architecture. The system is designed to allow the integration of compo-
nents in different programming languages. This is done by splitting the monolithic
architecture of Jupyter into individual components including the central data store
and multiple language runtimes.

e Design for reproducibility. To guarantee reproducibility and track data provenance,
the system represents computation as a dependency graph. The graph is similar to
the one discussed in the previous section but uses a coarser granularity with one
node for each notebook cell.

The Wrattler system is presented in detail in Chapter 9. The paper follows the program-
ming systems methodology. It focuses on the novel system architecture and documents
the capabilities that are enabled by the architecture.

3.3.1 Architecture of a novel notebook system

Standard notebook architecture consists of a notebook and a kernel. The kernel runs on a
server, evaluates code snippets, and maintains the state they use. The notebook runsin a
browser and sends commands to the kernel in order to evaluate cells selected by the user.
As illustrated in Figure 3.5, Wrattler splits the server functionality into two components:

e Data store. Imported external data and results of running scripts are stored in the
data store. The data store keeps version history and annotates data with metadata
such as types, inferred semantics, and provenance information.

e Language runtimes. Code in notebook cells is evaluated by language runtimes. The
runtimes read input data from and write results back to the data store. Wrattler
supports language runtimes that run code on the server (similar to Jupyter) but also
browser-based language runtimes.

Figure 3.6: Dependency graph of a notebook

Rcode Python code from Figure 3.4. For each cell, the graph contains

a code node and one (or possibly more) export

Export (two) Export (one) nodes that represent exported data frames. The
R and Python cells are independent and map to

JavaScript code independent graph nodes. The node correspond-

ing to the final JavaScript cell depends on nodes

- representing the two variables used in the code.
Export (join)

e Notebook. The notebook is displayed in a web browser and orchestrates all other
components. The browser builds a dependency graph between cells or individual
calls. It invokes language runtimes to evaluate code that has changed and reads
data from the data store to display results.

The central component of the system is the data store, which enables communica-
tion between individual Wrattler components and provides persistent data storage. Data
frames stored in the data store are associated with a hash of a node in a dependency graph
constructed from the code in the notebook (using a mechanism discussed below) and are
immutable. When the notebook changes, new nodes with new hashes are created and
appended to the data store. This means that language runtimes can cache data and avoid
fetching them from the data store each time they need to evaluate a code snippet.

External inputs imported into Wrattler notebooks (such as downloaded web pages) are
stored as binary blobs. Data frames are stored in either JSON or binary format. The data
store also supports a mechanism for annotating data frames with semantic information.
Columns can be annotated with primitive data types (date, floating-point number) and se-
mantic annotation indicating their meaning (address or longitude and latitude). Columns,
rows, and individual cells of the data frame can also be annotated with custom metadata
such as their data source or accuracy.

3.3.2 Dependency graphs for notebooks

At runtime, Wrattler maintains a dependency graph that is remarkably similar to the one
used in the live data exploration environment for The Gamma discussed in Section 3.2. As
before, the dependency graph is used to cache the results of previous computations. The
nodes in the graph have a unique identifier (hash) that is used as the key for caching data
in the data store. When code in the notebook is modified, the graph is re-created, reusing
previously created nodes where possible.

An example of a dependency graph is shown in Figure 3.6. For every type of cell, Wrat-
tler needs to be able to identify the names of imported and exported variables. In the
case of Python, R, and JavaScript, this is done using a lightweight code analysis. In the case
of The Gamma, which can also be used in Wrattler, the full parse tree and its associated
dependency graph are available. A prototype extension of Wrattler embeds The Gamma
graph as a sub-graph of the dependency graph maintained by Wrattler.

An important design choice in the Wrattler design is that cells can only share data in
the form of a data frame. The trade-offs of this choice remain to be evaluated. On the
one hand, it means that Wrattler fits only certain data analytical scenarios. On the other
hand, it makes it possible to easily share data between cells in different languages. In the

example dependency graph, each of the “export” nodes thus corresponds to a data frame
that is stored in the data store (using the unique hash of the graph node as the key).

The dependency graph is updated after every code change. This is done using the same
mechanism as in the live data exploration environment discussed in Section 3.2. Wrattler
invokes individual language runtimes to parse each cell. It then walks over the resulting
structure and constructs nodes for each cell or exported variable with edges indicating
dependencies. The hash for each node is computed from the data in the node (typically
source code or variable name) and the hashes of nodes it depends on. An important prop-
erty of this process is that, if there is no change in dependencies of a node, the hash of
the node will be the same as before. As a result, previously evaluated values attached to
nodes in the graph are reused.

When the evaluation of an unevaluated cell is requested, Wrattler recursively evalu-
ates all the nodes that the cell depends on and then evaluates the values exported by the
cell. The evaluation is delegated to a language runtime associated with the language of the
node. For languages that run on the server-side (Python, R), the language runtime sends
the source code, together with its dependencies, to a server that evaluates the code. Note
that the request needs to include only hashes of imported variables as the server can ob-
tain those directly from the data store. For nodes that run on the client-side (JavaScript,
The Gamma), the evaluation is done directly in the web browser.

3.4 Contributions

7 Key contributions. The publications included in Part Ill include three main con-
tributions. They capture the essence of data scripting in the form of data ex-
ploration calculus, they present the architecture for polyglot, live and reproducible
notebook systems and they describe an efficient algorithm for live preview recompu-
tation based on the construction of a dependency graph.

In this chapter, | outlined two contributions to the data analytics infrastructure that are
included in Part IIl of this thesis. The two contributions describe systems that aim to make
data exploration more live and reproducible while supporting the polyglot reality of data
processing tools used today.

The work included in Chapter 8 focuses on providing live previews during data explo-
ration. Can we simplify data exploration by efficiently previewing the result of a data trans-
formation while the data analyst is constructing it and tweaking its parameters? The mech-
anism presented in this thesis provides a possible answer. The work follows primarily the
programming language research methodology and so it attempts to capture the core idea
behind the approach, using the simple (but adequate) formal model of the data explo-
ration calculus. The implementation of the idea provides live previews for code written
in The Gamma, a simple programming language with support for type providers that we
encountered already in Section 2.3 and that | will return to once more in the next chapter,
but using the perspective of human-computer interaction research.

The work included in Chapter 9 presents a polyglot notebook system Wrattler. The
system makes it possible to mix multiple tools in a single notebook. This includes exist-
ing programmatic tools, such as those based on Python and R, as well as novel tools like

The Gamma. The sharing is enabled by the design choice of allowing only data frames
as the exchange format between cells. The promise of the Wrattler architecture is to en-
able more research and innovation in the data exploration tooling space. It enables data
analysts to use tools they are already familiar with, but use novel tools where appropri-
ate - for example, include a cell in The Gamma that will let consumers of their notebooks
explore aggregate data without advanced programming expertise. We will leverage this
architecture again in the work on Al assistants (Chapter 11), outlined in the next chapter.
One interesting point that is revealed by putting the two contributions side-by-side is
that they both rely on the same implementation technique. They both maintain a depen-
dency graph of code (expressions or cells) and update it as the code is edited. The graph
is constructed so that code that remains the same is bound to the same node, making
it possible to reuse previously computed results. The technical similarity is rooted in a
broader principle. In both cases, the reproducible code is the final trace that produces all
relevant outputs. The principle is in contrast with an alternative where code is executed
interactively to modify some state as in systems based on Read-Eval-Print Loop (REPLS).

Chapter 4

Iterative prompting

Data wrangling is the tedious process of getting data into the right format for data explo-
ration. It involves parsing data, joining multiple datasets, correcting errors, and recovering
semantic information. According to domain experts (Rattenbury et al., 2017), data wran-
gling takes up to 50-80% of data scientist’s time. Unfortunately, there is no easy cure to
the problem of data wrangling. The reason for the difficulty is what van den Burg et al.
(2019) refer to as the double Anna Karenina principle: “every messy dataset is messy in its
own way, and every clean dataset is also clean in its own way.” In other words, there is no
single characterization of a clean dataset that tools could optimize for. Human insight into
the data is always needed.

Different research directions approached the problem of data wrangling from different
perspectives. Graphical end-user programming tools typically make it easy to complete the
most common tasks for the most common kinds of datasets but are incapable of covering
the inevitable special cases that are present due to the double Anna Karenina principle.
Automatic Al-based tools for data wrangling suffer from the same issue. They work well in
a large number of cases, but they can easily confuse interesting outliers for uninteresting
noise in cases where a human would immediately spot the difference. This is perhaps why
most data wrangling is often done manually and often involves a mix of programmatic
and end-user tools. We can make those tools easier to integrate and make tweaking of
parameters easier through live previews (as discussed in the previous chapter), but what
if we could offer a different way of working with them?

The contributions outlined in this chapter are centered around the question of how to
easily enable human data analysts, even if they are not expert programmers, to supply the
necessary human insight to programmatic tools when cleaning and analyzing data. The an-
swer presented in the first contribution (Chapter 10) is an interaction principle that | refer
to as iterative prompting. In a tool that follows the principle, the user is repeatedly asked
to choose from a list of offered options. The principle turns the familiar code completion
mechanism from a programmer assistance tool into a non-expert programming mecha-
nism. The two contributions included as Part IV use iterative prompting in two ways:

¢ In Chapter 10, the mechanism is used to allow non-programmers to construct data
exploration scripts that query data from a range of different data sources. A key
characteristic of the method is that the mechanism allows users to construct only
correct scripts and all scripts expressible in the language can be constructed, i.e., the
principle is correct and complete.

M

¢ In Chapter 11, the mechanism is used to guide four different semi-automatic Al data
wrangling tools. Here, the tools run automatically, but the user can use iterative
prompting to specify constraints in order to correct errors and oversights in the au-
tomatically generated solutions. In other words, iterative prompting provides a uni-
fied interface through which the analyst can supply human insights to the Al tool.

The primary contribution of the work presented in this chapter is that it develops and
validates novel approaches to the problem of data wrangling. To do this, it uses two pri-
mary research methods. The work introducing iterative prompting (Chapter 10) is rooted
in human-computer interaction research. It motivates the interaction principle, describes
a prototype implementation, and shows its effectiveness through a qualitative case study
and an empirical user study. The work on Al assistants (Chapter 11) combines programming
language theory and programming systems research methods. It describes the architec-
ture of the system using a formal model and validates it by making four existing automatic
Al tools interactive and semi-automatic. The novel tools are evaluated empirically. In cases
where the fully automatic tool fails, our semi-automatic tool allows the user to correct the
solution with a small number (typically 1-2) of simple interactions.

The work in this chapter is best seen as design space exploration. | believe that pro-
gramming languages and systems provide the right starting point for tackling the problem
of data wrangling and data exploration. But in order to fulfill this role, they need to be
significantly easier to use. Non-programmers need to be able to create simple data ex-
ploration scripts and data analysts need an easy-to-use interface for solving typical prob-
lems. Iterative prompting takes the basic auto-completion mechanism leveraged by type
providers to a new level, turning it into a simple but powerful unifying interaction principle.

4.1 Data wrangling and data analytics

Data wrangling is most often done manually using a combination of programmatic and
graphical tools. Jupyter and RStudio are popular environments used for programmatic
data cleaning. They are used alongside libraries that implement specific functionality such
as parsing CSV files or merging datasets van den Burg et al. (2019); Sutton et al. (2018) and
general data transformation functions provided, e.g., by Pandas and Tidyverse.'

Graphical data wrangling systems such as Trifacta? consist of myriad tools for importing
and transforming data, which are accessible through different user interfaces or through
a scriptable programmatic interface. Finally, spreadsheet applications such as Excel and
business intelligence tools like Tableau are often used for manual data editing, reshaping,
and especially visualization (Kandel et al., 2011). The above general-purpose systems are
frequently complemented by ad-hoc, for example for parsing PDF documents.

Some of the most practical tools along the entire data wrangling pipeline partially au-
tomate a specific tedious data wrangling task. To merge datasets, Trifacta and datadiff
(Sutton et al., 2018) find corresponding columns using machine learning. To transform
textual data and tables, Excel employs programming-by-example to parse semistructured
data and many tools exist to semi-automatically detect duplicate records in databases.

'https://pandas.pydata.org and https://www.tidyverse.org (Accessed 12 June 2024)
Zhttps://www.trifacta.com (Accessed 12 June 2024)

https://pandas.pydata.org
https://www.tidyverse.org
https://www.trifacta.com

Interactive and semi-automatic data wrangling tools, allow the analyst to review the
current state of the analysis and make changes to it. The interaction between a human
and a computer in such data wrangling systems follows a number of common patterns:

e Onetime interaction. A tool makes a best guess but allows the analyst to manually
edit the proposed data transformation. Examples include dataset merging in Trifacta
and datadiff (Sutton et al., 2018).

e Live previews. Environments like Jupyter, Trifacta, and The Gamma (Chapter 8) pro-
vide live previews, allowing the analyst to check the results and tweak parameters
of the operation they are performing before moving on.

o |terative. A tool re-runs inference after each interaction with a human to refine the
result. For example, in Predictive Interaction (Heer et al., 2015) the analyst repeat-
edly selects examples to construct a data transformation.

e Question-based. A system repeatedly asks the human questions about data and uses
the answers to infer and refine a general data model. Examples include data repair
tools such as UGuide (Thirumuruganathan et al., 2017).

For interactive data wrangling tools, the live previews pattern is the most common
one with a varying degree of liveness. Most semi-automatic data wrangling tools accept
only limited forms of human input. The onetime interaction pattern is the most common
and only a few systems follow the more flexible iterative pattern. The iterative prompting
principle that | introduce in this chapter implements the iterative pattern in a uniform way
that is inspired by work on information-rich programming programming (Syme et al., 2013)
and type providers (Chapter 2). It is centered around code but reduces the conceptual
complexity of coding to a single basic kind of interaction.

4.2 Iterative prompting

Technically speaking, | have already discussed all the components that together make up
the first implementation discussed in this chapter. In The Gamma, the iterative prompting
principle is implemented through the standard code completion mechanism that is used to
select members generated by the type provider outlined in Chapter 2. The main contribu-
tion of the paper included as Chapter 10 is that it looks at the design from the perspective
of human-computer interaction research.

The key idea behind the principle is that a non-programmer should be able to con-
struct an entire data exploration script only by selecting appropriate members from a list
of offered choices. Technically speaking, the script thus becomes a single chain of member
accesses. As | discuss below, this also requires a specific type provider design.

The process of data exploration through iterative prompting is illustrated in Figure Fig-
ure 4.1, which uses the type provider outlined in Chapter 2 to find the UK House of Lords
member from the county of Kent with the most number of days away. The example shows
three steps of the process:

1. The user starts by selecting an input data source (not using iterative prompting) and
types ‘' (dot) to see available querying operations. The system offers a list of (all
available) operations including filtering, grouping, and sorting.

@ expenses @

& drop columns
K filter data

;grogp data expenses
paging .'filter data'.'County is'.Kent.then
;SW; data .'sort data'.'by Days

windowing

A by County descending
& by Days Attended

expenses by D ded d di
@ .'filter data'.'County is'.ke yabaySgAtrende SR
& by Days Away

Kent & by Days Away descending

Kincardineshire A by Name

M Lanarkshire & by Name descending

M Lancashire A by Travel Costs

KX Leicestershire A by Travel Costs descending
A Lincolnshire & then

Figure 4.1: Using the iterative prompting interaction principle in The Gamma to explore dataset
containing information on UK House of Lords members.

2. The user chooses filter data. They are then offered a list of conditions based on
the columns in the dataset. The user selects County is and is then offered a list
of all possible values of the column in the dataset. Thanks to the fact that iterative
prompting in The Gamma is embedded in an ordinary text editor, they can start
typing to filter the (long) list of possible values.

3. The user chooses Kent as the required value. They are then offered a list including
further conditions and the then member that makes it possible to choose another
transformation. They choose then and continue to add sorting.

In The Gamma, the iterative prompting principle is used in the context of text-based
programming language with type providers. This is a deliberate design choice. The aim of
the work is to see whether iterative prompting can make text-based programming acces-
sible to non-programmers. As a programming language, The Gamma is a simple object-
oriented language with nominal type system and support for type providers. It allows a
couple of constructs in addition to the method chaining shown in Figure 4.1 including let
binding and method calls such as expenses.paging.take(10). | briefly review the design
trade-offs below.

4.21 Iterative prompting for data querying

The paper included as Chapter 10 shows that iterative prompting can provide a unified in-
terface for exploring data from a range of different data sources. One of the hypotheses
evaluated in the paper is that this aids usability by supporting transfer of knowledge be-
tween different kinds of data sources. To evaluate this, we implemented type providers
for exploring data cubes (Syme et al., 2013), created by the author of this thesis, tabular
data, as outlined in Chapter 2 and discussed in full in Chapter 7, and graph databases.

Data cubes are multi-dimensional arrays of values. For example, the World Bank col-
lects indicators about many countries each year. The type provider makes it possible to
select a data series, such as CO5 emissions of the US over time:

1 worldbank.byCountry. 'United States'.
2 ‘Climate Change’.’C02 emissions (kt)’

Indicator Indicator P o
Year Dot e
octor - i
co, co, Year - RlvernSong Day of The Moon
ENEMY APPEARS
2010
us Country Country The Silence
(a) Exploring World Bank data using the data (b) To query graph data, the user specifies
cube type provider, users choose values from a path through the data, possibly with
two dimensions to obtain a data series. placeholders to select multiple nodes.

Figure 4.2: Design of type providers for exploring cube and graph data

The dimensions of the worldbank cube are countries, years and indicators. Figure 4.2a il-
lustrates how the provider allows users to slice the data cube - byCountry. 'United States’,
restricts the cube to a plane and 'C02 emissions (kt)' gives a series with years as keys
and emissions as values. Similarly, we could first filter the data by a year or an indicator.

Graph databases store nodes representing entities and relationships between them.
The following example explores a database of Doctor Who characters and episodes. It
retrieves all enemies of the Doctor that appear in the Day of the Moon episode:

1 drwho.Character.Doctor. 'ENEMY OF'.’'[any]’
2 ."APPEARED IN’.'Day of the Moon'’

The query is illustrated in Figure 4.2b. We start from the Doctor node and then follow two
relationships. We use 'ENEMY OF'. ' [any]' to follow links to all enemies of the Doctor
and then specify 'APPEARED IN' to select only enemies that appear in a specific episode.
The members are generated from the data; 'ENEMY OF' and 'APPEARED IN' are labels
of relations and Doctor and 'Day of the Moon' are labels of nodes. The [any] member
defines a placeholder that can be filled with any node with the specified relationships. The
result returned by the provider is a table of properties of all nodes along the specified path,
which can be further queried and visualized.

Unlike the graph and data cube providers, the type provider for tabular data does not
just allow selecting a subset of the data, but it can be used to construct SQL-like queries.
For example, the code constructed in Figure 4.1 filters and sorts the data.

When using the provider, the user specifies a sequence of operations. Members such
as 'filter data' or 'sort data' determine the operation type. Those are followed by
members that specify operation parameters. For example, when filtering data, we first
select the column and then choose a desired value. Unlike SQL, the provider only allows
users to choose from pre-defined filtering conditions, but this is sufficient for constructing
a range of practical queries.

4.2.2 Usability of iterative prompting

To evaluate the usability of iterative prompting, we conducted a user study for which we
recruited 13 participants (5 male, 8 female) from a business team of a research institute
working in non-technical roles (project management, communications). Our primary hy-
pothesis was that non-programmers will be able to use iterative prompting to explore data,

but some aspects of the study were also designed to how users learn to use the mech-
anism and whether knowledge can be transferred between different data sources. The
study methodology and detailed discussion of results can be found in Chapter 10. The key
observations from the study are:

e Can non-programmers explore data with The Gamma? All participants were able to
complete, at least partially, a non-trivial data exploration task and only half of them
required further guidance. A number of participants shared positive comments in
the group interviews. One participant noted that “this is actually pretty simple to
use,” while another felt the system makes coding more accessible: “for somebody
who does not do coding or programming, this does not feel that daunting.”

e How users learn The Gamma? There is some evidence that knowledge can be trans-
ferred between different data sources. In two of the tasks, participants were able to
complete the work after seeing a demo of using another data source. One partici-
pant “found it quite easy to translate what you showed us in the demo to the new
dataset.” Once users understood iterative prompting, they were also able to learn
from just code samples and do not need to see a live demo of using the tool. One
participant noted that “a video would just be this [i.e. a code sample] anyway.”

e How do users understand complex query languages? The tabular type provider uses
a member then to complete the specification of a current operation, for example
when specifying a list of aggregation operations. Two participants initially thought
that then is used to split a command over multiple lines, but rejected the idea af-
ter experimenting. One participant then correctly concluded that it “allows us to
chain together the operations” of the query. While iterative prompting allows users
to start exploring new data sources, the structures exposed by more complex data
sources have their own further design principles that the users need to understand.

o What would make The Gamma easier to use? Three participants struggled to com-
plete a task using the tabular data source because they attempted to use an op-
eration that takes a numerical parameter and thus violates the iterative prompting
principle. Most participants had no difficulty navigating around in text editor and
some participants used the text editor effectively, e.g. leveraging copy-and-paste.
However, two participants struggled with indentation and a syntax error in an unre-
lated command. This could likely be alleviated through better error reporting.

4.3 Al assistants

Iterative prompting can be used as a mechanism for program construction, as illustrated in
the previous section, but it can also be used to guide semi-automatic data wrangling tools.
As discussed above, many systems that aim to simplify data wrangling using Al methods
support only the onetime interaction pattern where the user invokes the tool and gets back
a result that they can manually refine if needed. In the paper included as Chapter 11, we
use iterative prompting as the basis for the Al assistants framework, which is a common
structure for building semi-automatic data wrangling tools that incorporate human feed-
back. When using an Al assistant, the user invokes the assistant on some input data, but
they can then repeatedly use iterative prompting to further constrain the solution.

< C ® 12700.1:8889/lab [OUNS - S

File Edit View Run Kernel Tabs Settings Help

- + *] aiassistants.wrattler X
i / demo / bb15nice
o Name - .
— Web24hr URBAN2 DL24hrmean UL24hrmean Nation Latency24hr
[aiassistants.wrattler
@ D charsuate 276.89845923 Urban 62.0923409144 18.5516852344 Scotland 21.74065093
[dependencies.wrattler 221.37279398 Urban 64.3367390104 18.7095556736 Scotland 17.80145857
O D fluid.wrattler 277.52171591 Urban 357022614216 18.5779498544 Scotland 21.97231497
[scenic.wrattler
output bb14nice = Data diff(dirty: bb14, clean: bb15nice) x

& pon't transform LU
Don't match 'Urban.rural’ and 'URBAN2'
Don't match 'LLU' and 'Nation'
Don't match 'Download.speed..Mbit.s..24.hrs' and 'DL24hrmean’
Don't match 'Upload.speed..Mbit.s.24.hour' and ‘UL24hrmean’
Don't match 'Latency..ms.24.hour' and ‘Latency24hr'
Don't match 'Web.page..ms.24.hour' and 'Web24hr' -

bb14nice

LLU Urban.rural Download.speed Latency Upload.speed Web.page
1 Scotland Urban 46.9844 20.101 3.115 281.602
2 England Urban 45.5636 23.882 14.967 328.972
3 Wales Urban 6.9502 40.412 0.806 973.295
oMo & aiassistants.wrattler

Figure 4.3: Using the datadiff Al assistant inside Wrattler to semi-automatically merge UK Broad-
band quality data from two files, parsed by an earlier R script. The user is in the process of adding
a constraint to correct an error in the automatically inferred column matching.

As illustrated in Figure 4.3, Al assistants are available in the Wrattler notebook system
discussed in Chapter 3. In addition to code cells that obtain, process, and visualize data,
users can create Al assistant cells that invoke a semi-automatic data cleaning tool on some
of the available datasets. After invoking the assistant, users are shown a preview of the
generated clean dataset. If they see an error in the automatically inferred solution, they
can choose one from the offered options to guide the Al tool and correct the error. Iterative
prompting for Al assistants uses a graphical user interface, but the interaction mechanism
of repeatedly choosing one from the offered options remains the same.

4.3.1 Merging data with Datadiff

To give an overview of how Al assistants work, consider the task of merging multiple in-
compatible datasets, using the UK broadband quality data, published by the UK commu-
nications regulator Ofcom.® The regulator collects data annually, but the formats of the
files are inconsistent over the years. The order of columns changes, some columns are
renamed, and new columns are added. We take the 2014 dataset and select six interesting
columns (latency, download and upload speed, time needed to load a sample page, coun-
try, and whether the observation is from an urban or a rural area). We then want to find
corresponding columns in the 2015 dataset.

®Available at: https://www.ofcom.org.uk/research-and-data/data/opendata

https://www.ofcom.org.uk/research-and-data/data/opendata

The 2015 dataset has 66 different columns so finding corresponding columns manually
would be tedious. An alternative is to use the automatic datadiff tool (Sutton et al., 2018),
which matches columns by analyzing the distributions of the data in each column. Datad-
iff generates a list of patches that reconcile the structure of the two datasets. A patch
describes a single data transformation to, for example, reorder columns or recode a cate-
gorical column according to an inferred mapping. Datadiff is available as an R function that
takes two datasets and several hyperparameters that affect the likelihood of the different
types of patches.

When merging Broadband datasets, datadiff correctly matches five out of six columns,
but it incorrectly attempts to match a column representing Local-loop unbundling (LLU) to
a column representing UK countries. This happens because datadiff allows the recoding
of categorical columns, and seeks to match them based on the relative frequencies in the
two columns. Consequently, the inferred transformation includes a patch to recode the
Cable, LLU, and Non-LLU values to Scotland, Wales, and England. To correct this, we could
manually edit the resulting list of patches, or tweak the likelihood of the recode patch. Such
parameter tuning is typical for real-world data wrangling, but finding the values that give
the desired result can be hard.

The semi-automatic datadiff Al assistant presented in this chapter enables the analyst
to guide the inference process by specifying human insights in the form of constraints. The
Al assistant first suggests an initial set of patches with one incorrect mapping. After the
analyst chooses one of the offered constraints, shown in Figure 4.3, datadiff runs again
and presents a new solution that respects the specified constraints until, after two more
simple interactions, it reaches the correct solution.

4.3.2 Formal model of Al assistants

The central contribution presented in Chapter 11 is a formal model of Al assistants that
captures their structure. The chapter uses the standard methodology of theoretical pro-
gramming language research, but applied to a problem from the data engineering research
field. The definition of an Al assistant captures a common structure that semi-automatic
data wrangling tools can follow in order to use iterative prompting as a mechanism for
incorporating human insights into the data wrangling process.

The formal model defines Al assistants as a mathematical entity that consists of several
operations, modeled as mathematical functions between different sets. Every Al assistant
is defined by three operations that work with expressions e, past human interactions H,
input data X, and output data Y. Expressions e can also be thought of as data-cleaning
scripts. Input and output data are typically one or more data tables, often annotated with
meta-data such as column types. While Al assistants share a common structure, the lan-
guage of expressions e that an assistant produces, the notion of human interactions H,
and the notion of X and Y can differ between assistants.

Definition 1 (Al assistant). Given expressions e, input data X, output data Y, and human
interactions H, an Al assistant (Hy, f, best, choices) is a tuple where H, is a set denoting
an empty human interaction and f, best and choices are operations such that:

o fle,X)=Y
o bestx(H)=e
o choicesx(H) = (H1,Hsy, Hs, ..., Hy).

H=H, e* = bestx(H) Y = f(e*, X)

Choose the next H,,Hs,Hs,...,H, Display script = e*
interaction H = H; = choicesx (H) refine preview of Y accept | data = f(e*, X)

Figure 4.4: Flowchart illustrating the interaction between an analyst and an Al assistant. Steps
drawn as rounded rectangles correspond to user interactions with the system.

The operation f transforms an input dataset X into an output dataset Y according
to the expression (data cleaning script) e. The operation best x recommends the best ex-
pression for a given input dataset X, respecting past human interactions H. Finally, the
operation choices x generates a sequence of options H1, Ho, Hs, ..., H, that the analyst
can choose from (e.g. through the user interface illustrated in Figure 4.3). When interact-
ing with an assistant, the selected human interaction H is passed back to best x in order to
refine the recommended expression. Note that the sequence of human interactions given
by choices x may be sorted, starting with the one deemed the most likely. To initialize this
process, the Al assistant defines an empty human interaction Hj,.

The interesting Al logic can be implemented in either the best x operation, the choices x
operation, or both. The f operation is typically straightforward. It merely executes the
inferred cleaning script. Both best x and choices x are parameterized by input data X,
which could be the actual input or a smaller representative subset to make working with
the assistant more efficient.

The working of Al assistants is illustrated in Figure 4.4. When using the assistant, we
start with the empty interaction Hy. We then iterate until the human analyst accepts
the proposed data transformation. In each iteration, we first invoke best x (H) to get the
best expression e* respecting the current human insights captured by H. We then invoke
f(e*, X) to transform the input data X according to e¢* and obtain a transformed output
dataset Y. After seeing a preview of Y, the analyst can either accept or reject the recom-
mended expression e¢*. In the latter case, we generate a list of possible human interactions
Hy, Hy, Hs, ..., Hy, using choicesx (H) and ask the analyst to pick an option H;. We use
this choice as a new human interaction H and call the Al assistant again.

The Definition 1 serves both as a model that can be studied formally, but also as the
basis for an implementation interface of Al assistants. The shared structure makes it possi-
ble to separate the development of individual Al assistants from the development of tools
that use them, such as the Al assistant cell type implemented in Wrattler.

4.3.3 Practical Al assistants

To show that Al assistants provide a common structure for a wide range of semi-automatic
data wrangling tools, the work included as Chapter 11 takes four existing Al-based data
wrangling tools that follow the onetime interaction pattern and turn them into interactive
tools that follow the iterative pattern. The original tools cover the entire spectrum of data
wrangling ranging from parsing of CSV files (van den Burg et al., 2019) and merging data
files (Sutton et al., 2018) to type and semantic information inference (see Chapter 11).
The approach we use for turning a non-interactive Al tool into an interactive Al as-
sistant is similar in all four cases. The non-interactive tools generally define an objective
function Q(e, X) that scores data cleaning scripts (expressions e) based on how well they
clean the specified input data X. The automatic Al tool performs an optimization, looking

for the best data cleaning from the set of all possible expressions E for the given data.
Formally, the optimization task solved by the existing tools can be written as:

arg max..p Q(X, e)

The Al assistants that we implement and formally describe in Chapter 11 adapt this opti-
mization to take account of the human interactions H that have been collected through
the iterative prompting process illustrated in Figure 4.4. For a given human interaction
H (starting with H{)), we define a set of expressions Ey that is filtered to only include
expressions satisfying the condition specified by the user through H. We also define a
parameterized objective function Q) i that is based on the original () but increases or de-
creases the score for certain expressions based on H. Given these two definitions, it is
possible to define the best x (H) operation as solving an optimization problem:

bestx (H) = argmax, e, Qu(X,e)

The four concrete Al assistants that we developed use this definition, but they do not al-
ways use human interactions to tweak both E'y and Q. Itis often sufficient to restrict the
set of expressions used by the search and reuse the original unmodified optimization al-
gorithm. The implementation of the Al assistants (available in Wrattler) generally required
a modification of the underlying non-interactive tool. The modification is tool-specific as
each of the Al assistants is based on a different kind of search algorithm. The four practical
Al assistants presented in Chapter 11 work as follows:

¢ The datadiff Al assistant infers a list of patches that transform the input dataset into
a format matching that of the given reference dataset. The assistant optimizes score
based on the similarity of the data distributions of the matched columns. The semi-
interactive Al assistant allows the user to specify that certain patches (e.g., matching
two particular columns) should or should not be included in the resulting set.

e The CleverCSV Al assistant infers formatting parameters of a CSV file to optimize a
metric based on how regular the resulting parsed result is. The semi-interactive Al
assistant allows the user to specify that a given character should be or should not
be used as a delimiter, a quote, or an escape character.

e The ptype Al assistant infers types of columns in a dataset, detecting outliers and
values representing missing data. The optimization function looks for a type with
maximal likelihood based on a probabilistic model. The semi-interactive Al assistant
allows the user to reject any aspect of the inferred type (type itself, outlier, missing
value), effectively forcing the search to look for the next most likely type.

o The ColNet Al assistant annotates data with semantic information from a knowledge
graph such as DBpedia (Lehmann et al., 2015). It uses a Convolutional Neural Net-
work model to calculate the score that sampled data is of a given semantic type
and then finds the type with the greatest score. The semi-interactive Al assistant
adapts the scoring, allowing the user to specify that a given sample is (or is not) of
a specified semantic type.

In Chapter 11, we evaluate the effectiveness of the four Al assistants both qualitatively
and quantitatively. Our qualitative evaluation uses three scenarios in which the different
earlier data wrangling tools are unable to solve a real-world data wrangling challenge using
the onetime interaction. We document how the user can use iterative prompting to obtain

the desired result, by repeatedly choosing one option from the offered list. To evaluate Al
assistants quantitatively, we developed a benchmark that counts how many human inter-
actions are needed to complete a given data wrangling task for multiple datasets (either
reusing an existing benchmark or synthetically generated). The evaluation shows that 1-2
human interactions are usually sufficient to complete the task.

4.4 Contributions

C/; Key contributions. The publications included in Part IV include three main con-

tributions. They introduce the novel iterative prompting interaction principle.
They use it as the basis of Al assistants, novel semi-automated data wrangling tools,
as well as multiple type providers for accessing data in graph databases, data cubes,
and relational databases.

This chapter brings together two contributions that aim to reduce the gap between pro-
gramming and spreadsheets by making two tasks that typically require some kind of pro-
gramming easier. In the first contribution, | focused on data exploration, whereas the sec-
ond contribution tackles the task of data wrangling. My work shows that, in both cases,
it is possible to solve a large class of problems using the iterative prompting interaction
principle where the user repeatedly chooses one from the offered options. The interac-
tion principle is simple in that it reduces the cognitive load by using the recognition over
recall design heuristic. When using iterative prompting, the users do not need to recall the
kind of operation they could use to solve the problem. Instead, they can review the list of
offered options and recognize the most suitable one.

The work included in Chapter 10 introduces the iterative prompting interaction prin-
ciple and uses it to view the type provider for data querying outlined in Chapter 2 from a
novel perspective using the human-computer interaction research methodology. Rather
than treating auto-completion as a programmer assistance tool, it is now used as a mech-
anism that allows non-programmers to construct entire programs. The key characteristics
of the type provider that make this possible are that it is complete and correct, i.e. it
makes it possible to construct all programs and any program constructed by repeatedly
choosing one of the offered options is correct (even though some may result in empty
data). The user study that | briefly discussed in this chapter shows that iterative prompt-
ing can be used by non-programmers to complete a range of data exploration tasks in a
code-oriented environment. This suggests that it is possible to combine the reproducibility
and transparency of using code with ease of use approaching that of spreadsheets.

The work included in Chapter 11 uses the iterative prompting interaction principle (al-
beit without using the term) to provide human insights to semi-automatic data wrangling
tools that | refer to as Al assistants. The challenge addressed by Al assistants is how to
guide data wrangling tools based on Al techniques. Although such tools can solve many
problems automatically, the complexity of real-world data sets often means that some
human guidance is needed. Iterative prompting provides an easy method through which
humans can provide such guidance. The chapter introduces a formal model of Al assistants
and uses it as the basis for the implementation of four practical tools.

The contributions presented in this chapter link together many of the themes and con-
tributions discussed in earlier chapters. In particular, the notion of type providers was
introduced as a programming tool from the programming language theory perspective
in Chapter 2. This chapter provides an alternative human-centric perspective. The tech-
niques discussed in Chapter 3 make type providers even more usable by providing live
previews during their usage. Finally, the Wrattler notebook system serves as a platform
for integrating many of the experiments discussed in this thesis. For example, it makes it
possible to combine interactive Al assistants with conventional programmatic data explo-
ration using the widely used Python and R languages.

Chapter 5

Data visualization

Data visualization plays a dual role in the data science lifecycle. Quick data visualizations
are needed during data exploration to help data analysts make sense of data, find errors,
and understand how their processing scripts work. However, data visualizations can also be
one of the outcomes of data science projects. In particular, data journalists often analyze
datain order to find interesting insights and share those with their readers. A sophisticated
and illuminating data visualization can be a powerful tool for such storytelling.

Producing a quick data visualization during data exploration is usually easy. In program-
matic environments, it is typically a matter of calling a function with a few parameters to
specify the type of chart one wants to see. However, developing a data visualization that
helps the reader gain insight into a complex problem and critically think about it is typically
a challenging programming task.

As an example, consider the interactive data visualization shown in Figure 5.1, created
using the Compost library discussed below. The visualization is inspired by the New York
Times “You draw it” article series (Aisch et al., 2015). It encourages critical thinking by first
asking the reader to make a guess about the actual data. Only after the reader drags the
bars according to their presuppositions, the chart reveals the actual values.

Expenditure in % of GDP (2015) Expenditure in % of GDP (2015)
Education E Education
General public services E General public services
Social protection E Social protection
Economic affairs E Economic affairs

Show me how | did

(a) The user first has to guess what the values are (here, (b) After clicking a button, actual data is shown
guess how much the UK government spends per category). (together with a marker showing the guess).

Figure 5.1: An interactive data visualization to encourage critical thinking about data created using
the composable Compost data visualization library.

53

The chart is based on a standard bar chart, but there are multiple additional aspects
that make creating such a chart a challenging programming problem:

e The chart combines multiple different visual elements. In addition to the bars them-
selves, it also needs to include the markers (dashed lines) that show the guess.

e The chart uses a custom color scheme, and background to indicate possible areas of
the bar and it greys out the bars for which the user has not yet made a guess.

e The chart is interactive, allowing the user to drag the end of the bar to any location
in the specified range (until the button is clicked).

e Once the button is clicked, a brief animation runs, and the bars move from the
guessed value to the actual value (the marker stays at the original position).

Although numerous charting libraries support some of the above features, creating a
custom data visualization such as the above typically requires using a low-level visualiza-
tion library such as D3 (Bostock et al., 2011), which requires advanced programming skills.

More advanced programming skills are needed if one wants to implement data visual-
izations that support features such as brushing and linking (Buja et al., 1991). The former
allows the user to focus on a particular region of the chart, while the latter connects two
charts and adapts the visualization in the second chart based on the data selection in the
first chart. Implementing linking is particularly challenging because it requires understand-
ing what inputs contributed to the selected data points and then recomputing the data
displayed in the other visualization.

In the following two sections, | provide an overview of two systems that are presented
in Part V. The systems make it easier to create rich interactive visualizations. First, the pa-
per included as Chapter 12 presents Compost, a novel functional data visualization library
that makes it possible to compose rich charts from a small number of primitive building
blocks and combinators. Second, the paper included as Chapter 13 presents a program
analysis technique that can be used to automatically create linked data visualizations based
on the code of scripts that construct charts from shared data. The two systems are aimed
at programmers, but they are simple in that they make it possible to create sophisticated
interactive visualizations using a small amount of straightforward code.

Both of the papers introduced in this chapter use programming language research
methods. Chapter 13 presents the analysis technique formally, using a small model pro-
gramming language, and discusses its properties. Chapter 12 gradually introduces the con-
cepts of the Compost library in the form of a tutorial. Published as a functional pearl (Gib-
bons, 2010), it relies on the tacit assessment of the functional programming community.

5.1 Visualisations to encourage critical thinking

Data visualizations that aim to present data-driven insights to a broader audience often
require significant programming effort. The “You draw it” series by New York Times (Aisch
et al., 2015) lets the user draw on the chart, while the award-winning visualization of pop-
ulation density in Asian cities by Bremer and Ranzijn (2015) tells a story through multiple
animated and interlinked charts. Visualizations like these are often built using D3 (Bostock
et al., 2011), by constructing the chart piece by piece. D3 is easier than drawing pixels or
primitive shapes, but it still requires tediously transforming values to coordinates, specify-
ing positions in pixels, and modifying shape properties in response to events.

400 Figure 5.2: A bar chart that
compares the UK general election
results for years 2017 (left) and

300
2019 (right), created using the
Compost library.

200

100

0
Conservative Labour LibDem SNP Green DUP

Higher-level compositional approaches to chart construction are typically based on the
grammar of graphics (Wilkinson, 1999). In the grammar of graphics, a chart is a mapping
from data to chart elements and their visual attributes. Libraries based on this idea in-
clude ggplot2 (Satyanarayan et al., 2016; Wickham, 2016) and Vega (Wickham, 2010). The
mapping is limited to a number of built-in operations, which works well for common types
of scientific charts, but has a limited generality. For example, in Altair (VanderPlas et al.,
2018), it is possible to link multiple charts by specifying a data transformation that relates
them, but this has to be specified using a limited set of combinators provided (and under-
stood) by the library.

In contrast to systems based on the grammar of graphics, the two systems presented
in this chapter rely on the host programming language to specify the mapping from data
to chart elements. A chart is merely a resulting data type describing the visual elements
using domain-specific primitives. In the two chapters, summarised in the next two sec-
tions, we first define a small, orthogonal set of expressive primitives and then introduce
a program analysis technique that can automatically infer the mapping between source
data and elements of the chart.

5.2 Composable data visualisations

The Compost library, presented in Chapter 12 can be seen as a functional domain-specific
language for describing charts. As is often the case with domain-specific languages, finding
the right primitives is more of an art than science. The Compost library is designed in a
way that gives it a number of desirable properties:

e Concepts such as bar charts, line charts, or charts with aligned axes are all expressed
in terms of more primitive building blocks using a small number of combinators.

¢ The primitives are specified in domain terms. When drawing a line, the value of an
y coordinate is an exchange rate of 1.36 USD/GBP, not 67 pixels from the bottom.

e Common chart types such as bar charts or line charts can be easily captured as high-
level abstractions, but many interesting custom charts can be created as well.

e The approach can easily be integrated with the EIm architecture (Czaplicki, 2016) to
create web-based charts that involve animations or interaction with the user.

0 0.5 10 0.5 10 0.5 1
Conservative Labour LibDem

Figure 5.3: On a continuous scale (above), a position is determined by a number. On a categorical
scale (below), a position is determined by the category and a number between 0 and 1.

5.2.1 Declarative chart descriptions

To illustrate the first two points, consider the chart in Figure 5.2, which compares UK elec-
tion results for the years 2017 and 2019. In the chart, the = axis shows categorical values
representing the political parties such as “Conservative” or “Labour”. The y axis shows
numerical values representing the number of seats won such as 365 MPs. When creating
a chart, most high-level libraries such as Google Charts expect values in domain terms, but
more flexible libraries like D3 expect the user to first explicitly translate such domain val-
ues to pixels. In Compost, the user composes primitive graphical elements such as filled
rectangles, but their position is specified in terms of domain values.

Our design focuses on two-dimensional charts with = and y axes. Values mapped
to those axes can be either categorical (e.g. political parties, countries) or continuous
(e.g. number of votes, exchange rates). The mapping from categorical and continuous
values to positions on the chart, as well as the range of values associated with a scale,
are calculated automatically. Figure 5.3 illustrates the two kinds of values. A continuous
value, written as cont n contains any number n. A categorical value cat ¢, r consists of a
categorical value ¢ and a number r between 0 and 1. The second parameter determines
an exact position in the range allocated for the categorical value such as “Green”.

Assuming we have a list elections which contains 5-element tuples with the party
name, colours for 2017 and 2019 and the number of MPs for 2017 and 2019, we can con-
struct the chart in Figure 5.2 as follow (using F# or similar language with list comprehen-
sions):

1 axis; (axisp (overlay [

2 for party, cl7, cl19, mpl7, mpl9 in elections —

3 padding @, 10, @, 10, overlay [

4 fill clx17, [

5 (cat party, @), (cont @); (cat party, @), (cont mpl7),

6 (cat party, 0.5), (cont mpl7),; (cat party, 0.5), (cont @) 1,
7 fill clxr19, [

8 (cat party, 0.5), (cont @); (cat party, ©0.5), (cont mpl9);
9 (cat party, 1), (cont mpl9),; (cat party, 1), (cont @)]

10]

n 1))

The central part of the code (lines 4-6 and 7-9) constructs two filled rectangles (bars) rep-
resenting the number of MPs for 2017 and 2019, respectively. Each rectangle is specified
by four corners (separated using “;”). The y axis is continuous and the rectangle occupies
space from O to the specified number. The x axis is categorical. The first bar takes the first

half of the space available for the party (0 to 0.5) while the second occupies the second

half (0.5 to 1). We then compose the two rectangles using overlay, which ensures they
are rendered on a shared scale. The padding primitive adds a space around a given shape
(specified in pixels). We generate a pair of rectangles for each party using a list compre-
hension and then overlay all the rectangles before adding axes on the left and bottom.

In addition to the primitives illustrated by the above example, Compost has a number
of other basic shapes (lines, text, bubbles). Perhaps more interestingly, there are also a
couple of combinators that make it possible to combine charts or create charts that share
axes. The nest combinator, explained in Chapter 12, takes a shape (with its own scales) and
nests it inside an explicitly specified range. We can, for example, take a space defined by
a categorical value (from cat ¢, 0 to cat ¢, 1) and nest another shape, or even a line chart,
inside this space. In practice, this is useful for combining multiple charts. The combinator
can also apply to one axis only, making it possible to create two charts that are side-by-side
on one axis but share the other axis.

5.2.2 Rendering a Compost chart

The rendering logic of Compost takes a declarative chart description such as the one gen-
erated by the simple functional program above and transforms it to an SVG in three steps:

o Inferring the scales of a shape. The implementation first recursively walks over the
composed shape and infers the ranges of the = and y scales of the shape. For shapes
constructed using overlay, this unions the ranges of the scales of the contained
shapes. In the case of continuous scale, we take the overall minimum and maximum.
For a categorical scale, the sets of categories obtained for each shape are unioned.

e Projecting coordinates. Once the chart is annotated with the inferred scales, we turn
all positions from values defined in domain terms to values specified in pixels. This
is done using a projection function that takes a scale, a space it should be mapped
onto (in pixels) and a value on the scale. The results are x and y coordinates in pixels.

e Rendering chart shapes. Finally, the recursively defined shape is turned into a flat
list of shapes in the SVG format. This involves collecting and concatenating all the
primitive shapes, lines, and text elements.

The implementation of the core logic consists of only 800 lines of code. Although
the process is conceptually simple, there are a number of subtle details. In particular,
operations that specify some parameters in pixels (such as padding) have to transform the
projection operation so that the resulting shapes only occupy a space without the specified
padding. Nesting also requires keeping track of the outer range and the inner scale. It is
also worth noting that some operations, such as axis that add an axis with labels, can be
eliminated at some point in the process. In particular, axis is replaced by overlaid lines
and text elements in the first step.

5.2.3 Functional abstraction and interactivity

As noted earlier, Compost differs from libraries based on the grammar of graphics such as
ggplot2 (Wickham, 2016) that treat a chart as as a mapping from data to chart elements
and their visual attributes. In Compost, a chart is a concrete description of chart elements,
generated from data by code written in an ordinary programming language. | illustrated

this above with the code that generated a bar chart using list comprehensions. This means
that Compost can leverage other capabilities of the host language and its ecosystem.

First, itis possible to easily introduce new higher-level chart abstractions. For example,
the chart shown in Figure 5.2 is sometimes referred to as Dual X-axis Bar Chart. Some high-
level libraries such as Google Charts support this directly. We saw that the chart can be
constructed using Compost, but in a somewhat tedious way. However, in a host language
that lets us define new functions like F#, we can introduce a new abstraction for this kind of
chart. The following merely extracts the rectangle construction from the previous example
into a function dualXxBar:

1 let dualXBar xcat clrl clr2 yvall yval2 = overlay [

2 fill clxl, [(cat xcat, @), (cont @); (cat xcat, @), (cont yvall);

3 (cat xcat, ©.5), (cont yvall); (cat xcat, ©.5), (cont Q) 1],

4 fill clr2, [(cat xcat, ©.5), (cont @); (cat xcat, ©.5), (cont yval2);
5 (cat xcat, 1), (cont yval2); (cat xcat, 1), (cont @)]

6 1

We can now use the function inside a list comprehension to construct the original chart in
just three lines of code:

1 axis; (axisp (overlay [
2 for party, cl7, cl19, mpl7, mpl9 in elections —
3 dualXBar party cl7 c19 mpl7 mpl9 1))

One last interesting aspect of the Compost library that is discussed in Chapter 12 is the
support for interactivity. The library can be used in conjunction with the EIm (model-view-
update) architecture (Czaplicki, 2016) where the programmer defines the program state
and events. They then provide a function that renders a chart based on the current state.
They also specify a function that updates the state when an event occurs. For example, in
the earlier interactive chart in Figure 5.1, one event is clicking on a bar, which then updates
the guessed value. Compost makes programming such charts easier by reporting events
in terms of domain values (using a backward projection). When the user clicks on a bar,
the event handler receives a pair of values such as cat “Health”, 0.3 and cont 12.7. It then
updates the guessed value for the category Health to the new value 12.7% GDP.

5.3 Automatic linking for data visualizations

The Compost library makes it possible to compose an appealing data visualization from
individual graphical elements. This is necessary if we want to create rich interactive charts.
However a single chart that offers a single perspective is not enough if we want to explain
complex data. To support better understanding, linked visualisations (Buja et al., 1991)
consist of multiple charts that display different aspects of the same data. When the user
selects an element in one of the charts, the elements that are based on related data as the
selected one are highlighted in the other charts. This makes it possible to relate different
perspectives on the same data.

For example, consider the visualization in Figure 5.4 that displays data on energy pro-
duction over time for different countries and different types of energy. A single chart with
three variables would be difficult to read, so the visualization instead filters and aggregates
the data in two ways. It shows data per country for the year 2015 and the ratio of energy

300 4
250 ~
200 -
150 4
100

50

) 2.0+
196.7 what data do | need? what needs this data?
year country energyType output
k 2015 USA Bio 16.7 104
2015 USA Hydro 80
2015 USA Solar 26
' ' ! ‘ 2015 USA Wind 74 0.0 T T T T 1
China USA Germany 2013 2014 2015 2016 2017 2018

Figure 5.4: Linked data visualization of energy production, showing aggregated data per country for
2015 (left) and timeline with the ratio of production in the USA and China per energy type (right).

produced in the USA and China over time for each type of energy. The user can select a
particular data point (bar on the left, point on the right). If they select the bar representing
the USA, the system infers which input data contributed to the value (data for all types of
energy for the USA in 2015) and computes what chart elements depend on this data in the
second chart (data points for 2015). Selecting Germany would not highlight any points as
the right chart depends only on data points for China and the USA.

Constructing linked visualization like the one in Figure 5.4 is difficult because the data
visualization needs to understand how to map selection between the charts. This can be
done automatically for simple data transformations in libraries based on the grammar of
graphics such as Altair (VanderPlas et al., 2018). In those, simple data transformations
can be expressed using primitives provided by the library. However, the approach does
not work if the data transformation is more complex or if the user prefers to express it
in an ordinary programming language (as ordinary list processing) as opposed to using a
special-purpose domain-specific language (grammar of graphics primitives).

In Chapter 13, we use dynamic dependency analysis techniques to simplify the creation
of linked data visualizations. Those techniques have traditionally been used in areas such
as information-flow security, optimization, and debugging. In our work, we extend the
techniques so that they can provide fine-grained dependency information for programs
constructing structured outputs, such as the data structures used to describe charts in
the Compost data visualization library. We introduce a simple functional programming
language Fluid that the users can use to write arbitrary data transformations and construct
charts. By combining two dynamic dependency analyses, we can then automatically infer
the relationships between multiple charts constructed from the same data.

5.3.1 Creating linked visualizations using Fluid

Consider again the visualization shown in Figure 5.4. The two charts are based on the same
input data, which is a collection of records storing the country, energy type, year, and the
amount produced. To produce the chart on the left, we filter the data by year and then
sum the produced energy for each of the countries. In Fluid, this is written as a simple
functional program using list comprehensions:

1 let data2015 =

2 [row | row < data, row.year == 2015]

3 let totalFor c =

4 sum [row.output | row < data20l1l5, row.country == c]
5 1let countryData =

Bio
Hydro
Solar
Wind

6 [{ x: c, y: totalFor c } | c < ["China", "USA", "Germany"] 1]
7 BarChart { data: countryData }

The code is similar to what one would write in widely-used functional languages such as
F# or Haskell. It defines filtered data2015, a helper function totalFor and then computes
data per country using the helper before constructing the resulting chart. The last step
uses a built-in BarChart function. As discussed earlier, this could be implemented as an
abstraction over more basic Compost primitives.

The program analysis automatically infers what values from the source data contribute
to the resulting y value, computed using the totalFor function. The relevant rows are
only those for the year 2015 (due to the filtering) and only those for the given country
(due to the totalFor implementation). It is worth noting that unlike approaches based
on the grammar of graphics, we are not restricted to a set of pre-defined primitives. The
data transformation can be arbitrary and we can write it using custom functions such as
totalFor.

The code to construct the second chart is slightly more complicated because it con-
structs a line chart with multiple lines. It defines series helper to obtain a time series for
a given country and energy type, plot helper that calculates the ratio between the USA
and China for a given energy type and then composes the chart:

1 let series type country =

2 [{ x: year, y: row.output } | year < [2013..2018], row < data,

3 row.year == year, row.energyType == type, row.country == country]
4 let plot type =

5 zipWith (fun pl p2 — { x: pl.x, y: pl.y / p2.y })

6 (series type "USA") (series type "China")

7 LineChart { plots: [

8 LinePlot { name: type, data: plot type }

9 | type < ["Bio", "Hydro", "Solar", "Wind"] 1 }

The example illustrates two requirements that we have for dynamic dependency analyses
that let us automatically generate linked data visualizations. First, we are not interested
in the resources (code and data) needed to produce the entire result, but only in the re-
sources needed to produce a part of the result. Specifically, if the user clicks on a data
point of the line chart, we want to know what resources contributed to the data field of
a specific record in the list passed to one particular LinePlot. In the analyses, we address
this by introducing the concept of a selection for structured values, which lets us mark
a particular part of the value. (We use this mechanism for analyzing charts, but it could
equally be used to analyze code that produces e.g., representations of documents.)
Second, we need multiple different kinds of dependency analyses to automatically link
the charts. If the user selects a part of one chart, we need a backward analysis to trace it
back to the original data. This analysis needs to determine parts of the input that were
needed for the output, even if they were also used elsewhere (an alternative analysis
would look for inputs needed only for the particular output). Then we need a forward
analysis to determine what outputs it affects in the linked chart. This, again, needs to de-
termine parts of the output that needed the specific parts of the input, even if they also
needed other unmarked inputs (an alternative analysis would look for outputs that only
needed the particular inputs). As we will see, this analysis leads to four different program
analyses. We use two of them to automatically generate linked data visualizations.

5.3.2 Language-based foundation for explainable charts

The program analyses introduced in Chapter 13 can be, more broadly, seen as tools that
help us understand how programs work. They could be used to support a range of use
cases outside of the narrow domain of data visualization. However, to keep the presenta-
tion simpler, | will focus on this particular use case. Given the scope of the Fluid language
and the considerable number of analyses, | do not discuss many details in this overview
and focus on sketching the overall structure of the analyses and their key properties.

The analyses are built around the central notion of a program trace 7T'. The traces are
generated during program evaluation and they collect information about how the eval-
uation proceeded. More formally, a trace is a compact representation of the derivation
trees in the operational semantics. Given a program e and a variable environment p, the
following judgment states that the program reduces to a value v, producing a trace T

T:pe=v

The program analyses operate on values where some parts are marked as selected. For
example, if a program e produces a value v that represents a chart using the primitives
of the Compost library, we can mark some parts of the resulting chart, for example, a bar
created using the fill primitive.

Formally, we annotate values and terms with selection states a from a bounded lattice
of selections A. It is possible to annotate primitive values such as numbers n,, or empty
lists [1,, but also values that contain further values such as a non-empty list (a cons cell)
such as v7 ;4 v2. This would indicate that we are interested in data that determined that the
list will be non-empty (but not the specific values it contains). In practice, the most useful
kind of annotation is a two-point lattice (selected, non-selected), but the generality allows
for other uses, such as a vector of selections (to be computed in one step and displayed
using different colors).

5.3.3 Bidirectional dependency analyses

The program analyses that are introduced in Chapter 13 are defined for a fixed computa-
tionT :: p,e = v where T is the trace. In practice, the system evaluates the expression
e and uses the resulting trace T repeatedly for different analyses and with multiple pos-
sible selections. The first two analyses that we define are the backward and forward data
dependency analyses written as Xy, and 7 ., respectively. The two analyses are defined
over the trace T" and take the availability-annotated variable context and an expression p, e
as inputs. They produce an annotated value v, which is the same as the value computed
initially, but with availability annotations. Their intuitive meaning is as follows:

e Forward data dependency p,e,a Xy, v or “what only needs me”. Given a context
and expression where annotations indicate what resources (data and parts of the
program) are available, the analysis produces a value with annotations indicating
what part of the value can be computed using only the available resources.

e Backward data dependency p, e, 7, v or “what do | need”. Given an annotated
value v, the analysis follows the evaluation backward (using the trace T') and anno-
tates resources (data and parts of the program) that have to be available in order to
produce the annotated parts of the value v.

The two analyses form a Galois connection, i.e., the two analyses are not exactly in-
verses, because they approximate in some ways, but they are close. For example, if we
have a value with a selection v, ask what is needed for the selection using 7 ;. and then
ask what can be computed using the same data using X, we may find that other parts of
the value can also be computed, but the original selection will certainly also be included.

Interestingly, the forward and backward data dependency analyses are not sufficient
to support linked data visualizations. The backward analysis can correctly determine what
parts of the input are needed in order to produce the selected output. However, to high-
light the related elements of the other chart, we do not need to know what the input
selection is sufficient for, but what it is necessary for. In other words, we do not need to
know what can be computed using only the selected parts of the input, but what part of
the result will they certainly contribute to. This can be formulated as a dual of the original
analyses. What would we not be able to compute if the selected data were unavailable?

In the paper included as Chapter 13, we define this duality formally and exploit it to
define De Morgan dual (X.°, 7 .°) of the Galois connection (7 ., X.), which itself also
forms a Galois connection. The intuitive meaning of the new analyses is as follows:

e Dual forward data dependency p,e,a X\.° v or “what needs me”. For an anno-
tated context and expression (resources), the analysis highlights what parts of the
resulting value depend on the specified resources, i.e., what would we not be able
to compute if the selected parts of the value were unavailable.

o

e Dual backward data dependency p,e,ac 7 ..° v “what do only | need”. Given an
annotated value, the analysis highlights parts of the program and data that are only
needed for producing the selected output, i.e., resources that would not be needed
if the selected part of the output was not needed.

In order to construct a linked data visualization, we need to combine two of the data
analyses. When the user selects a part of one chart, we annotate the relevant part of the
structured value that represents the chart with a selection « € A that marks the part.
We then use the backward data dependency analysis 4 . to compute what resources are
needed for producing the output. To mark corresponding parts of another chart, we then
use the dual forward dependency analysis X.°. This marks parts of the other chart that
depend on the resources needed for the first chart.

5.4 Contributions

C; Key contributions. The publications included in Part V include two main contri-

butions. They introduce a composable data visualization library based on novel
functional design and a dynamic program analysis technique that enables easy con-
struction of linked data visualizations.

In this chapter, | provided an overview of the contributions to data visualization included
in Part V. The focus of this work has been on simplifying the construction of rich interactive
charts that assist the viewer gain deeper insight into the presented data. While producing
simple charts is often easy, building a visualization that combines custom visual elements,
interactivity and allows linking multiple charts requires advanced programming skills. Un-
like with the work outlined in Chapter 4, | do not hope that the work presented here will

allow non-programmers to create rich interactive data visualizations. However, Compost
and Fluid show that programming data visualisations that encourage critical thinking about
data can be significantly easier than using systems that are widely used today.

The two contributions presented in this chapter also serve as a good justification for
using programming language research methods in the context of tools for data science. In
particular, the work included as Chapter 12 relies on the minimalist design of highly com-
posable functional (domain-specific) languages. It presents the Compost charting library,
which lets programmers compose charts by combining a small number of primitives (such
as a filled shape or a text) using a small number of combinators (overlaying, nesting of
scales). The library is simple to use mainly due to the fact that all positions are specified
in terms of domain units on a continuous numerical scale or a categorical scale (with O to
1range for each category).

The work included as Chapter 13 uses dynamic program analysis techniques to auto-
matically create linked data visualization where the user can explore relationships between
data in multiple charts. The system works by analyzing the program that is used to con-
struct the chart from source data (by filtering and aggregating it in various ways). When
the user clicks on an element of a chart, the system uses two different dynamic depen-
dency analysis techniques to highlight elements of other charts that depend on the same
data as the element selected by the user. The Chapter 13 uses methods of programming
language theory to describe the mechanism. We formalize the programming language,
define two analyses, derive their duals, and describe their formal properties.

Although the prototype implementation of the two systems is not currently integrated,
the two contributions presented in this chapter are closely related. In particular, the pro-
gram analysis techniques developed for Fluid would combine well with a composable data
visualization library like Compost.

In this chapter, | also completed one loop of the data science lifecycle illustrated in
Figure 1.4. The loop started with data acquisition using type providers, continued with
data cleaning and exploring using novel notebook systems and iterative prompting and
now concludes with data visualization. This is the last step in an exploratory phase of the
data science lifecycle where the aim is to understand and explain interesting aspects of
data. An illuminating data visualization that conveys interesting insights found in data is
often the end goal of the process. The production phase that aims to turn the result of the
data analysis into a running component of a larger system is perhaps equally interesting
but is out of scope for this thesis.

Part Il

Publications: Type providers

64

Chapter 6

Types from data: Making structured data first-class
citizens in F#

Tomas Petricek, Gustavo Guerra, and Don Syme. 2016. Types from data: making struc-
tured data first-class citizens in F#. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA,
USA, June 13-17, 2016, Chandra Krintz and Emery D. Berger (Eds.). ACM, 477-490. https:
//doi.org/10.1145/2908080.2908115

65

https://doi.org/10.1145/2908080.2908115
https://doi.org/10.1145/2908080.2908115

Chapter 7

Data exploration through dot-driven development

Tomas Petricek. 2017. Data Exploration through Dot-driven Development. In 31st European
Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona,
Spain (LIPIcs, Vol. 74), Peter Miiller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
21:1-21:27. https://doi.org/10.4230/LIPICS.ECOOP.2017.21

66

https://doi.org/10.4230/LIPICS.ECOOP.2017.21

Part Il

Publications: Data infrastructure

67

Chapter 8

Foundations of a live data exploration environment

Tomas Petricek. 2020. Foundations of a live data exploration environment. Art Sci. Eng.
Program. 4, 3 (2020), 8. https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2020/4/8

68

https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2020/4/8

Chapter 9

Wrattler: Reproducible, live and polyglot notebooks

Tomas Petricek, James Geddes, and Charles Sutton. 2018. Wrattler: Reproducible, live and
polyglot notebooks. In 10th USENIX Workshop on the Theory and Practice of Provenance,
TaPP 2018, London, UK, July 11-12, 2018, Melanie Herschel (Ed.). USENIX Association.

69

Part IV

Publications: Iterative prompting

70

Chapter 10

The Gamma: Programmatic data exploration for
non-programmers

Tomas Petricek. 2022. The Gamma: Programmatic Data Exploration for Non-programmers.
In 2022 IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2022,
Rome, Italy, September 12-16, 2022, Paolo Bottoni, Gennaro Costagliola, Michelle Brach-
man, and Mark Minas (Eds.). IEEE, 1-7. https://doi.org/10.1109/VL/HCC53370.2022.9833134

71

https://doi.org/10.1109/VL/HCC53370.2022.9833134

Chapter 11

Al Assistants: A framework for semi-automated data
wrangling

Tomas Petricek, Gerrit J. J. van den Burg, Alfredo Nazabal, Taha Ceritli, Ernesto Jiménez-
Ruiz, and Christopher K. I. Williams. 2023. Al Assistants: A Framework for Semi-Automated
Data Wrangling. IEEE Trans. Knowl. Data Eng. 35, 9 (2023), 9295-9306. https://doi.org/10.
1109/TKDE.2022.3222538

72

https://doi.org/10.1109/TKDE.2022.3222538
https://doi.org/10.1109/TKDE.2022.3222538

Part V

Publications: Data visualization

73

Chapter 12

Composable data visualisations

Tomas Petricek. 2021. Composable data visualizations. J. Funct. Program. 31 (2021), e13.
https://doi.org/10.1017/S0956796821000046

74

https://doi.org/10.1017/S0956796821000046

Chapter 13

Linked visualizations via Galois dependencies

Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang. 2022. Linked visualisations
via Galois dependencies. Proc. ACM Program. Lang. 6, POPL (2022), 1-29. https://doi.org/
10.1145/3498668

75

https://doi.org/10.1145/3498668
https://doi.org/10.1145/3498668

Part VI

Conclusions

76

Chapter 14

Contributions and outlook

The work presented in this thesis is the result of my long-term effort to rethink data sci-
ence tooling from the perspective of programming languages research. The research has
been undertaken at multiple institutions (Microsoft Research, The Alan Turning Institute,
University of Kent) and involved collaboration with a number of co-authors.

The work presented in this thesis is not merely theoretical. An important contribution
of this thesis is a practical implementation of the presented programming systems, lan-
guages and libraries. The resulting software packages have been made available as open-
source. Some were developed by a larger team of collaborators, while others later received
valuable contributions from the broader community. In some cases, industry adopters fur-
ther developed the project and became maintainers of the tool.

This chapter briefly reviews my own contributions to the papers included in this thesis,
as well as my role in the resulting open-source projects. | will then reflect on the new
perspective on programming and data science tooling that emerges from the work, as well
as future research directions inspired by the presented work.

141 Contributions to included publications

The publications selected for this thesis focus on an independent research direction that |
have been pursuing after completing my PhD. | often developed the initial idea or a proto-
type, but many papers were the result of a broader collaboration or an attempt to integrate
the idea with the work of my colleagues and collaborators.

e Chapter 6 (Petricek et al., 2016) - | developed the initial version of the library, de-
veloped the formal model, and wrote most of the paper. Gustavo Guerra signifi-
cantly improved the initial implementation. Don Syme first developed the CSV type
provider, assisted with the formalization, and provided the problem framing.

e Chapter 7 (Petricek, 2017) - | am the sole author of the paper, but some aspects of
the work have benefited from discussion with Don Syme.

e Chapter 8 (Petricek, 2020) - | am the sole author of the paper, but the work has
benefited from discussions with Dominic Orchard, Stephen Kell, Roly Perera and
Jonathan Edwards and detailed feedback from Dominic Orchard.

e Chapter 9 (Petricek et al., 2018) - | developed the prototype implementation of the
presented system and wrote most of the paper. Charles Sutton provided inspiration
for work on provenance and James Geddes shaped the system design.

77

e Chapter 10 (Petricek, 2022) - | am the sole author, but valuable implementation
work, adjacent to the paper, has been done by May Yong and Nour Boulahcen.

e Chapter 11(Petricek et al., 2023) - The work on individual Al assistants has been done
by the first five authors. | proposed the initial formal model and system architecture
and led paper writing jointly with Christopher Williams.

e Chapter 12 (Petricek, 2021) | am the sole author of the paper, but the earliest form
of the idea was born in discussion with Mathias Brandewinder.

e Chapter 13 (Perera et al., 2022) - The work was led by Roly Perera, Minh Nguyen
contributed to implementation and formalization and Meng Wang to paper writing.
I was involved in the original conceptual development with Roly Perera and writing.

14.2 Open-source software contributions

The ideas discussed in the earlier parts of the thesis have been implemented in several
open-source software packages that are available under the permissive Apache 2.0 (F#
Data) and MIT (all other projects) licenses.

e F# Data (https://github.com/fsprojects/FSharp.Data) has became a widely-used F# li-
brary for data access. It implements utilities, parsers, and type providers for working
with structured data in multiple formats (XML, JSON, HTML, and CSV). | developed
the initial version of the library and later described it in the paper included as Chap-
ter 6. The library has since attracted over 100 industry contributors and further
development has been led by industry maintainers including Gustavo Guerra, Colin
Bull, Chet Husk, Taylor Wood, Steffen Forkmann, Don Syme and others.

e The Gamma (https://github.com/the-gamma) is a simple data exploration environ-
ment for non-programmers such as data journalists. It implements the iterative
prompting mechanism for data access (Chapters 10 and 7) and live preview mecha-
nism (Chapter 8). | created most of the implementation. May Yong, Nour Boulahcen,
and Tom Knowles implemented support for further data sources and worked on case
studies using the system. Live demos using the environment in a web browser can
be found at https://thegamma.net and https://turing.thegamma.net.

o Wrattler (https://github.com/wrattler) is an experimental notebook system described
in Chapter 9 that tracks dependencies between cells, makes it possible to combine
multiple languages in a single notebook and hosts Al assistants for data wrangling
described in Chapter 11. | created the initial prototype and oversaw later develop-
ment done mainly by May Yong and Nick Barlow with contributions from Roly Perera,
Camila Rangel Smith, Gertjan van den Burg, and others. More information can be
found at http://www.wrattler.org.

e Compost.js (https://github.com/compostjs) is a composable library for creating data
visualizations described in Chapter 12. Although the library is implemented in the F#
language, it is compiled to JavaScript and provides a convenient interface for Java-
Script users. | am currently the sole developer of the library, although it also served
as a design inspiration for some aspects of Fluid (below). A range of demos illustrat-
ing the use of the library can be found online at https://compostjs.github.io.

https://github.com/fsprojects/FSharp.Data
https://github.com/the-gamma
https://thegamma.net
https://turing.thegamma.net
https://github.com/wrattler
http://www.wrattler.org
https://github.com/compostjs
https://compostjs.github.io

e Fluid (https://github.com/explorable-viz/fluid) is a programming language for building
linked data visualizations described in Chapter 13. The project has since been de-
veloped into a general-purpose language for transparent, self-explanatory research
outputs by the Institute of Computing for Climate Science, University of Cambridge.
The development has been led by Roly Perera with recent contributions from Joseph
Bond and Achintya Rao. | participated in the project in an advisory role and collab-
orated on some of the research behind the implementation. A live example can be
found at https://f.luid.org.

14.3 New look at data exploration

From a narrow technical perspective, the work presented in this thesis may seen as an as-
sorted list of contributions to a wide range of research areas including type systems, pro-
gramming languages, provenance tracking, interactive programming environments, data
wrangling, data visualization, and program analysis. But looking at the work from this per-
spective would be missing the forest for the trees. Collecting the individual contributions
in a single body of work reveals two unifying themes behind the research.

The first unifying theme is the broader motivation. If society is to benefit from the in-
creasing availability of open data and data processing capabilities, we must make working
with data accessible to a broader audience. Experts who are not trained as programmers
need to be able to gain valuable insights from data. They also need to be able to do so
in ways that support transparency and openness and encourage critical engagement with
data. Unlike in much programming languages research where the typical user is a profes-
sional programmer, the typical user for much of the work presented in this thesis has been
a data journalist, who is exploring an interesting dataset in order to share relevant insights
with the broader public.

The above motivation justifies a number of technical choices made in the presented
work. I typically tried to make some aspect of programming simpler, reduce the complexity
of programming or design, and develop tools that will assist with the task. The focus made
it possible to restrict problems in ways that would, in other contexts, seem too constrained.
Examples include the data exploration calculus, which does not let users introduce custom
abstractions, and the iterative prompting mechanism, which restricts aggregations in a
query to a fixed set of pre-defined operations. | believe in the value of restrictions like
these. A programming language research is as much a designer as a scientist and designers
“tend to (...) seek, or impose a ‘primary generator’ (...) which both defines the limits of
the problem and suggests the nature of its possible solution” (Cross, 2007). The focus on
simple tools for users like data journalists has been such ‘primary generator’ for some of
the research presented in this work.

The second unifying theme of this thesis is methodological. The contributions pre-
sented here generally approach a problem related to working with data through the per-
spective of programming languages and systems research. | do not claim to be the first
or the only one to view data science tooling from this perspective, but my work shows
that the perspective can be fruitful for tackling problems across the entire data science
lifecycle. In other words, | strongly believe there is a strong mutually beneficial relation-
ship between programming languages and systems research and data science tooling. On
the one hand, methods from programming languages and systems research can be used

https://github.com/explorable-viz/fluid
https://f.luid.org

to build new powerful data science tools. On the other hand, data science tools provide
interesting challenges and design constraints that force us to rethink established assump-
tions in programming language research and can inspire new techniques and approaches.
| also believe there is more to be done in the space explored by this thesis, both in terms of
building simpler and more open data science tools and in terms of advancing programming
language and systems research.

Despite the recent developments in large language models (LLMs), | believe that the
direction outlined in this thesis is still the right one. In many of the systems presented
in this thesis, my aim has been to make the code of a data analysis or data visualization
as simple as possible, possibly to the point where a non-programmer would be able to
read and understand it. With the rise of LLMs, the ability to review and understand code
is becoming even more important. If we are faced with a data processing task and use a
100-line script generated by an LLM, it may be difficult to gain confidence in the results.
But if we use a 10-line script in a language like The Gamma that has been generated with
the assistance of an LLM, as recently explored by Fromm (2024), and if the step-by-step
execution of the program can be inspected through live previews, gaining the confidence
in the results may be much easier.

14.4 Towards programming systems research

Looking at the problem of data exploration from the perspective of programming lan-
guages is beneficial in both directions. On the one hand, the programming languages per-
spective lets us see the problem in new ways and develop new, simple, practical, and more
principled tools for data exploration. This has been the subject of the present thesis. On
the other hand, a close look at how data scientists interact with programming tools also
forces us to rethink how we conceptualize programming languages. We need to think less
about programming languages and more about interactive and stateful programming sys-
tems. | started exploring this perspective in recent joint work with Jakubovic et al. (2023).

When working with data, data scientists often interleave writing of code, running it,
and manual tweaking of data and script parameters. If we look merely at the program-
ming languages they use, the work may seem uninteresting. But if we look at the rich
interactions between the current state, scripts that data scientists are tweaking and what
they see on the screen, we can see that data exploration is a remarkably interesting kind
of programming practice. We should thus see programming more as an interaction with
a stateful and interactive system than as the process of writing of textual code. To study
programming from this perspective, we will need new formal models, that can account
for the interactivity lacking from conventional programming language theories, as well as
new research methodologies, which make it possible to contrast and evaluate different
kind of interactions with the programming system. Data science can provide a convenient
and familiar testbed for exploring this new perspective on programming.

Bibliography

Martin Abadi and Luca Cardelli. 2012. A theory of objects. Springer Science & Business.

Gregor Aisch, Amanda Cox, and Kevin Quealy. 2015. You draw it: How family income pre-
dicts children’s college chances. https://www.nytimes.com/interactive/2015/05/28/upshot/
you-draw-it-how-family-income-affects-childrens-college-chances.html New York Times.

Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher, and Steve
Mock. 2004. Kepler: an extensible system for design and execution of scientific work-
flows. In Scientific and Statistical Database Management. |IEEE, 423-424.

Judie Attard, Fabrizio Orlandi, Simon Scerri, and S6ren Auer. 2015. A systematic review
of open government data initiatives. Government Information Quarterly 32, 4 (2015),
399-418. https://doi.org/10.1016/}.9iq.2015.07.006

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3 data-driven documents.
IEEE Transactions on visualization and computer graphics 17,12 (2011), 2301-2309.

Liliana Bounegru and Jonathan Gray. 2021. The Data Journalism Handbook: Towards a
Critical Data Practice. Amsterdam University Press.

Nadieh Bremer and Marlieke Ranzijn. 2015. Urbanization in East Asia between 2000 and
2010. http://nbremer.github.io/urbanization/

A. Buja, J. A. McDonald, J. Michalak, and W. Stuetzle. 1991. Interactive data visualization
using focusing and linking. In Proceedings of Visualization '91. 156-163. https://doi.org/
10.1109/VISUAL.1991.175794

Sarah E. Chasins, Elena L. Glassman, and Joshua Sunshine. 2021. PL and HCI: better to-
gether. Commun. ACM 64, 8 (jul 2021), 98-106. https://doi.org/10.1145/3469279

Nigel Cross. 2007. Designerly ways of knowing. Birkhauser Verlag Gmbh, Basel.

Evan Czaplicki. 2016. A Farewell to FRP: Making signals unnecessary with The EIm Archi-
tecture. https://elm-lang.org/news/farewell-to-frp

William Davies. 2017. How statistics lost their power-and why we should fear what comes
next. The Guardian (19 January 2017). https://www.theguardian.com/politics/2017/jan/19/
crisis-of-statistics-big-data-democracy

Jonathan Edwards. 2015. Transcript: End-User Programming Of Social Apps. https://www.
youtube.com/watch?v=XBpwysZtkkQ YOW! 2015.

81

https://www.nytimes.com/interactive/2015/05/28/upshot/you-draw-it-how-family-income-affects-childrens-college-chances.html
https://www.nytimes.com/interactive/2015/05/28/upshot/you-draw-it-how-family-income-affects-childrens-college-chances.html
https://doi.org/10.1016/j.giq.2015.07.006
http://nbremer.github.io/urbanization/
https://doi.org/10.1109/VISUAL.1991.175794
https://doi.org/10.1109/VISUAL.1991.175794
https://doi.org/10.1145/3469279
https://elm-lang.org/news/farewell-to-frp
https://www.theguardian.com/politics/2017/jan/19/crisis-of-statistics-big-data-democracy
https://www.theguardian.com/politics/2017/jan/19/crisis-of-statistics-big-data-democracy
https://www.youtube.com/watch?v=XBpwysZtkkQ
https://www.youtube.com/watch?v=XBpwysZtkkQ

Jonathan Edwards and Tomas Petricek. 2021. Typed Image-based Programming with Struc-
ture Editing. CoRR abs/2110.08993 (2021). arXiv:2110.08993 https://arxiv.org/abs/2110.
08993 Presented at Human Aspects of Types and Reasoning Assistants (HATRA’21), Oct
19, 2021, Chicago, US.

Jonathan Edwards, Tomas Petricek, and Tijs van der Storm. 2025. Schema Evolution in
Interactive Programming Systems. Art Sci. Eng. Program. 9, 2 (2025). Issue 1. https:
//doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2025/9/2

Mikolas Fromm. 2024. Design of LLM Prompts for Iterative Data Exploration.

Murdoch J. Gabbay and Aleksandar Nanevski. 2013. Denotation of contextual modal type
theory (CMTT): Syntax and meta-programming. Journal of Applied Logic 11, 1 (2013),
1-29. https://doi.org/10.1016/j.jal.2012.07.002

Richard P. Gabriel. 2012. The structure of a programming language revolution. In Proceed-
ings of the ACM International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software (Tucson, Arizona, USA) (Onward! 2012). Association
for Computing Machinery, New York, NY, USA, 195-214. https://doi.org/10.1145/2384592.
2384611

Jeremy Gibbons. 2010. Editorial. Journal of Functional Programming 20, 1 (2010), 1-1.
https://doi.org/10.1017/5S0956796809990256

J. Heer, J. M. Hellerstein, and S. Kandel. 2015. Predictive Interaction for Data Transforma-
tion. In Proceedings of the Conference on Innovative Data Systems Research (CIDR).

IBM. 2020. The Data Science Lifecycle: From experimentation to production-level data sci-
ence. https://public.dhe.ibm.com/software/data/sw-library/analytics/data-science-lifecycle/

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: a min-
imal core calculus for Java and GJ. ACM Trans. Program. Lang. Syst. 23, 3 (may 2001),
396-450. https://doi.org/10.1145/503502.503505

Shaveta Jain and Agrawal Kushagra. 2022. Comprehensive Survey on Data science, Lifecy-
cle, Tools and its Research Issues. In 2022 International Conference on Machine Learn-
ing, Big Data, Cloud and Parallel Computing (COM-IT-CON), Vol. 1. 838-842. https:
//doi.org/10.1109/COM-IT-CON54601.2022.9850751

Joel Jakubovic, Jonathan Edwards, and Tomas Petricek. 2023. Technical Dimensions of
Programming Systems. The Art, Science, and Eng. of Programming 7, 3 (2023), 1-13.

S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. Van Ham, N. H. Riche, C. Weaver, B. Lee, D.
Brodbeck, and P. Buono. 2011. Research directions in data wrangling: Visualizations and
transformations for usable and credible data. Information Visualization 10, 4 (2011),
271-288.

Helen Kennedy, Martin Engebretsen, Rosemary L Hill, Andy Kirk, and Wibke Weber. 2021.
Data visualisations: Newsroom trends and everyday engagements. The Data Journalism
Handbook: Towards a Critical Data Practice (2021), 162-173.

https://arxiv.org/abs/2110.08993
https://arxiv.org/abs/2110.08993
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2025/9/2
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2025/9/2
https://doi.org/10.1016/j.jal.2012.07.002
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1017/S0956796809990256
https://public.dhe.ibm.com/software/data/sw-library/analytics/data-science-lifecycle/
https://doi.org/10.1145/503502.503505
https://doi.org/10.1109/COM-IT-CON54601.2022.9850751
https://doi.org/10.1109/COM-IT-CON54601.2022.9850751

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias Bus-
sonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain Corlay,
et al. 2016. Jupyter Notebooks-a publishing format for reproducible computational
workflows. In 20th International Conference on Electronic Publishing, Fernando Loizides
and Birgit Schmidt (Eds.). 87-90. https://doi.org/10.3233/978-1-61499-649-1-87

David Koop and Jay Patel. 2017. Dataflow Notebooks: Encoding and Tracking Dependencies
of Cells. In 9th {USENIX} Workshop on the Theory and Practice of Provenance (TaPP
2017). USENIX Association.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Séren Auer, et al.
2015. DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia.
Semantic web 6, 2 (2015), 167-195.

J. M. Lucassen and D. K. Gifford. 1988. Polymorphic effect systems. In Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San
Diego, California, USA) (POPL '88). Association for Computing Machinery, New York, NY,
USA, 47-57. https://doi.org/10.1145/73560.73564

Sean McDirmid. 2007. Living it up with a live programming language. In Proceedings of
the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (Montreal, Quebec, Canada) (OOPSLA '07). Association for
Computing Machinery, New York, NY, USA, 623-638. https://doi.org/10.1145/1297027.
1297073

Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput. System
Sci. 17, 3 (1978), 348-375. https://doi.org/10.1016/0022-0000(78)90014-4

Stefan K. Muller and Hannah Ringler. 2020. A rhetorical framework for programming
language evaluation. In Proceedings of the 2020 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming and Software
(Onward! 2020). Association for Computing Machinery, New York, NY, USA, 187-194.
https://doi.org/10.1145/3426428.3426927

Greg Myre. 2016. If Michael Phelps Were A Country, Where Would His Gold Medal Tally
Rank? https://www.npr.org/sections/thetorch/2016/08/14/489832779/

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual modal type
theory. ACM Transactions on Computational Logic (TOCL) 9, 3 (2008), 23. https://doi.
org/10.1145/1352582.1352591

Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark Greenwood,
Tim Carver, Kevin Glover, Matthew R Pocock, Anil Wipat, et al. 2004. Taverna: a tool
for the composition and enactment of bioinformatics workflows. Bioinformatics 20, 17
(2004), 3045-3054.

Cyrus Omar, lan Voysey, Ravi Chugh, and Matthew A. Hammer. 2019. Live functional pro-
gramming with typed holes. Proc. ACM Program. Lang. 3, POPL, Article 14 (jan 2019),
32 pages. https://doi.org/10.1145/3290327

https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/1297027.1297073
https://doi.org/10.1145/1297027.1297073
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/3426428.3426927
https://www.npr.org/sections/thetorch/2016/08/14/489832779/
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/3290327

Raymond R. Panko. 2015. What We Don't Know About Spreadsheet Errors Today. In Pro-
ceedings of the EuSpRIG 2015 Conference “Spreadsheet Risk Management”. European
Spreadsheet Risks Interest Group, 1-15.

Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang. 2022. Linked visualisations
via Galois dependencies. Proc. ACM Program. Lang. 6, POPL (2022), 1-29. https://doi.
org/10.1145/3498668

Tomas Petricek. 2017. Data Exploration through Dot-driven Development. In 31st European
Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona,
Spain (LIPIcs, Vol. 74), Peter Miller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fur Infor-
matik, 21:1-21:27. https://doi.org/10.4230/LIPICS.ECOOP.2017.21

Tomas Petricek. 2020. Foundations of a live data exploration environment. Art Sci. Eng.
Program. 4, 3 (2020), 8. https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2020/4/8

Tomas Petricek. 2021. Composable data visualizations. J. Funct. Program. 31 (2021), e13.
https://doi.org/10.1017/50956796821000046

Tomas Petricek. 2022. The Gamma: Programmatic Data Exploration for Non-programmers.
In 2022 IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC
2022, Rome, Italy, September 12-16, 2022, Paolo Bottoni, Gennaro Costagliola, Michelle
Brachman, and Mark Minas (Eds.). IEEE, 1-7. https://doi.org/10.1109/VL/HCC53370.2022.
9833134

Tomas Petricek, James Geddes, and Charles Sutton. 2018. Wrattler: Reproducible, live and
polyglot notebooks. In 10th USENIX Workshop on the Theory and Practice of Provenance,
TaPP 2018, London, UK, July 11-12, 2018, Melanie Herschel (Ed.). USENIX Association.

Tomas Petricek, Gustavo Guerra, and Don Syme. 2016. Types from data: making struc-
tured data first-class citizens in F#. In Proceedings of the 37th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2016, Santa Barbara,
CA, USA, June 13-17, 2016, Chandra Krintz and Emery D. Berger (Eds.). ACM, 477-490.
https://doi.org/10.1145/2908080.2908115

Tomas Petricek, Gerrit J. J. van den Burg, Alfredo Nazabal, Taha Ceritli, Ernesto Jiménez-
Ruiz, and Christopher K. I. Williams. 2023. Al Assistants: A Framework for Semi-
Automated Data Wrangling. IEEE Trans. Knowl. Data Eng. 35, 9 (2023), 9295-9306.
https://doi.org/10.1109/TKDE.2022.3222538

Simon L. Peyton Jones and Philip Wadler. 1993. Imperative functional programming. In
Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Charleston, South Carolina, USA) (POPL '93). Association for Computing Ma-
chinery, New York, NY, USA, 71-84. https://doi.org/10.1145/158511.158524

Joao Felipe Nicolaci Pimentel, Vanessa Braganholo, Leonardo Murta, and Juliana Freire.
2015. Collecting and analyzing provenance on interactive notebooks: when IPython
meets noWorkflow. In Workshop on the Theory and Practice of Provenance (TaPP). 155-
167.

Tye Rattenbury, Joseph M Hellerstein, Jeffrey Heer, Sean Kandel, and Connor Carreras.
2017. Principles of data wrangling: Practical techniques for data preparation. O'Reilly.

https://doi.org/10.1145/3498668
https://doi.org/10.1145/3498668
https://doi.org/10.4230/LIPICS.ECOOP.2017.21
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2020/4/8
https://doi.org/10.1017/S0956796821000046
https://doi.org/10.1109/VL/HCC53370.2022.9833134
https://doi.org/10.1109/VL/HCC53370.2022.9833134
https://doi.org/10.1145/2908080.2908115
https://doi.org/10.1109/TKDE.2022.3222538
https://doi.org/10.1145/158511.158524

Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape. 2019. Ex-
ploratory and Live, Programming and Coding. The Art, Science, and Engineering of Pro-
gramming 3, 1(2019). https://doi.org/10.22152/programming-journal.org/2019/3/1

Advait Sarkar and Andrew D Gordon. 2018. How do people learn to use spreadsheets?. In
Proceedings of the Psychology of Programming Interest Group (PPIG), Mariana Marasoiu
Emma S oderberg, Luke Church (Ed.).

Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer. 2016.
Vega-lite: A grammar of interactive graphics. IEEE transactions on visualization and
computer graphics 23, 1 (2016), 341-350.

C. A. Sutton, T. Hobson, J. Geddes, and R. Caruana. 2018. Data Diff: Interpretable, Exe-
cutable Summaries of Changes in Distributions for Data Wrangling. In 24th ACM SIGKDD
Conference.

Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, Jomo Fisher, Jack Hu, Tao Liu,
Brian McNamara, Daniel Quirk, Matteo Taveggia, et al. 2012. Strongly-typed language
support for internet-scale information sources. Technical Report MSR-TR-2012-101. Mi-
crosoft Research.

Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, and Tomas Petricek. 2013.
Themes in information-rich functional programming for internet-scale data sources. In
Proceedings of the 2013 Workshop on Data Driven Functional Programming (DDFP ’13).
ACM, New York, NY, USA, 1-4. https://doi.org/10.1145/2429376.2429378

S. Thirumuruganathan, L. Berti-Equille, M. Ouzzani, J.-A. Quiane-Ruiz, and N. Tang. 2017.
UGuide: User-guided discovery of FD-detectable errors. In Proceedings of the ACM In-
ternational Conference on Management of Data (SIGMOD '17). 1385-1397.

Gerrit JJ van den Burg, Alfredo Nazabal, and Charles Sutton. 2019. Wrangling messy CSV
files by detecting row and type patterns. Data Mining and Knowledge Discovery 33, 6
(2019), 1799-1820.

Jacob VanderPlas, Brian E. Granger, Jeffrey Heer, Dominik Moritz, Kanit Wongsuphasawat,
Arvind Satyanarayan, Eitan Lees, llia Timofeev, Ben Welsh, and Scott Sievert. 2018. Altair:
Interactive Statistical Visualizations for Python. The Journal of Open Source Software 3,
32 (2018). https://doi.org/10.21105/joss.01057

Bret Victor. 2012a. Inventing on Principle. http://worrydream.com/InventingOnPrinciple

Bret Victor. 2012b. Learnable programming: Designing a programming system for under-
standing programs. http://worrydream.com/LearnableProgramming

Richard Wesley, Matthew Eldridge, and Pawel T. Terlecki. 2011. An analytic data engine for
visualization in tableau. In Proceedings of the 2011 ACM SIGMOD International Confer-
ence on Management of Data (Athens, Greece) (SIGMOD ’11). Association for Computing
Machinery, New York, NY, USA, 1185-1194. https://doi.org/10.1145/1989323.1989449

Hadley Wickham. 2010. A layered grammar of graphics. Journal of Computational and
Graphical Statistics 19, 1 (2010), 3-28.

https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/2429376.2429378
https://doi.org/10.21105/joss.01057
http://worrydream.com/InventingOnPrinciple
http://worrydream.com/LearnableProgramming
https://doi.org/10.1145/1989323.1989449

Hadley Wickham. 2016. ggplot2: Elegant graphics for data analysis. Springer.

Hadley Wickham, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'’Agostino Mc-
Gowan, Romain Francois, Garrett Grolemund, Alex Hayes, Lionel Henry, Jim Hester, et al.
2019. Welcome to the Tidyverse. Journal of open source software 4, 43 (2019), 1686.

Leland Wilkinson. 1999. The grammar of graphics. Springer-Verlag New York. https://doi.
org/10.1007/978-1-4757-3100-2

https://doi.org/10.1007/978-1-4757-3100-2
https://doi.org/10.1007/978-1-4757-3100-2

	Acknowledgements
	Contents
	I Commentary
	Introduction
	How data journalists explore data
	Requirements of simple tools for data exploration
	Data exploration as a programming problem
	Utilised research methodologies
	What makes a programming tool simple
	Structure of the thesis contributions
	Research outlook

	Type providers
	Information-rich programming
	Type providers for semi-structured data
	Shape inference and provider structure
	Relative safety of checked programs
	Stability of provided types

	Type providers for query construction
	Formalising lazy type provider for data querying
	Safety of data acquisition programs

	Contributions

	Data infrastructure
	Notebooks and live programming
	Live data exploration environment
	Data exploration calculus
	Computing previews using a dependency graph

	Live, reproducible, polyglot notebooks
	Architecture of a novel notebook system
	Dependency graphs for notebooks

	Contributions

	Iterative prompting
	Data wrangling and data analytics
	Iterative prompting
	Iterative prompting for data querying
	Usability of iterative prompting

	AI assistants
	Merging data with Datadiff
	Formal model of AI assistants
	Practical AI assistants

	Contributions

	Data visualization
	Visualisations to encourage critical thinking
	Composable data visualisations
	Declarative chart descriptions
	Rendering a Compost chart
	Functional abstraction and interactivity

	Automatic linking for data visualizations
	Creating linked visualizations using Fluid
	Language-based foundation for explainable charts
	Bidirectional dependency analyses

	Contributions

	II Publications: Type providers
	Types from data: Making structured data first-class citizens in F#
	Data exploration through dot-driven development

	III Publications: Data infrastructure
	Foundations of a live data exploration environment
	Wrattler: Reproducible, live and polyglot notebooks

	IV Publications: Iterative prompting
	The Gamma: Programmatic data exploration for non-programmers
	AI Assistants: A framework for semi-automated data wrangling

	V Publications: Data visualization
	Composable data visualisations
	Linked visualizations via Galois dependencies

	VI Conclusions
	Contributions and outlook
	Contributions to included publications
	Open-source software contributions
	New look at data exploration
	Towards programming systems research

