
Simple programming toolsfor data exploration
Tomas Petricek

Habilitation Thesis
Computer Science, Software Systems

Prague 2024

Acknowledgements

This thesis presents a selection ofmy recent research that focuses onmaking programmingtools for data exploration simpler. The origins of this research direction can be traced tomy involvement with the F# programming language. When Don Syme and the F# teamat Microsoft developed the first versions of the F# type provider mechanism, I started myfirst experiments that eventually led to the type providers for structured data presentedas one of the contributions in this thesis. However, seeing how easy working with data ina programming language can be led me to a further question: Could we make program-matic data exploration easy enough that it could be done by non-programmers? The risingpopularity of data journalism at the time provided a further practical motivation.The work presented in this thesis has been done at a number of institutions, startingtowards the end ofmy PhD at the University of Cambridge and finishing as I was joining theDepartment of Distributed and Dependable Systems (D3S) at the Faculty of Mathematicsand Physics. In between, I spent time at Microsoft Research in Cambridge, The Alan TuringInstitute in London and the University of Kent in Canterbury. I am grateful to all thoseinstitutions for enabling me to pursue my research vision.Although I am the first author of most of the work presented in this thesis, none ofit would be possible without the many collaborators that I was fortunate to meet alongthe way. Don Syme not only provided the initial motivation and collaborated with meon multiple papers but also became my long-term mentor and friend. The work relatedto F# received a warm welcome from the friendly F# community and early commercialadopters. Gustavo Guerra deserves special credit for turning F# Data from a prototype toa well-engineered (and widely adopted) package.At The Alan Turing Institute, I was fortunate to meet James Geddes who got me in-volved in the AI for Data Analytics (AIDA) project. The bridging of different worlds thatJamesmade possible resulted inmy involvement in research on notebooks and data prove-nance with Charles Sutton, but also work on automating data wrangling with Gerrit vanden Burg, Alfredo Nazábal, Taha Ceritli, Ernesto Jiménez-Ruiz and Chris William. The AlanTuring Institute also provided initial funding for our joint work on data visualization toolswith Roly Perera.In addition to direct collaborators, the work presented in this thesis benefited fromnumerous discussions with my other colleagues and friends. This includes Dominic Or-chard and Stephen Kell first at the University of Cambridge and then at the University ofKent, Kenji Takeda, Jomo Fisher, and Keith Battocchi at Microsoft Research and May Yong,Nick Barlow, Brooks Paige at The Alan Turing Institute. Mathias Brandewinder, JonathanEdwards, Nour Boulahcen, Luke Church, Clemens Klokmose, Mariana Marasoiu and AlanBlackwell also provided ideas, insights, technical contributions and valuable feedback onsome of the works presented as part of this thesis.

2

Thework presented in this thesis also received valuable support from industrial collab-orators. My research focused on data journalism benefited from discussions with MeganLucero from The Bureau of Investigative Journalism. My work on F# was supported by thewide and enthusiastic F# community and also by Howard Mansell and BlueMountain Cap-ital. I had the pleasure of presenting many of the ideas at multiple industry conferences,including NDC in Oslo and London, LambdaDays and DevDay in Kraków, GOTO in Copen-hagen and Chicago, CogX London and, most recently, the F# Data Science conference inBerlin. These presentations were vital not only for enabling industry adoption of some ofthe systems presented in this thesis but also provided valuable feedback.Over time, the work has been financially supported in a number of ways. The GoogleDigital News Initiative provided me with a generous individual grant that allowed me tofully focus on programming tools for data journalism for one and a half years. MicrosoftResearch, BlueMountain Capital, the University of Kent, and Charles University paid forsome of my time over the years. At The Alan Turing Institute, I was supported by The UKRIStrategic Priorities Fund under EPSRC Grant EP/T001569/1, particularly the Tools, Practicesand Systems theme within that grant, through the UK Government’s Defence & SecurityProgramme and by The Alan Turing Institute under EPSRC grant EP/N510129/1. At CharlesUniversity, I was a part of the Department of Distributed and Dependable Systems and Iwas also supported by the PRIMUS grant PRIMUS/24/SCI/021.

Contents

Acknowledgements 3

Contents 4

I Commentary 8

1 Introduction 91.1 How data journalists explore data . 101.2 Requirements of simple tools for data exploration 111.3 Data exploration as a programming problem 121.4 Utilised research methodologies . 131.5 What makes a programming tool simple 141.6 Structure of the thesis contributions . 151.7 Research outlook . 18
2 Type providers 192.1 Information-rich programming . 202.2 Type providers for semi-structured data 212.2.1 Shape inference and provider structure 232.2.2 Relative safety of checked programs 242.2.3 Stability of provided types . 252.3 Type providers for query construction 262.3.1 Formalising lazy type provider for data querying 272.3.2 Safety of data acquisition programs 282.4 Contributions . 28
3 Data infrastructure 303.1 Notebooks and live programming . 313.2 Live data exploration environment . 323.2.1 Data exploration calculus . 333.2.2 Computing previews using a dependency graph 353.3 Live, reproducible, polyglot notebooks 373.3.1 Architecture of a novel notebook system 383.3.2 Dependency graphs for notebooks 393.4 Contributions . 40

4

4 Iterative prompting 424.1 Data wrangling and data analytics . 434.2 Iterative prompting . 444.2.1 Iterative prompting for data querying 454.2.2 Usability of iterative prompting 464.3 AI assistants . 474.3.1 Merging data with Datadiff . 484.3.2 Formal model of AI assistants 494.3.3 Practical AI assistants . 504.4 Contributions . 52
5 Data visualization 545.1 Visualisations to encourage critical thinking 555.2 Composable data visualisations . 565.2.1 Declarative chart descriptions 575.2.2 Rendering a Compost chart . 585.2.3 Functional abstraction and interactivity 585.3 Automatic linking for data visualizations 595.3.1 Creating linked visualizations using Fluid 605.3.2 Language-based foundation for explainable charts 625.3.3 Bidirectional dependency analyses 625.4 Contributions . 63

II Publications: Type providers 65

6 Types from data: Making structured data first-class citizens in F# 66

7 Data exploration through dot-driven development 81

III Publications: Data infrastructure 109

8 Foundations of a live data exploration environment 110

9 Wrattler: Reproducible, live and polyglot notebooks 147

IV Publications: Iterative prompting 152

10 The Gamma: Programmatic data exploration for non-programmers 153

11 AI Assistants: A framework for semi-automated data wrangling 161

V Publications: Data visualization 179

12 Composable data visualisations 180

13 Linked visualizations via Galois dependencies 199

VI Conclusions 229

14 Contributions and outlook 23014.1 Contributions to included publications 23014.2 Open-source software contributions . 23114.3 New look at data exploration . 23214.4 Towards programming systems research 233

Part I

Commentary

7

Chapter 1

Introduction

The rise of big data, open government data initiatives (Attard et al., 2015),1 and civic datainitiatives mean that there is an increasing amount of raw data available that can be usedto understand the world we live in, while increasingly powerful machine learning algo-rithms give us a way to gain insights from such data. At the same time, the general publicincreasingly distrusts statistics (Davies, 2017) and the belief that we live in a post-truth erahas become widely accepted over the last decade.While there are complex socio-political reasons for this paradox, from a merely tech-nical perspective, the limited engagement with data-driven insights should perhaps notbe a surprise. We lack accessible data exploration technologies that would allow non-programmers such as data journalists, public servants, and analysts to produce transparentdata analyses that can beunderstood, explored, and adaptedby a broad rangeof end-usersincluding educators, the public, and the members of the civic society.The technology gap is illustrated in Figure 1.1. On the one hand, graphical tools such asspreadsheets are easy to use, but they are limited to small tabular data sets, they are error-prone (Panko, 2015) and they do not aid transparency. On the other hand, programmatictools for data exploration such as Python and R can tackle complex problems but requireexpert programming skills for completing even the simplest tasks.

Figure 1.1: The gap between programming and spreadsheets – spreadsheets can be used by manypeople, but solve problems of a limited complexity. Programming scales arbitrarily, but has a highminimal complexity limiting the number of users. Adapted from Edwards (2015).
1See https://data.gov and https://data.gov.uk, but also https://opendata.gov.cz as examples.

8

https://data.gov
https://data.gov.uk
https://opendata.gov.cz

Figure 1.2: A visualization comparing the number of gold Olympic medals won by Michael Phelpswith countries that won a close number of gold medals. Inspired by e.g., Myre (2016)

The above illustration should not be taken at face value. Although there is no singleaccepted solution, there are multiple projects that exist in the gap between spreadsheetsand programming tools. However, the gap provides a useful perspective for positioningthe contributions presented in this thesis. Some of the work I present develops novel toolsthat aim to combine the simplicity of spreadsheets with the power of programming for thespecific domain of data exploration, aiming to fill the space in the middle of the gap. Someof the work I present focuses on making regular programming with data easier, or makingsimple programming with data accessible to a greater number of users, reducing the sizeof the gap on the side of programming.
1.1 How data journalists explore data

To explain themotivation behind this thesis, I use an example data exploration done in thecontext of data journalism (Bounegru and Gray, 2021). Following the phenomenal successof the swimmer Michael Phelps at the 2016 Olympic games, many journalists producedcharts such as the one in Figure 1.2, which puts Phelps on a chart showing countries withsimilar numbers of medals. Even such a simple visualization raises multiple questions. Isthe table counting Gold medals or all medals? How would it change if we used the othermetric? What would it look like if we added more countries or removed the historical“Mixed Team”? How many top countries were skipped?This simple example illustrates two challenges that I hinted at earlier. First, producingthis visualization may not be hard for a programmer, but it involves a number of trickyproblems for a non-programmer. The author has to acquire and clean the source data,aggregate medals by country and join two subsets of the data. Doing so manually in aspreadsheet is tedious, error-prone and not reproducible, but using Python or R requiresnon-trivial programming skills. Second, the non-technical reader of the newspaper articlemay want to answer the above follow-up questions. Data journalists sometimes offer adownload of the original dataset, but the reader would then have to redo the analysisfrom scratch. If the data analysis was done in Python or R, they could get the source code,but this would likely be too complex to modify.This thesis presents a range of tools that allow non-programmers, such as data jour-nalists, to clean and explore data, such as the table of Olympic medals, and produce data

1 let data = olympics.’group data’.’by Team’.’sum Gold’.then
2 .’sort data’.’by Gold descending’.then
3 .paging.skip(42).take(6)
4 .’get series’.’with key Team’.’and value Gold’
5
6 let phelps = olympics.’filter data’.’Athlete is’.’Michael Phelps’.then
7 .’group data’.’by Athlete’.’sum Gold’.then
8 .’get series’.’with key Athlete’.’and value Gold’
9
10 charts.bar(data.append(phelps).sortValues(true))
11 .setColors(["#94c8a4","#94c8a4","#94c8a4","#e30c94"])

Figure 1.3: Source code of the data analysis used to produce the visualization in Figure 1.2. The casestudy is based on the work presented in Chapter 10.

analyses that are backed by source code in a simple programming language that can beread and understood without sophisticated programming skills. In some cases, the codecan be produced interactively, by repeatedly choosing one from a range of options offeredby the tool and can then be modified to change the parameters of the visualization.As an example, the source code of the data analysis used to produce the visualizationabove is shown in Figure 1.3. The tools that enable non-programmers to create it will bediscussed later. The key aspect of the code is that it mostly consists of a sequence ofhuman-readable commands such as ’filter data’.’Athlete is’.’Michael Phelps’.Those are iteratively selected from options offered by the system and so the author of thedata analysis can complete most of the analysis without writing code.The use of a simple programming language also makes it possible to understand thekey aspects of the logic. The analysis counts the number of gold medals (’sum Gold’),skips 42 countries before the ones shown in the visualization, and does not filter out anyother data. Finally, the code can be easily executed (in aweb browser), allowing the readerto easily make small changes, such as picking a different athlete or increasing the numberof displayed countries. Such engagement has the potential to aid the reader’s positiveperception of open, transparent data-driven insights based on facts.
1.2 Requirements of simple tools for data exploration

Although the tools and techniques presented in this thesis aremore broadly applicable, thefocus of this thesis is on a narrower domain illustrated by the above motivating example. Ifocus on programmatic data exploration tools that can be used to produce accessible andtransparent data analyses that will be of interest to a broader range of readers and allowthem to critically engage with the data.In the subsequent discussion, I thus distinguish between data analysts who producethe analyses and readerswho consume and engage with the results. The former are tech-nically skilled and data-literate, but may not have programming skills. The latter are non-technical domain expertswhomay nevertheless be interested in understanding and check-ing the analysis or modifying some of its attributes. This context leads to a number ofrequirements for the envisioned data exploration tools:

• Gradual progression from simple to complex. The system must allow non-program-mers with limited resources to easily complete simple tasks in an interface that al-lows them to later learn more and tackle harder problems. In the technical dimen-sions of programming systems framework (Jakubovic et al., 2023), this is describedas the staged levels of complexity approach to the learnability dimension.
• Support transparency and openness. The readers of the resulting data analysesmustbe able to understand how the analysis was done and question what processingsteps and parameters have been used in order to critically engage with the problem.
• Enable reproduction and learning by percolation. A reader should be able to seeand redo the steps through which a data exploration was conducted. This lets themreproduce the results, but also learn how to use the system. As noted by Sarkar andGordon (2018), this is how many users learn the spreadsheet formula language.
• Encourage meaningful reader interaction. The reader should not be just a passiveconsumer of the data analyses. They should be able to study the analysis, but alsomake simple modifications such as changing analysis or visualization parameters, asis often done in interactive visualizations by journalists (Kennedy et al., 2021).
The criteria point to the technology gap illustrated by Figure 1.1 and there are multi-ple possible approaches to satisfy the criteria. This thesis explores one particular point inthe design space, which is to treat data analysis as a program with an open source code,created in a simple programming language with rich tooling.As I will show, treating data exploration as a programming problemmakes it possible tosatisfy the above criteria. Gradual progression from simple to complex can be supportedby a language that provides very high-level abstractions (or domain-specific languages)for solving simple problems. Transparency, openness, and reproducibility are enabled bythe fact that the source code is always available and can be immediately executed whilelearning by percolation can be supported by structuring the program as a sequence oftransformations. Finally, meaningful interaction can be offered by suitable graphical toolsthat simplify editing of the underlying source code.

1.3 Data exploration as a programming problem

Data exploration is typically done using a combination of tools including spreadsheets, pro-gramming tools, online systems, and ad-hoc utilities. Spreadsheets like Excel and businessintelligence tools like Tableau (Wesley et al., 2011) are often used for manual data editing,reshaping, and visualization. More complex and automated data analyses are done in pro-gramming languages like R and Python using a range of data processing libraries such aspandas and Tidyverse (Wickham et al., 2019). Such analyses are frequently done in a com-putational notebook environment such as RStudio or Jupyter (Kluyver et al., 2016), whichmake it possible to interleave documentation, mathematical formulas and code with out-puts such as visualizations. Online data processing environments like Trifacta provide myr-iads of tools for importing and transforming data, which are accessible through differentuser interfaces or programmatically, but even those have to be complementedwith ad-hocsingle-purpose tools, often invoked through a command line interface. Finding a unifiedperspective for thinking about such a hotchpotch of systems and tools is a challenge.

� Key novel perspective. In this thesis, I propose to view systems and tools usedfor data exploration as programming tools. This view can offer a unified perspec-tive on a broad range of systems and tools. It also enables us to apply the powerfulmethodology of programming languages research to the problemof data exploration.
If we look at data exploration tools from the perspective of programming languages re-search, we can adapt and leverage techniques for ensuring program correctness and com-positional design, as well as rich interaction principles. However, the programs that areconstructed during data exploration have a number of specific characteristics that distin-guish them from programs typically considered in programming language research:

• Data exists alongside code. Systems such as spreadsheets often mix data and codein a single environment. In conventional programming, this is done in image-basedsystems like Smalltalk, but not in the context of programming languages.
• Concrete inputs are often known. Moreover, data exploration is typically done on aknown collection of concrete input datasets. This means that program analysis cantake this data into account rather than assuming arbitrary unknown inputs.
• Programmers introduce fewer abstractions. Even in programmatic data explorationusing R or Python in a Jupyter notebook, data analysts often write code as a se-quence of direct operations on inputs or previously computed results, rather thanintroducing abstractions such as reusable generic functions.
• Most libraries are externally defined. Finally, data exploration is often done usinglibraries and tools that are implemented outside of the tool that the analysts use. Forexample, spreadsheet formulas use mostly built-in functions, while data analyses inPython often use libraries implemented in C/C++ for performance reasons.
The above holds for simple data explorations, such as those done by data journaliststhat this thesis is concerned with. The characteristics do not apply to all programs thatworkwith data. Reusable and parameterizedmodels, general-purpose algorithms and richdata processing pipelines share structure with conventional programs. However, focusingon simple data explorations for which the above criteria are true allows us to narrow thedesign space and study a range of interesting problems. The narrow focus also makes usrethink a number of accepted assumptions in programming language research, such aswhat are the key primitives of a programming language (in Chapter 8, an invocation of anexternal function becomes more important than lambda abstraction).

1.4 Utilised research methodologies

The research presented in this thesis tackles multiple research questions such as: Doesa particular language design rule out certain kinds of programming errors? What is anefficient implementation technique for a particular language or a tool? Does a newly de-veloped tool simplify data exploration by reducing the number of manual interventions bythe user? What is a suitable interaction mechanism for completing a particular task? Andcan non-programmers effectively use such interaction mechanism? The diversity of theresearch questions calls for a corresponding diversity of research methodologies.

Programming language theory. The first methodology used in this thesis is that of theo-retical programming language research. When using this methodology, a core aspect of aprogramming language is described using a small, formally tractable mathematical modelthat captures the essential properties of the aspect. The model is then used to formallystudy properties of the given aspect, such as whether a programming language that im-plements it can be used to write programs that exhibit a certain kind of incorrect behavior.In this thesis, Part II presents two instances of a programming language extensionmechanism called type providers. To show that code written using type providers willnever result in a particular error condition, I develop a formal model of type providersand prove a correctness property using the model. The actual system implementationthen closely follows the formal model. Theoretical programming language research meth-ods are also used to develop a data visualization language in Chapter 13, to formalize theoptimization technique introduced in Chapter 8 and to define the structure of the semi-automatic data wrangling tools developed in Chapter 11.
Programming systems. The theoretical approach is complemented by a range of appliedprogramming systems methods. The work using those methodologies often focuses ondesigning suitable system architecture, empirical evaluation of measurable characteristicsof the system such as efficiency. It should also be complemented with an open-sourceimplementation and/or a reproducible software artifact.I use the programming systems research methodology primarily in Chapter 9, whichpresents the architecture and implementation of a novel computational notebook systemfor data science. Chapter 8 develops an optimized programming assistance tool and eval-uates the efficiency empirically. Software systems and libraries presented in this thesis areavailable as open-source and are listed below.
Human-computer interaction. Finally, answering questions that concern usability re-quires a human-centric approach offered by the human-computer interaction (HCI) re-search methodology, which is increasingly used to study programming languages and sys-tems (Chasins et al., 2021). The HCI methods include controlled usability studies, qualita-tive and quantitative user studies, as well as the development and application of heuristicevaluation frameworks.I use the HCI methodology in Chapter 10, which introduces the “iterative prompting”interaction mechanism and conducts a usability study with non-programmers to evaluatewhether they can use it to complete simple data exploration tasks. Chapter 12, whichpresents a novel data visualization library, also draws on the HCI methodology, but uses acomprehensive case study instead of a user study to evaluate the design.
1.5 What makes a programming tool simple

The very title of this thesis refers to the aim of creating programming tools for data explo-ration that are simple. However, simplicity is difficult to quantify precisely. It is understooddifferently by different communities and in different contexts. I thus follow the recommen-dation ofMuller and Ringler (2020) tomake explicit how the term should be understood inthe context of this thesis. The notion of simplicity is used as a unifying theme in this com-mentary. In the papers presented as part of this thesis, the notion takes one of severalmore specific and rigorously evaluated forms:

• In the context of user-centric work, I refer to a system as simple if it allows non-programmers to complete tasks that are typically limited to programmers. This isthe casewhen discussing the iterative prompting interaction principle in Chapters 10the live programming tools in Chapter 8.
• In the context of programming language or library design, I consider the design sim-
ple when it allows expressing complex logic using a small set of highly composableprimitives that are easy to understand. This applies to the language design in Chap-ter 7 and visualization library design in Chapter 12.

• In the context of programmer assistance tools, simple indicates that the user doesnot have to perform a task that they would otherwise have to complete manually.This applies to AI assistants, presented in Chapter 11, which relieve the user fromtedious manual setting of parameters by partly automating the task.
• Finally, I also use the term simple when talking about programming systems andlibraries that provide a high-level interface designed specifically for a particular task.This is the case for the notebook system presented in Chapter 9, data access libraryin Chapter 6, and the language for creating visualizations in Chapter 13. Using suchhigh-level abstractions means that programmers have to write less code.
The overarching theme of this thesis is thus the design of programming tools for dataexploration that are simple in one or more of the meanings of the term indicated above.The focus on simplicity aims to fill or reduce the technology gap illustrated in Figure 1.1and, ultimately, make data exploration accessible to a broader range of users.

1.6 Structure of the thesis contributions

The key novel perspective—to view data exploration tools from the perspective of pro-gramming language research—can be leveraged for a wide range of different data explo-ration tools, including tools for data acquisition, data cleaning and data visualization. Cor-respondingly, the contributions presented in this thesis cover multiple different kinds oftasks that a data analyst faces when they work with data.To position the contributions in the broader context of data analytical work, it is usefulto see where they fit in a typical data science lifecycle. For this thesis, it is useful to con-sider a variant of the lifecycle that distinguishes between the exploration and productionphases as done by Jain and Kushagra (2022) as well as IBM (2020). As shown in Figure 1.4,the contributions of this thesis focus on thework done in the initial data exploration phase.Unlike with the later production phase, the programs used in the exploration phase typi-cally exhibit the unique characteristics discussed in Section 1.3.The data science lifecycle starts with data acquisition (1), which involves loading datafrom a range of sources. This is followed by data cleaning (2), where multiple data sourcesare joined, incomplete data is filled or removed and data structure is recovered. In dataexploration (3), the analyst transforms the data to discover interesting patterns and, finally,in data visualization (4) they produce charts to present their insights. In the productionphase, the insights are then used to develop a model that becomes a part of a productionsystem. The process can be repeated based on the results of the model evaluation.

Figure 1.4: Illustration showing the data science lifecycle, as understood by , alongside with thecontributions of this thesis to the individual steps of the data exploration phase.

The work that constitutes this thesis contributes to each of the four steps of the dataexploration phase. In Part II, I present two papers on type providers, which simplify dataacquisition, while Part V consists of two novel data visualization systems. The four pub-lications presented in Part III and Part IV all focus on working with data, including datacleaning and exploration. They are not grouped in parts based on the lifecycle step butbased on their research methodology. The publications in Part III use programming sys-tems methods to design new infrastructure, while Part IV introduces a novel interactionprinciple and applies it to two problems, one from the domain of data exploration and onefrom the domain of data cleaning. The rest of this section summarises the contributionsof the work presented in this thesis in more detail.
Type providers. The type provider mechanism (Syme et al., 2012, 2013) makes it pos-sible to integrate external data into a statically-typed programming language. The workpresented in Part II presents two new type providers.Chapter 6 presents a library of type providers that makes it possible to safely accessstructured data in formats such as CSV, XML, and JSON in the F# programming language.The two key research contributions of thework are, first, a novel inferencemechanism thatinfers a type based on a collection of sample data and, second, a formulation of a relative
safety property that formally captures the safety guarantees offered by the system.Chapter 7 takes the idea of type providers further. It uses the mechanism not just fordata access, but for the construction of SQL-like queries over tabular data. The researchcontribution is a novel type provider, implemented in TheGamma system, which generatesa type that can be used to group, filter, and sort tabular data. Using a novel formal model,the presented paper shows that all queries constructed using the type provider are valid.
Data infrastructure. Programmatic data exploration is typically done in notebook sys-tems such as Jupyter (Kluyver et al., 2016) that make it possible to combine documenta-tion, formulas, code, and output such as visualizations. Notebook systems are a conve-nient tool, but they suffer from a number of limitations and issues. The two novel systemspresented in Part III address several of those.

Chapter 8 presents a programming environment for The Gamma that makes data ex-ploration easier by providing instant feedback. The research contributions of the work aretwofold. First, it builds a practical efficient algorithm for displaying live previews. Second,it develops a formal model of code written to explore data called data exploration calculusand uses it to show the correctness of the live preview algorithm.Chapter 9 tackles more directly the problems of notebook systems. It presents Wrat-tler, which is a novel notebook system that makes it possible to combine multiple pro-gramming languages and tools in a single notebook resolves the reproducibility issues ofstandard systems and stores computation state in a transparent way, allowing for precisedata provenance tracking.
Iterative prompting Treating data analyses as programsmakes them transparent and re-producible, but writing code has an unavoidable basic complexity. Part IV presents a novelinteraction principle for program construction called iterative prompting. The mechanismis rooted in the work on type providers and makes it possible to construct programs byrepeatedly choosing from one of several options.Chapter 10 introduces the iterative prompting mechanism from the human-computerinteraction perspective. It shows that the mechanism can be used to construct programsthat explore data inmultiple input formats including tables, graphs and data cubes. The us-ability of themechanism is evaluated through a user study, showing that non-programmerscan use it to complete a range of data exploration tasks.Chapter 11 uses the iterative prompting mechanism as the basis of a range of semi-automatic data cleaning tools. It augments existing AI tools for parsing data, merging data,inferring data types and semantic information with a mechanism that lets the user guidethe AI tool. Using iterative prompting, the user can correct mistakes and configure theparameters of the tool. The augmented tools are evaluated empirically, showing that thecorrect result can typically be obtained with 1 or 2 manual interventions.
Data visualization. Data visualization is the last step in the exploratory phase of the datascience lifecycle discussed above. Although standard charts are typically easy to build, cre-ating richer interactive visualizations is a challenging programming task. Part V presentstwo systems that make it easier to build interactive data visualizations that encourage crit-ical thinking about data.Chapter 12 presents a functional domain-specific language for creating charts thatmakesit possible to compose rich interactive charts from basic building blocks (such as lines andshapes) using a small number of combinators (such as overlaying and nesting of scales).The simplicity of the approach is illustrated through a range of examples and confirmed bythe publication of the work as a so-called functional pearl (Gibbons, 2010).Chapter 13 introduces a language-based program analysis technique that makes it pos-sible to automatically build linked data visualizations that show the relationships betweenparts of charts produced from the same input data. The key research contribution is anovel bidirectional dynamic dependency program analysis, which is formalized and shownto have a desirable formal structure. The technique is used as the basis for a high-levelprogramming language Fluid.

ö Key novel perspective. A close look at howdata scientists interactwith program-ming tools forces us to rethink how we conceptualize programming. It showsthat we need to shift our attention from static programming languages to rich, state-ful, and interactive programming systems. Understanding the theory and practice ofthose remains an interesting open problem.

1.7 Research outlook

Viewing data exploration from the perspective of programming language research is ben-eficial in both directions. Most of this thesis is concerned with the novel data explorationtools and systems that become conceivable as a result of this perspective. However, anequally interesting question is whether data exploration forces us to think about (conven-tional) programming differently. I believe this is the case.As noted earlier, data scientists often work with concrete data that exists alongsidewith code. This is an approach that has existed in image-based programming systems sincethe era of Smalltalk. They also often interleave coding with execution, which is how mostmodern programs are constructed. Although many programming environments discardany state of the executing program, hot-reloading is increasingly used to make sure pro-grammers do not lose state while editing code.Most contemporary programming language research focuses solely on languages andignores such stateful aspects of programming systems, possibly due to the paradigm shiftdocumented by Gabriel (2012). This ignores an important aspect of the reality of modernprogramming. Moreover, the new capabilities presented in this thesis in the context ofdata science suggest that the programming systems perspective has the potential to yieldfruitful results about programming in a broader sense. This is also an area that I startedexploring in recent years in joint work with Jakubovic et al. (2023); Edwards and Petricek(2021); Edwards et al. (2025).

Chapter 2

Type providers

The first step of the data science lifecycle outlined in the previous chapterwas data acquisi-tion. This typically involves reading data in semi-structured formats such as CSV, XML, andJSON or retrieving data from a database. The aim of the work on type providers, outlinedin this chapter, is to make programmatic data acquisition reliable and simpler.The lack of reliability arises primarily from the fact thatmost data access code iswrittenin dynamically-typed scripting languages. This is largely because using such languages iseasier. A dynamically-typed language does not need to consider the structure of the inputdata to check that the program accesses it correctly. If we retrieve a JSON object thatrepresents a recordwith fields title and link andparse it into anobject item in JavaScript,we can then access the fields using just item.title and item.link. The fields will exist atruntime, but the language does not need to know at compile-time whether they will beavailable, because member access is not statically checked.In statically-typed programming languages, the situation is no better. The typical ap-proach, illustrated in Figure 2.1, is equally dynamic, but more verbose. Object fields areaccessed using a string-based lookup, which can easily contain fields that do not exist atruntime (indeed, there is an uncaught typo on line 6!) and, moreover, the lookup has tobe done using an additional method invocation andmay require tedious type conversions.The first challenge we face is how tomake accessing data in semi-structured formats, suchas JSON, XML, and CSV, as simple as in dynamically-typed languages (a matter of just usinga dot), but support checking that will statically guarantee that the accessed fields will bepresent at runtime.However, the simplicity of data access in dynamic scripting language also has its limits.It is easy to access individual fields, but the code gets more complicated if we want toperform a simple query over the data. Consider, for example, the query in Figure 2.2.
1 var url = "http://dvd.netflix.com/Top100RSS";
2 var rss = XDocument.Load(topRssFeed);
3 var channel = rss.Element("rss").Element("channel");
4
5 foreach(var item in channel.Elements("item")) {
6 Console.WriteLine(item.Element("titel").Value);
7 }

Figure 2.1: Printing titles of items from an RSS feed in C#. The snippet uses dynamic lookup to findappropriate elements in the XML and extracts and prints the title of each item.

18

1 olympics = pd.read_csv("olympics.csv")
2 olympics[olympics["Games"] == "Rio (2016)"]
3 .groupby("Athlete")
4 .agg({"Gold": sum})
5 .sort_values(by="Gold", ascending=False)
6 .head(8)

Figure 2.2: Data transformation written using pandas in Python. The code loads a CSV file withOlympic medal history, gets data for Rio 2016 games, groups the data by the athlete, and sumstheir number of gold medals and, finally, takes the top 8 athletes.

Despite being widely accepted as simple, the Python code snippet involves a remark-able number of concepts and syntactic elements that the user needs to master:
• Generalised indexers (.[condition]) are used to filter the data. This is furthercomplicated by the fact that == is overloaded towork on a data series and the indexeraccepts a Boolean-valued series as an argument.
• Python dictionaries ({"key": value}) are here used not to specify a lookup table,but to define a list of aggregation operations to apply on individual columns. It alsodetermines the columns of the returned data table.
• Well-known names. The user also has to remember the (somewhat inconsistentlynamed) names of operations such as groupby and sort_values and remember thecolumn names from their data source such as "Athlete".
To make data acquisition simpler, the user should not need this many concepts andthey should not need to remember the names of operations or the names of columnsin their data source. Moreover, their code should be checked to ensure that it accessesthe correct supported operations and applies them to compatible data that exist in thedata source. As I will show later, this can be achieved using type providers, a concept thatoriginated in the F# programming language in the early 2010s.

2.1 Information-rich programming

In the 2010s, applications increasingly relied on external data sources and APIs for theirfunction. The typical solution for accessing such data was either to use a scripting lan-guage, a dynamic access library (both illustrated above), or a code-generation tool thatwould generate code for accessing the data source or anAPI (althoughonly for data sourceswith small enough schema). This provided the motivation for the type provider mecha-nism in F# (Syme et al., 2012, 2013), which made it possible to make the type checker in astatically-typed programming language aware of the structure of external data sources.Technically, a type provider in F# is an extension that is executed by the compiler atcompile-time. A type provider can run arbitrary code, such as accessing a database schemaor another external data source. It then generates a representation of a type that is passedto the compiler and used to check the user program. For example, the World Bank typeprovider (Figure 2.3) retrieves the list of known countries and indicators from the WorldBank database (by querying the REST API provided by the World Bank) and generates acollection of types. The WorldBank type has a GetDataContextmethod, which returns an

1 type WorldBank = WorldBankDataProvider<"World Development Indicators">
2 let data = WorldBank.GetDataContext()
3
4 data.Countries.‘‘United Kingdom‘‘.Indicators
5 .‘‘Central government debt, total (% of GDP)‘‘

Figure 2.3: TheWorld Bank type provider (Syme et al., 2012) provides access to indicators collectedby theWorld Bank. The countries and indicators aremapped to properties (members) of an F# classthat represents the data.
instance of a type with the Countriesmember and the type returned by this member hasone member corresponding to each country in the World Bank database. The World Banktype provider, created by the author of this thesis and presented in a report (Syme et al.,2012) not included here, shows two important properties of type providers:

• Static type provider parameters. A type provider in F# can take literal values (suchas "World Development Indicators") as parameters. They can be used when theprovider is executed (at compile-time) to guide how types are generated. Here, theparameter specifies a particular database to use as the source. These can be namesof files with schema, connection strings or live URLs.
• Lazy type generation. The types generated by a type provider are generated lazily,i.e., the members of a type (and the return types of those members) are only gen-erated when the type checker encounters the type in code. This makes it possibleto import very large (potentially infinite) external schema into the type system.
There are other interesting aspects of type providers, but the above two features arecrucial for the work included in this thesis. In the following two sections, I review thekey contributions to type providers presented in Part II make data acquisition reliable andsimpler. The work on type providers included in this thesis develops two kinds of typeproviders. The type providers for CSV, JSON, and XML packaged in the F# Data librarymakeit possible to access data in a statically-checked way using ordinary member access. Thework also makes two theoretical contributions, an algorithm for schema inference fromsample data and a programming language theory of type providers.The pivot type provider, developed for the experimental programming language TheGamma, makes it possible to construct queries such as that shown in Figure 2.2 (and wasmentioned briefly in Section 1.1). It adapts the theory developed for the F# Data typeproviders to show that only correct queries can be constructed when using it. The fullaccount of the work can be found in Chapter 6 and Chapter 7, respectively. The followingprovides an accessible high-level overview of the contributions.

2.2 Type providers for semi-structured data

The F# Data library implements type providers for accessing data in XML, JSON, and CSVformats. It is based on the premise that most real-world data sources using those formatsdo not have an explicit schema. The type providers thus infer the schema froma sample (ora collection of samples). The inferred schema is then mapped to F# types through whichthe user of the type provider can access the data.

1 // worldbank.json - a sample response used for schema inference
2 [{ "page": 1, "pages": 1, "per_page": "1000", "total": 53 },
3 [{ "indicator": { "id": "GC.DOD.TOTL.GD.ZS" },
4 "country": { "id": "CZ" },
5 "date": "2011", "value": null },
6 { "indicator": { "id": "GC.DOD.TOTL.GD.ZS" },
7 "country": { "id": "CZ" },
8 "date": "2010", "value": 35.1422970266502 }]]

1 // demo.fsx - a data acquisition script using a type provider
2 type WB = JsonProvider<"worldbank.json">
3 let wb = WB.Load("http://api.worldbank.org/.../GC.DOD.TOTL.GD.ZS?json")
4
5 printf "Total: %d" wb.Record.Total
6 for item in wb.Array do
7 match item.Value with
8 | Some v -> printf "%d %f" item.Date v
9 | _ -> ()

Figure 2.4: Using the .JSON type provider for accessing data from a REST API. The inference uses alocal sample file, while at runtime, data is obtained by calling the live service.

The example shown in Figure 2.4 illustrates one typical use. Here, the user is accessinginformation from a service that returns data as JSON (incidentally, the service is also theWorld Bank, but here we treat it as an ordinary REST service). The user stored a local copyof a sample response from the service (worldbank.json) and uses it as a static parameterfor the JSON type provider (line 2). They then load data from the live service (line 3) andprint the total number of items (line 5) as well as each year for which there is a value (line8). Three aspects of the type provider deserve particular attention:
• Real-world schema inference is hard. Here, the response is an array always contain-ing two items, a record with meta-data and an array with individual data points. Thedata records have a consistent structure, although some values may be null.
• Inference needs to be stable. The type providers allow adding further samples. If theuser adds further examples, the structure of the provided types should change in apredictable (and limited) way so that the user code can be easily updated.
• Safety guaranteed by static checks is relative. Static type checking guarantees thatonly data available in the sample input can be accessed in user code, but if the dataloaded at runtime has a different structure, this will not prevent errors. We thusneed to specify what exactly can the system guarantee about programs.
The F# Data type providers, presented in full in Chapter 6 offer an answer to all ofthese three challenges. They can infer the shape of real-world data, infer types with astable structure, and capture the runtime guarantees formally through the relative safetyproperty. The publication also presented novel programming language theory thatmade itpossible to analyze typeproviders formally, which I briefly review in the next three sections.

2.2.1 Shape inference and provider structure

When the type provider for semi-structured data is used, it is given a sample of data thatcan be analyzed at compile time (such as the "worldbank.json" file name above). It usesthis to infer the shape of the data. A shape is a structure similar to a type and is composedfrom primitive shapes, record shapes, collections, and a few other special shapes:
σ̂ = ν {ν1 :σ1, . . . , νn :σn}
| float | int | bool | string

σ = nullable σ̂ | [σ] | any | null | ⊥

The inferencedistinguishes betweennon-nullable shapes (σ̂) andnullable shapes (σ), whichcan be inferred even when the collection of inputs contains the null value. The formerconsists of primitive shapes (inferred from a corresponding value) and a record shape. Therecord shape has an (optional) name ν and consists of multiple fields that have their ownrespective shapes. A record is the shape inferred for JSON objects, but also XML elementscontaining attributes and child elements. A non-nullable shape can be made nullable byexplicitly wrapping it as nullable σ̂ . Other nullable shapes include collections (a nullvalue is treated as an empty collection) and shapes that represent any data, only null val-ues, and the bottom shape ⊥, representing no information about the shape. The abovedefinition does not include the handling of choice shapes (corresponding to sum types),which is introduced later.A key technical operation of the shape inference is expressed using the common pre-
ferred shape function written as σ1▽σ2 = σ. Given two shapes, the function returns ashape the most specific shape that can be used to represent the values of both of the twogiven shapes. The details are discussed later, but it is worth illustrating how the functionworks using two examples.

• int▽ float = float In this case, the common preferred shape is float. Thismay lead to a loss of precision, but it makes accessing the data easier than if weinferred a shape representing a choice shape. This is one example where the systemfavors practical usability over formal correctness.
• {x : int}▽ {x : int, y : int} = {x : int, y : nullable int } In this case, thecommon preferred shape is a record where the field that was missing in one of theshapes ismarked as nullable. In general, the systemaims to infer recordswheneverpossible, which is the key for the stability of inferred types discussed below.
When the type provider is used, it receives a sample data value and uses it to infer theexpected shape of data. A data value is modeled formally as a value that can be either aprimitive value (integer i, floating-point value f , string s, a Boolean or null), a collectionof values or a record with fields that have other values:

d = i | f | s | true | false | null
| [d1; . . . ; dn] | ν {ν1 7→ d1, . . . , νn 7→ dn}

The shape inference is then defined as a function S(()d1, . . . , dn) = σ that takes a collec-tion of data values and infers a single shape σ that represents the shape of all the specifiedvalues. (Note that this can always be defined. In cases where values are of incompatibleshape, the system infers the shape any.)

S(i) = int S(null) = null S(true) = bool
S(f) = float S(s) = string S(false) = bool

S([d1; . . . ; dn]) = [S(d1, . . . , dn)]

S(ν {ν1 7→ d1, . . . , νn 7→ dn}) = ν {ν1 : S(d1), . . . , νn : S(dn)}

S(d1, . . . , dn) = σn where σ0 = ⊥, ∀i ∈ {1..n}. σi−1▽S(di) ⊢ σi

The shape inference is primarily defined on individual data values. For those, the systeminfers the shape corresponding to the value. For lists, we infer the shape based on all thevalues in the list. Finally, the last rule handlesmultiple sample data values by inferring theirindividual shapes and combining them using the ▽ function.The last aspect of the formal programming language model of type providers is thelogic that, given an inferred shape, produces the corresponding F# type. To explain theimportant properties of type providers, we do not need to elaborate on what an F# type ishere, but themost important case is a class withmembers (properties ormethods). A typeprovider takes the inferred shape and produces an F# type τ for the shape, a collection ofclasses L that may appear in τ (typically as types of members in case τ is a class). Thetype provider also needs to generate code that turns a raw data value d passed as input atruntime into a value of the provided type τ , which is represented as an expression e:
JσK = (τ, e, L) (where L, ∅ ⊢ e : Data→ τ)

The mapping JσK takes an inferred shape σ and returns a triple consisting of an F# type τ ,a function turning a data value into a value of type τ and a collection of classes L.This brief overview of the formal model of type providers for semi-structured datamakes it possible to formulate the two key results about the F# Data type providers. Thefirst describes the relative type safety of programs written using a type provider and is anovel variation on the classic type safety property of programming language research. Thesecond describes the stability of provided types and concerns the usability of the system.
2.2.2 Relative safety of checked programs

The aim of type systems, in general, is to ensure that programswhich passed type checkingdo not contain a certain class of errors. This has been characterised by Milner (1978) usinga famous slogan “Well typed programs do not gowrong” (withwrong being a formal entityinMilner’s system). A codewritten using a type provider can gowrong if the input obtainedat runtime is of a structure that does notmatch the structure of the input used as a samplefor shape inference at compile time.However, thanks to the formal model defined above, the property can be specifiedprecisely, and most importantly, we can specify for which inputs the programs writtenusing a type provider will never fail because of invalid data access. The definition relieson a preferred shape relation ⊑, which captures the fact that one shape is more specificthan another (if σ1 ⊑ σ2 then σ1▽σ2 = σ2). The theorem is also defined in terms of the
⇝ operation, which captures the operational semantics of the programs of the languageused in the formal model. The relation e1 ⇝ e2 specifies that an expression e1 reduces to
e2 in a single step (and⇝∗ is the transitive closure of⇝).

Theorem 1 (Relative safety). Assume d1, . . . , dn are samples, σ = S(d1, . . . , dn) is an
inferred shape and τ, e, L = JσK are a type, expression, and class definitions generated by
a type provider.

For all inputs d′ such that S(d′) ⊑ σ and all expressions e′ (representing the user code)
such that e′ does not contain any of the dynamic data operations op and any Data values
as sub-expressions and L; y : τ ⊢ e′ : τ ′, it is the case that L, e[y ← e′ d′] ⇝∗ v for some
value v and also ∅;⊢ v : τ ′.

In other words, the relative safety property specifies that, for any program that theuser may write using a type provider (without using low-level functions that are only ac-cessible inside a type provider), if the program is executed with any input whose shape ismore specific than the shape inferred from statically known samples, the programwill notencounter a data-related runtime error. It is, of course, still possible for runtime errors tohappen, but not with a well-chosen sample and, as the wide-ranging adoption of the F#Data library suggests,1 this is often a sufficient guarantee in practice.
2.2.3 Stability of provided types

When the user of an F# Data type provider gets a runtime error, this is because the datasource they use produces an input of a structure not encountered before. A typical exam-ple is an input that includes null in a field that previously always had a value. Such errorsare inevitable (without an explicit schema). The programmer can handle this by addingthe new input as a new sample to the collection of samples used for the shape inference.If they do so, the type provider will provide a new different type. In this case, an im-portant property of the system is that the newly provided type will have the same generalstructure as the type provided before. This means that the data processing code, writtenusing the provided type, will be easy to adapt. The programmer will need to add handlingof a missing value, but they will not have to restructure their code. (A system based onstatistical analysis of similarity would not have this property as a small change in the inputmay affect a decision whether two shapes are sufficiently similar to be unified into a singletype.) Using the formal model, we can capture this property (and later prove that it holdsfor the F# Data type providers).
Theorem2 (Stability of inference). Assumewehave a set of samples d1, . . . , dn, a provided
type based on the samples τ1, e1, L1 = JS(d1, . . . , dn)K and some user code e written
using the provided type, such thatL1;x : τ1 ⊢ e : τ . Next, we add a new sample dn+1 and
consider a new provided type τ2, e2, L2 = JS(d1, . . . , dn, dn+1)K.

Now there exists e′ such that L2;x : τ2 ⊢ e′ : τ and if for some d it is the case that
e[x ← e1 d] ⇝ v then also e′[x ← e2 d] ⇝ v. Such e′ is obtained by transforming
sub-expressions of e using one of the following translation rules:

(i) C[e] to C[match e with Some(v)→ v | None→ exn]
(ii) C[e] to C[e.M] where M = tagof(σ) for some σ
(iii) C[e] to C[int(e)]

The translation rules use a context C[e] to specify that a transformation needs to bedone somewhere in the program. Importantly, all the rules are localmeaning that a change
1The package is one of the most downloaded F# libraries at the https://www.nuget.org package repository andthe open-source project at https://github.com/fsprojects/FSharp.Data has over 100 contributors.

https://www.nuget.org
https://github.com/fsprojects/FSharp.Data

1 olympics
2 .’filter data’.’Games is’.’Rio (2016)’.then
3 .’group data’.’by Athlete’.’sum Gold’.then
4 .’sort data’.’by Gold descending’.then
5 .’paging’.take(8)

Figure 2.5: Data transformation constructed using the pivot type provider. This implements thesame logic as pandas code in Figure 2.5, computing the top 8 athletes from the Rio 2016 Olympicgames based on their number of gold medals.
is done in a particular place in the program. The change can be (i) handling ofmissing value,(ii) accessing a newly introduced member when the change introduces a new choice typeand (iii) adding a conversion of a primitive value.
2.3 Type providers for query construction

The type providers presented in the previous section are designed to allow easy program-matic access to data in semi-structured formats. The focus is on providing typed directaccess to the data. The pivot type provider, presented in Chapter 7, builds on the sameconcepts but focuses on letting users construct queries over tabular data. The user shouldnot just be able to fetch the data in a typed form, but also use the provided types to filter,aggregate, and reshape the data.The use of the pivot type provider is illustrated in Figure 2.5, which implements thedata querying logic written using the pandas Python library in Figure 2.2. The type provideris implemented in the context of The Gamma programming language, which is a simplestatically typed programming language with class-based object model and type providersthat runs in the web browser.As the code sample shows, the querying is implemented as a single chain of memberaccesses. Except for take, which is a method with a numerical parameter, all the mem-bers are properties that return another object of another class type with further membersthat can be used to continue constructing the query (the symbol ’ is used to wrap namescontaining a space). The system has a number of properties:
• Discoverability of members. All querying logic is expressed through member ac-cesses. The members are statically known (generated by a type provider). Whenusing the type provider in an editor, the user gets a choice of available members(auto-completion) when they type “.” and they can thus construct a query simply byrepeatedly choosing one of the offered members.
• Lazy class generation. The classes used in the code are generated lazily. This is nec-essary because each operation transforms the set of available fields based on whichthe subsequent types are generated. For example, calling ’drop Games’ would re-move the field Games from the schema.
• Safety of generated types. Any query constructed using the type provider is correctmeaning that it will not attempt to access a field that does not exist in the data. Thisis a variant of the usual type safety property that is formalized below.
The formalization of the type provider follows the same style as that for F# Data, butit explicitly encodes the laziness of the type provider as illustrated in the next section.

2.3.1 Formalising lazy type provider for data querying

The pivot type provider works on tabular data. In order to generate a type, it needs to havethe schema of the input table (names of fields and their types). In the above example, thetype provider is imported through a configuration rather than code, and olympics refersto a value of the provided type, but the type is generated using a known schema of theinput data. In the formal model, the schema is written as (with f ranging over the fieldnames and τ ranging over a small set of primitive types):
F = {f1 7→ τ1, . . . , fn 7→ τn}

When the type provider is invoked, it takes the schema and generates a class for query-ing data of the given schema. The types of members of the class are further classes thatallow further querying. As the provided class structure is potentially infinite, it needs tobe generated lazily. The structure of the provided class definition, written as L is thus afunction mapping a class nameC to a pair consisting of the class definition and a functionthat provides definitions of delayed classes (types used by the members of the class C):
L(C) = type C(x : τ) = m,L′

Here, type C(x : τ) = m is a definition of a class C that consists of a sequence of mem-bersm and has a constructor taking a variable x of type τ as an argument. The structureand evaluation of the resulting object calculus is discussed in Chapter 7 and is looselymod-eled after standard object calculi (Igarashi et al., 2001; Abadi and Cardelli, 2012), with theexception that it includes operations for transforming data as primitives.The classes provided by the pivot type provider can be used to construct a query, whichis a value of type Query. Expressions of this type are those of relational algebra (projection,sorting, selection, aswell as additional grouping). The type provider constructs classes thattake the query constructed so far as the constructor argument. The providedmembers fur-ther refine and build the query. A type provider is formally defined as a function pivot(F),which is similar to the function JσK defined for the F# Data type providers:
pivot(F) = C, {C 7→ (type C(x : Query) = . . . , L)}where F = {f1 7→ τ1, . . . , fn 7→ τn}

The full definition given in Chapter 7 uses a number of auxiliary functions to define thetype provider, each of which defines members for specifying a particular query operation.To illustrate the approach, the following excerpt shows the drop(F) function that is usedto construct operations that let the user drop any of the columns currently in the schema
F . The generated class has a member ’drop f’ for each of the fields and amember then,which can be used to complete the selection and return to the choice of other query op-erations. Each of the drop operations returns a class generated for the newly restricteddomain and passes it a query that applies the selectionΠ operation of the relational alge-bra on the input data:
drop(F) = C, {C 7→ (l, L′ ∪

⋃
Lf)}

l = type C(x : Query) = ∀f ∈ dom(F) where Cf , Lf = drop(F ′)
member ’drop f’ : Cf = Cf (Πdom(F ′)(x)) and F ′ = {f ′ 7→ τ ′ ∈ F, f ′ ̸= f}
member then : C ′ = C ′(x) where C ′, L′ = pivot(F)

The formalization of the pivot type provider follows a similar style as that of the F#Data, although it differs in that it explicitly represents the laziness of the type generationand also in that the provided types construct more complex code, expressed using a a vari-ant of relational algebra, that is executed at runtime. The formalization serves to explainthe functioning of the type provider, but also allows us to prove its safety.
2.3.2 Safety of data acquisition programs

Thepivot typeprovider guarantees that the data transformations, which canbe constructedusing the types it generates will always be correct. They will never result in an undefinedruntime behavior that one may otherwise encounter when accidentally accessing a non-existent field. This is an important result because the sequence of operations transformsthe fields in interesting ways. Operations like dropremove fields from the schema, while
group by changes the set of fields and their types (e.g., when we count distinct values ofa string-typed field f in aggregation, the resulting dataset will contain a numerical field f).To capture the property formally, we again state that any program written by the pro-grammer using the type provider (without directly accessing the low-level operations ofthe relational algebra) will always reduce to a value. The evaluation is defined on datasets
Dwhichmapfields to vectors of values, written asD = {f1 7→ v1,1, . . . , v1,m , . . . , fn 7→
vn,1, . . . , vn,m }. A specific kind of data value is a data series series τk, τv (D) that con-tains a vector of keys k and a vector of values v. The evaluation is defined as a reduction op-eration e⇝∗

L e′ which also has access to class definitionsL. Similarly, the typing judgment
L1; Γ ⊢ e : τ ;L2 includes additional handling of lazily generated classes. It states that theexpression e has a type τ in a variable context Γ. The typing is provided with (potentiallyunevaluated) class definitions L1. It accesses (and evaluates) some of those definitionsand those that are used throughout the typing derivation are represented by L2.
Theorem 3 (Safety of pivot type provider). Given a schemaF = {f1 7→ τ1, . . . , fn 7→ τn},
let C,L = pivot(F) then for any expression e that does not contain relational algebra
operations or Query-typed values as sub-expression, if L;x : C ⊢ e : series τ1, τ2 ;L′

then for allD = {f1 7→ v1,1, . . . , v1,m , . . . , fn 7→ vn,1, . . . , vn,m } such that ⊢ vi,j : τi
it holds that e[x ← C(D)] ⇝∗

L′ series τk, τv ({fk 7→ k1, . . . , kr, fv 7→ v1, . . . , vr})
such that for all j ⊢ kj : τk and ⊢ vj : τv.

In other words, if a programmer uses the provided types to write a program e thatevaluates to a data series and we provide the programwith input dataD that matches theschema used to invoke the type provider, the programwill always evaluate to a data seriescontaining values of the correct type. Although the property is not labeled as relative type
safety as in the case of the F# Data type providers, it follows the same spirit. A well-typedprogram will not go wrong, as long as the input has the right structure.
2.4 Contributions

In this chapter, I offered a brief overview of the work on type providers that is includedin Part II. The focus of this part is on simplifying programmatic data acquisition, that is onmaking it easier and safer to write code that reads data from external data sources. It con-sists of a type provider for semi-structured data in XML, JSON and CSV formats (Chapter 6)and a type provider that makes it possible to express queries over tabular data (Chapter 7).

L Key contributions. The publications included in Part II include three main con-tributions. They introduce the novel notion of relative type safety for discussingcorrectness of programs that rely on external data, they present type providers for
structured data formats and they a type provider for querying relational databasesthat guarantees relative type safety of the resulting program.

Both of the contributions consist of a practical implementation, as a library for the F# lan-guage and as a component of the web-based programming environment The Gamma, re-spectively. They combine this with a theoretical analysis using the methodology of theo-retical programming language research. This makes it possible to precisely capture subtleaspects of how the type providers work (including shape inference, laziness, and genera-tion of types for query construction), but also to capture safety guarantees of the gener-ated types. Given that type providers always access external data, the guarantees are notabsolute as in conventional programming language theory. For this reason, my work intro-duced a novel notion of relative type safety, stating that programs will “not go wrong” aslong as the input has the correct structure (in a precisely defined sense).From a broader perspective, the two type providers can be seen as filling a glaringgap in the theoretical work of statically-typed programs. A theoretician who defines atype system always uses a top-level typing rule ⊢ e : τ stating that a program e (closedexpression) that does not use any variables has a type τ . While at the top-level, programsmay not use any variables, this is misleading becausemost real-world programs access theoutside world in some way, but this is typically done in an unchecked way. Monads andeffect systems (Lucassen and Gifford, 1988; Peyton Jones and Wadler, 1993) can be usedto track that some external access is made, but they do not help the static type systemunderstand the structure of the outside data. With slight notational creativity, we cansay that the static type checking of a program that uses type providers starts with a rule
π(⊕) ⊢ e :τ where⊕ (used as the astronomical symbol for the Earth) refers to the entireoutside world and π refers to some projection from all the things that exist in the outsideworld to program variables with static types that a programming language understands.The two kinds of type providers discussed in this chapter also differ in how they ap-proach the technology gap suggested in Figure 1.1. The F# Data type providers aim tomakeprogramming with external data in a statically typed programming language a bit easier. Inother words, they extend the area that can be covered by conventional programming, in-cluding more users and reducing the complexity. The pivot type provider and The Gammaprogramming environment tries to fill a particular space within the gap. It lets a relativelylarge number of users (who are not professional programmers) solve problems that aremore complex than simple data wrangling in a spreadsheet system, but much less com-plex than using a conventional programming tool such as Python and pandas. Its usabilityis a topic I will revisit in Chapter 4 and the paper included as Chapter 10.

Chapter 3

Data infrastructure

Data scientists use a wide range of tools when working with data. A large part of whatmakes data cleaning and data exploration challenging is that data scientists often needto switch from one tool to another (Rattenbury et al., 2017). They may use an interactiveonline tool like Trifacta to do data cleanup, run an ad-hoc command-line tool to transformit, and then import it into a Jupyter notebook to create a visualization. Moreover, datascience is an interactive and iterative process. Data scientist need to be able to quicklyreview the results of the operation they performed in order to see whether the resultsmatch their expectations and to detect unexpected problems. The interactivity brings afurther challenge, which is the reproducibility of results. If the data scientist quickly triesmultiple different approaches, and reverts some of their earlier experiments, they shouldalways be able to know what exact steps led to the final result they see on their screen.In this chapter, I provide an overview of two contributions to the infrastructure fordoing data exploration. The work addresses the three requirements that arise from thetypical way data exploration is done as outlined above:
• Polyglot tooling support. Data scientist need an easy way of integrating multipledifferent tools. For example, they should be able to use simple data acquisition tools,such as the pivot type provider implemented in The Gamma, but then pass the datato Python for further processing or to a visual interactive tool.
• Live preview support. In order to let data scientists quickly review the results of theoperations they perform, the infrastructure should provide immediate live previewswithout unnecessary recomputation.
• Reproducibility and correctness. The results that the data scientist sees on the screenshould always match with the code (or reproducible another trace) they have intheir data exploration environment. If the operations involved are deterministic,re-running them should produce the same result.
Although each of those challenges has a range of solutions, there are notmany systemsthat address all of them. This chapter provides an overview of work leading towards such asystem. It consists of two parts. The first is a data exploration environment for The Gammathat introduces an efficient way of evaluating live previews (presented in full in Chapter 8)using a method based on maintaining a dependency graph. The second part is a notebooksystem for data science called Wrattler (presented in full in Chapter 9) that follows thesame basic approach, but allows integration of multiple languages and tools and also usesthe dependency graph to ensure reproducibility of the data explorations.

29

Figure 3.1: A live preview in The Gamma, generated for a code snippet that uses the pivot typeprovider for data exploration. The interface also lets the user navigate through the steps of thetransformation and modify parameters of the query.

Methodologically, the work outlined in this chapter combines the programming sys-tems research methods with programming language theory. Both of the systems are avail-able as open-source projects and they have been evaluated through a range of realisticcase studies. The publication on live previews for data exploration environments presentsa formal model to explain how live previews are computed using a dependency graph andto show the correctness of this approach, but it also includes a performance evaluation.The main contribution of the work on Wrattler is the novel architecture of the system.
3.1 Notebooks and live programming

As noted above, all three of the challenges have been addressed in isolation. The inte-gration of different tools has been addressed in the context of scientific workflow systemssuch as Taverna (Oinn et al., 2004) and Kepler (Altintas et al., 2004) that orchestrate com-plex scientific pipelines, but such tooling is too heavyweight for basic data explorationdone for example by data journalists. Scientific workflow systems also tackle the problemof reproducibility as the workflows capture the entire data processing pipeline.In the context of programming tools, work on live environments that provide immedi-ate feedback and help the programmer better understand relationships between the pro-gram code and its outputs have been inspired by the work of Victor (2012b,a). A compre-hensive review by Rein et al. (2019) includes programming tools and systems that provideimmediate feedback ranging from those for UI development and image processing to livecoding tools for music. A chief difficulty with providing live feedback as code is modifiedlies in identifying what has been changed. This can be done by using a structure editor thatkeeps track of code edits (Omar et al., 2019). The approach presented below aims to sup-port ordinary text-based editing and is based on the idea of reconstructing a dependencygraph from the code.

Finally, the issue of reproducibility has received much attention in the context of note-books for data science such as Jupyter (Kluyver et al., 2016). Although Jupyter can be usedto produce reproducible notebooks, there are practical barriers to this. In particular, it al-lows execution of cells out-of-order, meaning that one can run code in a way that modifiesthe global state in an unexpected and non-reproducible way. This has been addressed inmultiple systems (Pimentel et al., 2015; Koop and Patel, 2017) and our approach inWrattlerbuilds on this tradition.
3.2 Live data exploration environment

The Gamma explores a particular point in the design space of data exploration tools. It isbuilt around code written in a simple programming language, leveraging the type providerintroduced in Section 2.3. This focus on code makes it easier to guarantee reproducibilityand transparency of data analyses. At the same time, the design raises the question ofhow easy can data exploration be when done through a text-based programmatic envi-ronment. I revisit this problem from the human-computer interaction perspective in thenext chapter, after discussing the infrastructure that makes using The Gamma easier.One of the lessons learned from spreadsheets is the value of immediate or live feed-back. To make data exploration in The Gamma easier, the work outlined in this sectiondevelops an efficient method for displaying live previews for The Gamma as illustrated inFigure 3.1. However, providing live previews in a text-based programming environment isa challenge (McDirmid, 2007). There are two difficulties:
• Live previews and abstractions. It is difficult to provide live previews for code in-side functions or classes because variables in such context cannot be easily linkedto concrete values. Even if such abstractions are not used as frequently in data ex-ploration code, abstractions are often the key concern in conventional theoreticalthinking about programming language design.
• Responding to code changes. Code in a text editor can change in arbitrary ways andso it is unclear how to update the existing live preview when an edit is made. Thisis easier in structure editors where edits are limited and understood by the system,but live previews for a text-based systemneed to accommodate large and potentiallybreaking changes in code.
In the work included as Chapter 8, I tackle the first challenge by arguing that we needa better theoretical model of programming languages for data exploration. When datascientist explore data in a notebook environment, they typically do not introduce newabstractions and most code is first-order. They often use external libraries, some of whichprovide higher-order functions (projection, filtering, etc.) and so code may use functionsand lambda expressions, but those are typically passed directly as arguments to thosefunctions. My work thus introduces the data exploration calculus, which is a small formalmodel of a programming language that corresponds closely to codewritten to explore dataand can be used to formally study problems in programmatic data exploration tools.The problem of responding to code changes is tackled by constructing a dependencygraph and caching its nodes. When the code is edited, the new version is parsed, resultingin a new abstract syntax tree. The nodes of the tree are then analyzed and linked to nodesin a dependency graph. When the node of the tree corresponds to a dependency graphnode that has been created previously (with the same dependencies), the graph node is

Programs, commands, terms, expressions, and values

p ::= c1; . . . ; cn
c ::= t
| let x = t t

t ::= o
| x
| t.m(e, . . . , e)

e ::= t | λx→ e
v ::= o | λx→ e

Evaluation contexts of expressions

Ce[−] = Ce[−].m(e1, . . . , en) | o.m(v1, . . . , vm, Ce[−], e1, . . . , en) | −
Cc[−] = let x = Ce[−] | Ce[−]
Cp[−] = o1; . . . ; ok; Cc[−]; c1; . . . ; cn

Let elimination and member reduction

o1; . . . ; ok; let x = o; c1; . . . ; cn ⇝
o1; . . . ; ok; o; c1[x← o]; . . . ; cn[x← o]

(let)
o.m(v1, . . . , vn)⇝ϵ o

′

Cp[o.m(v1, . . . , vn)]⇝ Cp[o
′]

(external)

Figure 3.2: Syntax, contexts and reduction rules of the data exploration calculus

reused. Live previews are then computed (and associated with) dependency graph nodes.As a result, when dependencies of a particular expression do not change, it is linked to thesame graph node as before and the associated live preview is reused.In the following two sections, I provide a brief review of the data exploration calculusand of the dependency graph construction mechanism. In Chapter 8, the data explorationcalculus is then used to formalize the graph construction and show that live previews com-puted based on the graph are the same as previews that would be computed by directlyevaluating the data exploration calculus expression. The publication also evaluates the ef-ficiency using live previews, quantifying the reduction in overhead in contrast to two otherevaluation strategies.
3.2.1 Data exploration calculus

Thedata exploration calculus is a small formal language for data exploration. The calculus isintended as a small realistic model of how are programming languages used in data explo-ration scripts and computational notebooks. The calculus itself is not Turing-complete andmodels first-order code only, but it supports the notion of external libraries that providespecific data exploration functionality. This may include standard functions for workingwith collections or data frames that are common in Python, but also libraries based ontype providers as in the case of The Gamma.Figure 3.2 shows the syntax of the calculus. A program p consists of a sequence of com-mands c. A command can be either a let binding or a term. Let bindings define variables
x that can be used in subsequent commands. As noted earlier, lambda functions can onlyappear as arguments in method calls. To model this, the calculus distinguishes betweenterms that can appear at the top-level and expressions that can appear as arguments inan invocation. A term t can be a value, variable, or a member access, while an expression
e can be a lambda function or a term. Values defined by external libraries are written as o.

The evaluation is defined by a small-step reduction ⇝. Fully evaluating a programresults in an irreducible sequence of objects o1; . . . ; on (one object for each command,including let bindings) which can be displayed as intermediate results of the data analysis.The operational semantics is parameterized by a relation⇝ϵ that models the functionalityof external libraries. Figure 3.2 defines the reduction rules in terms of⇝ϵ and evaluationcontexts; Ce specifies left-to-right evaluation of arguments of a method call, Cc specifiesevaluation of a command and Cp defines left-to-right evaluation of a program. The rule(external) calls a method provided by an external library in a call-by-value fashion, while(let) substitutes a value of an evaluated variable in all subsequent commands and leavesthe result in the list of commands.Note that our semantics does not define how λ applications are reduced. This is doneby external libraries, which will typically supply functions with arguments using standard
β-reduction. The result of evaluating an external call is also required to be an object value
o. To illustrate how a definition of an external library looks, consider the following script:

let l = list.range(0, 10)
l.map(λx→ math.mul(x, 10))

Anexternal library provides the list and mathobjects, aswell as numbersn, lists of objects
[o1, . . . , ok], and failed computations ⊥. Next, the external library needs to define thesemantics of the range, mul, and map members through the⇝ϵ relation. The followingshows the rules for the map operation on lists:

e[x← ni]⇝ oi (for all i ∈ 1 . . . k)

[n1, . . . , nk].map(λx→ e)⇝ϵ [o1, . . . , ok]

(otherwise)
[n1, . . . , nk].m(v1, . . . , vn)⇝ϵ ⊥

When evaluating map, we apply the provided function to all elements of the list using stan-dard β-reduction and return a list of resulting objects. The⇝ϵ relation is defined on allmember accesses, but non-existent members reduce to the failed computation⊥.We require that external libraries satisfy two conditions. First, when amethod is calledwith observationally equivalent values as arguments, it should return the same value (com-positionality). Second, the evaluation of o.m(v1, . . . , vn) should be defined for all o, n and
vi (totality). The above definition satisfies those requirements by using the standard β-reduction for reducing lambda functions and by reducing all invalid calls to the ⊥ object.Compositionality implies the deterministic behavior of external libraries and is essentialfor implementing an efficient live preview mechanism. The totality of the definition, inturn, makes it possible to prove the following normalization property:
Theorem 4 (Normalization). For all p, there exists n, o1, . . . , on such that p⇝∗ o1; . . . ; on
where⇝∗ is the reflexive, transitive closure of⇝.

The value of the data exploration calculus is that it can be used tomodel the functional-ity of different tools that support data exploration. The work outlined here (and presentedin full in Chapter 8) uses the calculus to formalize an efficient mechanism for showing livepreviews during the editing of data exploration script. As mentioned earlier, the mech-anism works by constructing a dependency graph, binding expressions to the graph andassociating live previews with the (cached) nodes of the graph. The formal properties ofthe data exploration calculus make it possible to prove that live previews computed inthis way are the same as previews that would be obtained by fully re-evaluating the dataexploration script.

val(10) val(15)

mem(skip, s0)

arg(0)
��

arg(1)

OO

mem(take, s1)
arg(0)oo

arg(1)

OO

var(data)

(a) Graph constructed from initial expression:
let x = 15 in data.skip(10).take(x)

val(10)

mem(skip, s0)

arg(0)
��

arg(1)

OO

mem(take, s2)
arg(0)oo

arg(1)
kk

var(data)

(b) Updated graph after changing x to 10:
let x = 10 in data.skip(10).take(x)

Figure 3.3: Dependency graphs formed by two steps of the live programming process.

3.2.2 Computing previews using a dependency graph

Given a program in the data exploration calculus, I now describe the core of a mechanismthat can be used for providing the user with live previews as illustrated in Figure 3.1. Thekey idea behind our method is to maintain a dependency graph with nodes representingindividual operations of the computation that can be evaluated to obtain a preview. Eachtime the program text ismodified, we parse it afresh (using an error-recovering parser) andbind the abstract syntax tree to the dependency graph. When binding a new expression tothe graph, we reuse previously created nodes as long as they have the same structure andthe same dependencies. For expressions that have a new structure, we create new nodes.The nodes of the graph serve as unique keys into a lookup table containing previouslyevaluated parts of the program. When a preview is requested for an expression, we use thegraph node bound to the expression to find a preview. If a preview has not been evaluated,we force the evaluation of all dependencies in the graph and then evaluate the operationrepresented by the current node.The nodes of the graph represent individual operations of the computation. A nodeindicates what kind of operation the computation performs and is linked to its dependen-cies through edges. This makes it possible to define computation not just over expressionsof the data exploration calculus, but also over the dependency graph. In order to cachecomputed previews with the node as the key, some of the nodes need to be annotatedwith a unique symbol. That way, we can create two unique nodes representing, for exam-ple, access to a member named takewhich differ in their dependencies. The graph edgesare labeled with labels indicating the kind of dependency. For a method call, the labels are“first argument”, “second argument” and so on. Writing s for symbols and i for integers,nodes (vertices) v and edge labels l are defined as:
v = val(o) | var(x) | mem(m, s) | fun(x, s) (Vertices)
l = body | arg(i) (Edge labels)

The val node represents a primitive value and contains the object itself. Multiple occur-rences of the same value, such as 10, will be represented by the same node. Memberaccess mem contains the member name, together with a unique symbol s – two memberaccess nodes with different dependencies will contain a different symbol. Dependenciesof a member access are labeled with arg indicating the index of the argument (0 for theinstance and 1, 2, 3, . . . for the arguments). Finally, nodes fun and var represent functionvalues and variables bound by λ abstraction.

Figure 3.3 illustrates how to build the dependency graph. Node representing take(x)depends on the argument – the number 15 – and the instance, which is a node represent-ing skip(10). This, in turn, depends on the instance data and the number 10. Note thatvariables bound via let binding such as x do not appear as var nodes. The node using itdepends directly on the node representing the expression assigned to x.After changing the value of x, we create a new graph. The dependencies of the node
mem(skip, s0) are unchanged. The symbol s0 attached to the node remains the sameand so the previously computed previews can be reused. This part of the program is notrecomputed. The arg(1) dependency of the take call changed and so we create a newnode mem(skip, s2) with a fresh symbol s2. The preview for this node is then computedas needed using the already-known values of its dependencies.The full description of how the dependency graph is constructed can be found in Chap-ter 8. The construction proceeds recursively over the syntactic structure of the programin the data exploration calculus. For each expression in the program, it recursively obtainsgraph nodes representing its sub-expressions. It then checks the cache to see if a noderepresenting the current expression with the same dependencies exists already. If so, thenode is reused. If no, a new node (possibly with a new symbol) is created.The construction of the graph makes it possible to compute previews over the nodesof the dependency graph and cache the previously computed previews by using the graphnode as the cache key. I illustrate how the evaluation works using two of the reductionrules. For simplicity, I do not discuss the caching here. I will also write p for evaluatedpreviews which can be either primitive objects o or functions λx.e (for which we cannotshow a preview directly). Given a dependency graph (V,E) where V is a set of vertices
v1, v2, . . . , vn and E is a set of directed labelled edges of the form (v1, v2, l), the evalua-tion is then defined as a relation v ⇓ p. The following two rules illustrate evaluation forprimitive values and for member access:

val(o) ⇓ o
(val)

∀i ∈ {0 . . . k}.(mem(m, s), vi, arg(i)) ∈ E
vi ⇓ pi p0.m(p1, . . . , pk)⇝ϵ p

mem(m, s) ⇓ p
(mem-val)

The (val) rule is simple. If a graph node represents a primitive value, it directly reducesto the value. The (mem-val) rule illustrates a more interesting case. To evaluate a mem-ber access, we need to find the graph nodes that represent its arguments (by looking forlinks with an appropriate label), reduce those recursively, and then use the external libraryreduction⇝ϵ to reduce the member access.The sketch presented here omits one interesting aspect of the mechanism. In gen-eral, previews can be provided for all sub-expressions that include variables defined by anearlier let binding. However, if a sub-expression contains a variable bound by a lambdaexpression, we have no way of obtaining a suitable value for the variable. In this case, ourmechanism evaluates a delayed preview JeKΓ, which represents a partially-evaluated ex-pression that depends on variables specified by Γ. Delayed previews could still be useful ifthe user interface allowed the user to specify sample value for the free variables and theyalso have an interesting theoretical connection to work on Contextual Modal Type Theory(Nanevski et al., 2008) and comonads (Gabbay and Nanevski, 2013).

Figure 3.4: Wrattler running inside the JupyterLab system. The opened notebook passes data be-tween cells written in three different programming languages (Python, R and JavaScript).

The full paper, included as Chapter 8, uses two research methodologies to evaluatethe work. First, it formalizes how the live preview mechanism works using the modelbased on the data exploration calculus as sketched above. The formalization is used toshow that the previews computed over the dependency graph are correct. That is, theyare the same as the values we would obtain by evaluating the data exploration calculusexpressions directly. The formalization is also used to list a number of common edits to aprogram that do not invalidate previously computed live previews. Examples of such ed-its include extracting sub-expression into a let-bound variable, deleting or adding unusedcode, or changing unrelated parts of the program. The evaluation also employs program-ming systems research methods to empirically evaluate the efficiency of the live previewevaluation method. The paper contrasts the method with standard call-by-value and lazyevaluation strategies (without caching) and shows the reduction of delays in providing livepreviews for a sample coding scenario.
3.3 Live, reproducible, polyglot notebooks

The live data exploration environment discussed in the previous section tackles the prob-lem of providing rapid feedback to data scientists during data exploration. The other twochallenges that I listed in the opening of this chapter were the need for polyglot toolingsupport and the need to make data analyses more reproducible.The two challenges are addressed by the open-source Wrattler notebook system pre-sented in full in Chapter 9. Wrattler is an extension of the industry standard JupyterLabplatform. As illustrated in Figure 3.4, Wrattler adds a new type of document format that

Python runtime (server)

Data store
(server)

Notebook
(browser)

TheGamma runtime (browser)

Wrattler architecture

Kernel
(server)

Notebook
(browser)

Jupyter architecture
Python runtime (server)

Data store
(server)

Notebook
(browser)

TheGamma runtime (browser)

Wrattler architecture

Kernel
(server)

Notebook
(browser)

Jupyter architecture

Figure 3.5: In notebook systems such as Jupyter, state and execution are managed by a kernel. InWrattler, those functions are split between data store and language runtimes. Language runtimescan run on the server-side (e.g. Python) or client-side (e.g. The Gamma).

allows programmers to mix cells written in multiple different programming languages in asingle notebook. The extensibility model of Wrattler makes it possible to support not onlynew programming languages but also interactive tools that run directly in the notebook(hosted in a web browser). As a result, it is possible to integrate tools that provide a livepreview mechanism such as The Gamma and also interactive AI assistants that I discuss inPart IV. The architecture of the Wrattler system is based on two key principles:
• Polyglot architecture. The system is designed to allow the integration of compo-nents in different programming languages. This is done by splitting the monolithicarchitecture of Jupyter into individual components including the central data storeand multiple language runtimes.
• Design for reproducibility. To guarantee reproducibility and track data provenance,the system represents computation as a dependency graph. The graph is similar tothe one discussed in the previous section but uses a coarser granularity with onenode for each notebook cell.
TheWrattler system is presented in detail in Chapter 9. The paper follows the program-ming systems methodology. It focuses on the novel system architecture and documentsthe capabilities that are enabled by the architecture.

3.3.1 Architecture of a novel notebook system

Standard notebook architecture consists of a notebook and a kernel. The kernel runs on aserver, evaluates code snippets, and maintains the state they use. The notebook runs in abrowser and sends commands to the kernel in order to evaluate cells selected by the user.As illustrated in Figure 3.5, Wrattler splits the server functionality into two components:
• Data store. Imported external data and results of running scripts are stored in thedata store. The data store keeps version history and annotates data with metadatasuch as types, inferred semantics, and provenance information.
• Language runtimes. Code in notebook cells is evaluated by language runtimes. Theruntimes read input data from and write results back to the data store. Wrattlersupports language runtimes that run code on the server (similar to Jupyter) but alsobrowser-based language runtimes.

Figure 3.6: Dependency graph of a notebookfrom Figure 3.4. For each cell, the graph containsa code node and one (or possibly more) exportnodes that represent exported data frames. TheR and Python cells are independent and map toindependent graph nodes. The node correspond-ing to the final JavaScript cell depends on nodesrepresenting the two variables used in the code.

• Notebook. The notebook is displayed in a web browser and orchestrates all othercomponents. The browser builds a dependency graph between cells or individualcalls. It invokes language runtimes to evaluate code that has changed and readsdata from the data store to display results.
The central component of the system is the data store, which enables communica-tion between individual Wrattler components and provides persistent data storage. Dataframes stored in the data store are associatedwith a hash of a node in a dependency graphconstructed from the code in the notebook (using a mechanism discussed below) and areimmutable. When the notebook changes, new nodes with new hashes are created andappended to the data store. This means that language runtimes can cache data and avoidfetching them from the data store each time they need to evaluate a code snippet.External inputs imported intoWrattler notebooks (such as downloadedweb pages) arestored as binary blobs. Data frames are stored in either JSON or binary format. The datastore also supports a mechanism for annotating data frames with semantic information.Columns can be annotated with primitive data types (date, floating-point number) and se-mantic annotation indicating their meaning (address or longitude and latitude). Columns,rows, and individual cells of the data frame can also be annotated with custom metadatasuch as their data source or accuracy.

3.3.2 Dependency graphs for notebooks

At runtime, Wrattler maintains a dependency graph that is remarkably similar to the oneused in the live data exploration environment for The Gamma discussed in Section 3.2. Asbefore, the dependency graph is used to cache the results of previous computations. Thenodes in the graph have a unique identifier (hash) that is used as the key for caching datain the data store. When code in the notebook is modified, the graph is re-created, reusingpreviously created nodes where possible.An example of a dependency graph is shown in Figure 3.6. For every type of cell, Wrat-tler needs to be able to identify the names of imported and exported variables. In thecase of Python, R, and JavaScript, this is done using a lightweight code analysis. In the caseof The Gamma, which can also be used in Wrattler, the full parse tree and its associateddependency graph are available. A prototype extension of Wrattler embeds The Gammagraph as a sub-graph of the dependency graph maintained by Wrattler.An important design choice in the Wrattler design is that cells can only share data inthe form of a data frame. The trade-offs of this choice remain to be evaluated. On theone hand, it means that Wrattler fits only certain data analytical scenarios. On the otherhand, it makes it possible to easily share data between cells in different languages. In the

example dependency graph, each of the “export” nodes thus corresponds to a data framethat is stored in the data store (using the unique hash of the graph node as the key).The dependency graph is updated after every code change. This is done using the samemechanism as in the live data exploration environment discussed in Section 3.2. Wrattlerinvokes individual language runtimes to parse each cell. It then walks over the resultingstructure and constructs nodes for each cell or exported variable with edges indicatingdependencies. The hash for each node is computed from the data in the node (typicallysource code or variable name) and the hashes of nodes it depends on. An important prop-erty of this process is that, if there is no change in dependencies of a node, the hash ofthe node will be the same as before. As a result, previously evaluated values attached tonodes in the graph are reused.When the evaluation of an unevaluated cell is requested, Wrattler recursively evalu-ates all the nodes that the cell depends on and then evaluates the values exported by thecell. The evaluation is delegated to a language runtime associatedwith the language of thenode. For languages that run on the server-side (Python, R), the language runtime sendsthe source code, together with its dependencies, to a server that evaluates the code. Notethat the request needs to include only hashes of imported variables as the server can ob-tain those directly from the data store. For nodes that run on the client-side (JavaScript,The Gamma), the evaluation is done directly in the web browser.
3.4 Contributions

L Key contributions. The publications included in Part III include three main con-tributions. They capture the essence of data scripting in the form of data ex-
ploration calculus, they present the architecture for polyglot, live and reproducible
notebook systems and they describe an efficient algorithm for live preview recompu-
tation based on the construction of a dependency graph.

In this chapter, I outlined two contributions to the data analytics infrastructure that areincluded in Part III of this thesis. The two contributions describe systems that aim to makedata exploration more live and reproducible while supporting the polyglot reality of dataprocessing tools used today.The work included in Chapter 8 focuses on providing live previews during data explo-ration. Canwe simplify data exploration by efficiently previewing the result of a data trans-formationwhile the data analyst is constructing it and tweaking its parameters? Themech-anism presented in this thesis provides a possible answer. The work follows primarily theprogramming language research methodology and so it attempts to capture the core ideabehind the approach, using the simple (but adequate) formal model of the data explo-ration calculus. The implementation of the idea provides live previews for code writtenin The Gamma, a simple programming language with support for type providers that weencountered already in Section 2.3 and that I will return to once more in the next chapter,but using the perspective of human-computer interaction research.The work included in Chapter 9 presents a polyglot notebook system Wrattler. Thesystem makes it possible to mix multiple tools in a single notebook. This includes exist-ing programmatic tools, such as those based on Python and R, as well as novel tools like

The Gamma. The sharing is enabled by the design choice of allowing only data framesas the exchange format between cells. The promise of the Wrattler architecture is to en-able more research and innovation in the data exploration tooling space. It enables dataanalysts to use tools they are already familiar with, but use novel tools where appropri-ate - for example, include a cell in The Gamma that will let consumers of their notebooksexplore aggregate data without advanced programming expertise. We will leverage thisarchitecture again in the work on AI assistants (Chapter 11), outlined in the next chapter.One interesting point that is revealed by putting the two contributions side-by-side isthat they both rely on the same implementation technique. They both maintain a depen-dency graph of code (expressions or cells) and update it as the code is edited. The graphis constructed so that code that remains the same is bound to the same node, makingit possible to reuse previously computed results. The technical similarity is rooted in abroader principle. In both cases, the reproducible code is the final trace that produces allrelevant outputs. The principle is in contrast with an alternative where code is executedinteractively to modify some state as in systems based on Read-Eval-Print Loop (REPLs).

Chapter 4

Iterative prompting

Data wrangling is the tedious process of getting data into the right format for data explo-ration. It involves parsing data, joining multiple datasets, correcting errors, and recoveringsemantic information. According to domain experts (Rattenbury et al., 2017), data wran-gling takes up to 50-80% of data scientist’s time. Unfortunately, there is no easy cure tothe problem of data wrangling. The reason for the difficulty is what van den Burg et al.(2019) refer to as the double Anna Karenina principle: “every messy dataset is messy in itsown way, and every clean dataset is also clean in its own way.” In other words, there is nosingle characterization of a clean dataset that tools could optimize for. Human insight intothe data is always needed.Different research directions approached the problem of data wrangling from differentperspectives. Graphical end-user programming tools typicallymake it easy to complete themost common tasks for the most common kinds of datasets but are incapable of coveringthe inevitable special cases that are present due to the double Anna Karenina principle.Automatic AI-based tools for data wrangling suffer from the same issue. They work well ina large number of cases, but they can easily confuse interesting outliers for uninterestingnoise in cases where a human would immediately spot the difference. This is perhaps whymost data wrangling is often done manually and often involves a mix of programmaticand end-user tools. We can make those tools easier to integrate and make tweaking ofparameters easier through live previews (as discussed in the previous chapter), but whatif we could offer a different way of working with them?The contributions outlined in this chapter are centered around the question of how toeasily enable human data analysts, even if they are not expert programmers, to supply thenecessary human insight to programmatic tools when cleaning and analyzing data. The an-swer presented in the first contribution (Chapter 10) is an interaction principle that I referto as iterative prompting. In a tool that follows the principle, the user is repeatedly askedto choose from a list of offered options. The principle turns the familiar code completionmechanism from a programmer assistance tool into a non-expert programming mecha-nism. The two contributions included as Part IV use iterative prompting in two ways:
• In Chapter 10, the mechanism is used to allow non-programmers to construct dataexploration scripts that query data from a range of different data sources. A keycharacteristic of the method is that the mechanism allows users to construct onlycorrect scripts and all scripts expressible in the language can be constructed, i.e., theprinciple is correct and complete.

41

• In Chapter 11, the mechanism is used to guide four different semi-automatic AI datawrangling tools. Here, the tools run automatically, but the user can use iterativeprompting to specify constraints in order to correct errors and oversights in the au-tomatically generated solutions. In other words, iterative prompting provides a uni-fied interface through which the analyst can supply human insights to the AI tool.
The primary contribution of the work presented in this chapter is that it develops andvalidates novel approaches to the problem of data wrangling. To do this, it uses two pri-mary research methods. The work introducing iterative prompting (Chapter 10) is rootedin human-computer interaction research. It motivates the interaction principle, describesa prototype implementation, and shows its effectiveness through a qualitative case studyand an empirical user study. Thework on AI assistants (Chapter 11) combines programminglanguage theory and programming systems research methods. It describes the architec-ture of the system using a formal model and validates it by making four existing automaticAI tools interactive and semi-automatic. The novel tools are evaluated empirically. In caseswhere the fully automatic tool fails, our semi-automatic tool allows the user to correct thesolution with a small number (typically 1-2) of simple interactions.The work in this chapter is best seen as design space exploration. I believe that pro-gramming languages and systems provide the right starting point for tackling the problemof data wrangling and data exploration. But in order to fulfill this role, they need to besignificantly easier to use. Non-programmers need to be able to create simple data ex-ploration scripts and data analysts need an easy-to-use interface for solving typical prob-lems. Iterative prompting takes the basic auto-completion mechanism leveraged by typeproviders to a new level, turning it into a simple but powerful unifying interaction principle.

4.1 Data wrangling and data analytics

Data wrangling is most often done manually using a combination of programmatic andgraphical tools. Jupyter and RStudio are popular environments used for programmaticdata cleaning. They are used alongside libraries that implement specific functionality suchas parsing CSV files or merging datasets van den Burg et al. (2019); Sutton et al. (2018) andgeneral data transformation functions provided, e.g., by Pandas and Tidyverse.1Graphical datawrangling systems such as Trifacta2 consist ofmyriad tools for importingand transforming data, which are accessible through different user interfaces or througha scriptable programmatic interface. Finally, spreadsheet applications such as Excel andbusiness intelligence tools like Tableau are often used for manual data editing, reshaping,and especially visualization (Kandel et al., 2011). The above general-purpose systems arefrequently complemented by ad-hoc, for example for parsing PDF documents.Some of the most practical tools along the entire data wrangling pipeline partially au-tomate a specific tedious data wrangling task. To merge datasets, Trifacta and datadiff(Sutton et al., 2018) find corresponding columns using machine learning. To transformtextual data and tables, Excel employs programming-by-example to parse semistructureddata and many tools exist to semi-automatically detect duplicate records in databases.
1https://pandas.pydata.org and https://www.tidyverse.org (Accessed 12 June 2024)2https://www.trifacta.com (Accessed 12 June 2024)

https://pandas.pydata.org
https://www.tidyverse.org
https://www.trifacta.com

Interactive and semi-automatic data wrangling tools, allow the analyst to review thecurrent state of the analysis and make changes to it. The interaction between a humanand a computer in such data wrangling systems follows a number of common patterns:
• Onetime interaction. A tool makes a best guess but allows the analyst to manuallyedit the proposed data transformation. Examples include datasetmerging in Trifactaand datadiff (Sutton et al., 2018).
• Live previews. Environments like Jupyter, Trifacta, and The Gamma (Chapter 8) pro-vide live previews, allowing the analyst to check the results and tweak parametersof the operation they are performing before moving on.
• Iterative. A tool re-runs inference after each interaction with a human to refine theresult. For example, in Predictive Interaction (Heer et al., 2015) the analyst repeat-edly selects examples to construct a data transformation.
• Question-based. A system repeatedly asks the human questions about data and usesthe answers to infer and refine a general data model. Examples include data repairtools such as UGuide (Thirumuruganathan et al., 2017).
For interactive data wrangling tools, the live previews pattern is the most commonone with a varying degree of liveness. Most semi-automatic data wrangling tools acceptonly limited forms of human input. The onetime interaction pattern is the most commonand only a few systems follow the more flexible iterative pattern. The iterative promptingprinciple that I introduce in this chapter implements the iterative pattern in a uniformwaythat is inspired bywork on information-rich programming programming (Syme et al., 2013)and type providers (Chapter 2). It is centered around code but reduces the conceptualcomplexity of coding to a single basic kind of interaction.

4.2 Iterative prompting

Technically speaking, I have already discussed all the components that together make upthe first implementation discussed in this chapter. In The Gamma, the iterative promptingprinciple is implemented through the standard code completionmechanism that is used toselect members generated by the type provider outlined in Chapter 2. The main contribu-tion of the paper included as Chapter 10 is that it looks at the design from the perspectiveof human-computer interaction research.The key idea behind the principle is that a non-programmer should be able to con-struct an entire data exploration script only by selecting appropriate members from a listof offered choices. Technically speaking, the script thus becomes a single chain of memberaccesses. As I discuss below, this also requires a specific type provider design.The process of data exploration through iterative prompting is illustrated in Figure Fig-ure 4.1, which uses the type provider outlined in Chapter 2 to find the UK House of Lordsmember from the county of Kent with the most number of days away. The example showsthree steps of the process:
1. The user starts by selecting an input data source (not using iterative prompting) andtypes ‘.’ (dot) to see available querying operations. The system offers a list of (allavailable) operations including filtering, grouping, and sorting.

Figure 4.1: Using the iterative prompting interaction principle in The Gamma to explore datasetcontaining information on UK House of Lords members.

2. The user chooses filter data. They are then offered a list of conditions based onthe columns in the dataset. The user selects County is and is then offered a listof all possible values of the column in the dataset. Thanks to the fact that iterativeprompting in The Gamma is embedded in an ordinary text editor, they can starttyping to filter the (long) list of possible values.
3. The user chooses Kent as the required value. They are then offered a list includingfurther conditions and the then member that makes it possible to choose anothertransformation. They choose then and continue to add sorting.
In The Gamma, the iterative prompting principle is used in the context of text-basedprogramming language with type providers. This is a deliberate design choice. The aim ofthe work is to see whether iterative prompting can make text-based programming acces-sible to non-programmers. As a programming language, The Gamma is a simple object-oriented language with nominal type system and support for type providers. It allows acouple of constructs in addition to the method chaining shown in Figure 4.1 including letbinding and method calls such as expenses.paging.take(10). I briefly review the designtrade-offs below.

4.2.1 Iterative prompting for data querying

The paper included as Chapter 10 shows that iterative prompting can provide a unified in-terface for exploring data from a range of different data sources. One of the hypothesesevaluated in the paper is that this aids usability by supporting transfer of knowledge be-tween different kinds of data sources. To evaluate this, we implemented type providersfor exploring data cubes (Syme et al., 2013), created by the author of this thesis, tabulardata, as outlined in Chapter 2 and discussed in full in Chapter 7, and graph databases.Data cubes are multi-dimensional arrays of values. For example, the World Bank col-lects indicators about many countries each year. The type provider makes it possible toselect a data series, such as CO2 emissions of the US over time:
1 worldbank.byCountry.’United States’.
2 ’Climate Change’.’CO2 emissions (kt)’

(a) Exploring World Bank data using the datacube type provider, users choose values fromtwo dimensions to obtain a data series.
(b) To query graph data, the user specifiesa path through the data, possibly withplaceholders to select multiple nodes.

Figure 4.2: Design of type providers for exploring cube and graph data

The dimensions of the worldbank cube are countries, years and indicators. Figure 4.2a il-lustrates how theprovider allows users to slice the data cube – byCountry.'United States',restricts the cube to a plane and 'CO2 emissions (kt)' gives a series with years as keysand emissions as values. Similarly, we could first filter the data by a year or an indicator.Graph databases store nodes representing entities and relationships between them.The following example explores a database of Doctor Who characters and episodes. Itretrieves all enemies of the Doctor that appear in the Day of the Moon episode:
1 drwho.Character.Doctor.’ENEMY OF’.’[any]’
2 .’APPEARED IN’.’Day of the Moon’

The query is illustrated in Figure 4.2b. We start from the Doctor node and then follow tworelationships. We use 'ENEMY OF'.'[any]' to follow links to all enemies of the Doctorand then specify 'APPEARED IN' to select only enemies that appear in a specific episode.The members are generated from the data; 'ENEMY OF' and 'APPEARED IN' are labelsof relations and Doctor and 'Day of the Moon' are labels of nodes. The [any] memberdefines a placeholder that can be filled with any node with the specified relationships. Theresult returned by the provider is a table of properties of all nodes along the specified path,which can be further queried and visualized.Unlike the graph and data cube providers, the type provider for tabular data does notjust allow selecting a subset of the data, but it can be used to construct SQL-like queries.For example, the code constructed in Figure 4.1 filters and sorts the data.When using the provider, the user specifies a sequence of operations. Members suchas 'filter data' or 'sort data' determine the operation type. Those are followed bymembers that specify operation parameters. For example, when filtering data, we firstselect the column and then choose a desired value. Unlike SQL, the provider only allowsusers to choose from pre-defined filtering conditions, but this is sufficient for constructinga range of practical queries.
4.2.2 Usability of iterative prompting

To evaluate the usability of iterative prompting, we conducted a user study for which werecruited 13 participants (5 male, 8 female) from a business team of a research instituteworking in non-technical roles (project management, communications). Our primary hy-pothesiswas that non-programmerswill be able to use iterative prompting to explore data,

but some aspects of the study were also designed to how users learn to use the mech-anism and whether knowledge can be transferred between different data sources. Thestudy methodology and detailed discussion of results can be found in Chapter 10. The keyobservations from the study are:
• Can non-programmers explore data with The Gamma? All participants were able tocomplete, at least partially, a non-trivial data exploration task and only half of themrequired further guidance. A number of participants shared positive comments inthe group interviews. One participant noted that “this is actually pretty simple touse,” while another felt the system makes coding more accessible: “for somebodywho does not do coding or programming, this does not feel that daunting.”
• How users learn The Gamma? There is some evidence that knowledge can be trans-ferred between different data sources. In two of the tasks, participants were able tocomplete the work after seeing a demo of using another data source. One partici-pant “found it quite easy to translate what you showed us in the demo to the newdataset.” Once users understood iterative prompting, they were also able to learnfrom just code samples and do not need to see a live demo of using the tool. Oneparticipant noted that “a video would just be this [i.e. a code sample] anyway.”
• How do users understand complex query languages? The tabular type provider usesa member then to complete the specification of a current operation, for examplewhen specifying a list of aggregation operations. Two participants initially thoughtthat then is used to split a command over multiple lines, but rejected the idea af-ter experimenting. One participant then correctly concluded that it “allows us tochain together the operations” of the query. While iterative prompting allows usersto start exploring new data sources, the structures exposed by more complex datasources have their own further design principles that the users need to understand.
• What would make The Gamma easier to use? Three participants struggled to com-plete a task using the tabular data source because they attempted to use an op-eration that takes a numerical parameter and thus violates the iterative promptingprinciple. Most participants had no difficulty navigating around in text editor andsome participants used the text editor effectively, e.g. leveraging copy-and-paste.However, two participants struggled with indentation and a syntax error in an unre-lated command. This could likely be alleviated through better error reporting.

4.3 AI assistants

Iterative prompting can be used as amechanism for program construction, as illustrated inthe previous section, but it can also be used to guide semi-automatic data wrangling tools.As discussed above, many systems that aim to simplify data wrangling using AI methodssupport only the onetime interaction patternwhere the user invokes the tool and gets backa result that they can manually refine if needed. In the paper included as Chapter 11, weuse iterative prompting as the basis for the AI assistants framework, which is a commonstructure for building semi-automatic data wrangling tools that incorporate human feed-back. When using an AI assistant, the user invokes the assistant on some input data, butthey can then repeatedly use iterative prompting to further constrain the solution.

Figure 4.3: Using the datadiff AI assistant inside Wrattler to semi-automatically merge UK Broad-band quality data from two files, parsed by an earlier R script. The user is in the process of addinga constraint to correct an error in the automatically inferred column matching.

As illustrated in Figure 4.3, AI assistants are available in the Wrattler notebook systemdiscussed in Chapter 3. In addition to code cells that obtain, process, and visualize data,users can create AI assistant cells that invoke a semi-automatic data cleaning tool on someof the available datasets. After invoking the assistant, users are shown a preview of thegenerated clean dataset. If they see an error in the automatically inferred solution, theycan choose one from the offered options to guide the AI tool and correct the error. Iterativeprompting for AI assistants uses a graphical user interface, but the interaction mechanismof repeatedly choosing one from the offered options remains the same.
4.3.1 Merging data with Datadiff

To give an overview of how AI assistants work, consider the task of merging multiple in-compatible datasets, using the UK broadband quality data, published by the UK commu-nications regulator Ofcom.3 The regulator collects data annually, but the formats of thefiles are inconsistent over the years. The order of columns changes, some columns arerenamed, and new columns are added. We take the 2014 dataset and select six interestingcolumns (latency, download and upload speed, time needed to load a sample page, coun-try, and whether the observation is from an urban or a rural area). We then want to findcorresponding columns in the 2015 dataset.
3Available at: https://www.ofcom.org.uk/research-and-data/data/opendata

https://www.ofcom.org.uk/research-and-data/data/opendata

The 2015 dataset has 66 different columns so finding corresponding columnsmanuallywould be tedious. An alternative is to use the automatic datadiff tool (Sutton et al., 2018),which matches columns by analyzing the distributions of the data in each column. Datad-iff generates a list of patches that reconcile the structure of the two datasets. A patchdescribes a single data transformation to, for example, reorder columns or recode a cate-gorical column according to an inferredmapping. Datadiff is available as an R function thattakes two datasets and several hyperparameters that affect the likelihood of the differenttypes of patches.Whenmerging Broadband datasets, datadiff correctly matches five out of six columns,but it incorrectly attempts to match a column representing Local-loop unbundling (LLU) toa column representing UK countries. This happens because datadiff allows the recodingof categorical columns, and seeks to match them based on the relative frequencies in thetwo columns. Consequently, the inferred transformation includes a patch to recode the
Cable, LLU, and Non-LLU values to Scotland, Wales, and England. To correct this, we couldmanually edit the resulting list of patches, or tweak the likelihood of the recodepatch. Suchparameter tuning is typical for real-world data wrangling, but finding the values that givethe desired result can be hard.The semi-automatic datadiff AI assistant presented in this chapter enables the analystto guide the inference process by specifying human insights in the form of constraints. TheAI assistant first suggests an initial set of patches with one incorrect mapping. After theanalyst chooses one of the offered constraints, shown in Figure 4.3, datadiff runs againand presents a new solution that respects the specified constraints until, after two moresimple interactions, it reaches the correct solution.
4.3.2 Formal model of AI assistants

The central contribution presented in Chapter 11 is a formal model of AI assistants thatcaptures their structure. The chapter uses the standard methodology of theoretical pro-gramming language research, but applied to a problem from the data engineering researchfield. The definition of an AI assistant captures a common structure that semi-automaticdata wrangling tools can follow in order to use iterative prompting as a mechanism forincorporating human insights into the data wrangling process.The formalmodel defines AI assistants as amathematical entity that consists of severaloperations, modeled as mathematical functions between different sets. Every AI assistantis defined by three operations that work with expressions e, past human interactions H ,input data X , and output data Y . Expressions e can also be thought of as data-cleaningscripts. Input and output data are typically one or more data tables, often annotated withmeta-data such as column types. While AI assistants share a common structure, the lan-guage of expressions e that an assistant produces, the notion of human interactions H ,and the notion ofX and Y can differ between assistants.
Definition 1 (AI assistant). Given expressions e, input dataX , output data Y , and humaninteractionsH , an AI assistant (H0, f, best , choices) is a tuple whereH0 is a set denotingan empty human interaction and f, best and choices are operations such that:

• f(e,X) = Y

• bestX(H) = e

• choicesX(H) = (H1, H2, H3, . . . ,Hn).

H = H0 e∗ = bestX(H) Y = f(e∗, X)

Display
preview of Y

script = e∗

data = f(e∗, X)
H1, H2, H3, . . . ,Hn

= choicesX(H)
Choose the next

interaction H = Hi acceptrefine

Figure 4.4: Flowchart illustrating the interaction between an analyst and an AI assistant. Stepsdrawn as rounded rectangles correspond to user interactions with the system.
The operation f transforms an input dataset X into an output dataset Y accordingto the expression (data cleaning script) e. The operation bestX recommends the best ex-pression for a given input dataset X , respecting past human interactions H . Finally, theoperation choicesX generates a sequence of optionsH1, H2, H3, . . . ,Hn that the analystcan choose from (e.g. through the user interface illustrated in Figure 4.3). When interact-ing with an assistant, the selected human interactionH is passed back to bestX in order torefine the recommended expression. Note that the sequence of human interactions givenby choicesX may be sorted, starting with the one deemed the most likely. To initialize thisprocess, the AI assistant defines an empty human interactionH0.The interestingAI logic canbe implemented in either the bestX operation, the choicesXoperation, or both. The f operation is typically straightforward. It merely executes theinferred cleaning script. Both bestX and choicesX are parameterized by input data X ,which could be the actual input or a smaller representative subset to make working withthe assistant more efficient.The working of AI assistants is illustrated in Figure 4.4. When using the assistant, westart with the empty interaction H0. We then iterate until the human analyst acceptsthe proposed data transformation. In each iteration, we first invoke bestX(H) to get thebest expression e∗ respecting the current human insights captured byH . We then invoke

f(e∗, X) to transform the input dataX according to e∗ and obtain a transformed outputdataset Y . After seeing a preview of Y , the analyst can either accept or reject the recom-mended expression e∗. In the latter case, we generate a list of possible human interactions
H1, H2, H3, . . . ,Hn using choicesX(H) and ask the analyst to pick an optionHi. We usethis choice as a new human interactionH and call the AI assistant again.The Definition 1 serves both as a model that can be studied formally, but also as thebasis for an implementation interface of AI assistants. The shared structuremakes it possi-ble to separate the development of individual AI assistants from the development of toolsthat use them, such as the AI assistant cell type implemented in Wrattler.
4.3.3 Practical AI assistants

To show that AI assistants provide a common structure for a wide range of semi-automaticdata wrangling tools, the work included as Chapter 11 takes four existing AI-based datawrangling tools that follow the onetime interaction pattern and turn them into interactivetools that follow the iterative pattern. The original tools cover the entire spectrum of datawrangling ranging from parsing of CSV files (van den Burg et al., 2019) and merging datafiles (Sutton et al., 2018) to type and semantic information inference (see Chapter 11).The approach we use for turning a non-interactive AI tool into an interactive AI as-sistant is similar in all four cases. The non-interactive tools generally define an objectivefunctionQ(e,X) that scores data cleaning scripts (expressions e) based on how well theyclean the specified input dataX . The automatic AI tool performs an optimization, looking

for the best data cleaning from the set of all possible expressions E for the given data.Formally, the optimization task solved by the existing tools can be written as:
argmaxe∈E Q(X, e)

The AI assistants that we implement and formally describe in Chapter 11 adapt this opti-mization to take account of the human interactions H that have been collected throughthe iterative prompting process illustrated in Figure 4.4. For a given human interaction
H (starting with H0), we define a set of expressions EH that is filtered to only includeexpressions satisfying the condition specified by the user through H . We also define aparameterized objective functionQH that is based on the originalQ but increases or de-creases the score for certain expressions based on H . Given these two definitions, it ispossible to define the bestX(H) operation as solving an optimization problem:

bestX(H) = argmaxe∈EH
QH(X, e)

The four concrete AI assistants that we developed use this definition, but they do not al-ways use human interactions to tweak bothEH andQH . It is often sufficient to restrict theset of expressions used by the search and reuse the original unmodified optimization al-gorithm. The implementation of the AI assistants (available inWrattler) generally requireda modification of the underlying non-interactive tool. The modification is tool-specific aseach of the AI assistants is based on a different kind of search algorithm. The four practicalAI assistants presented in Chapter 11 work as follows:
• The datadiff AI assistant infers a list of patches that transform the input dataset intoa format matching that of the given reference dataset. The assistant optimizes scorebased on the similarity of the data distributions of the matched columns. The semi-interactive AI assistant allows the user to specify that certain patches (e.g., matchingtwo particular columns) should or should not be included in the resulting set.
• The CleverCSV AI assistant infers formatting parameters of a CSV file to optimize ametric based on how regular the resulting parsed result is. The semi-interactive AIassistant allows the user to specify that a given character should be or should notbe used as a delimiter, a quote, or an escape character.
• The ptype AI assistant infers types of columns in a dataset, detecting outliers andvalues representing missing data. The optimization function looks for a type withmaximal likelihood based on a probabilistic model. The semi-interactive AI assistantallows the user to reject any aspect of the inferred type (type itself, outlier, missingvalue), effectively forcing the search to look for the next most likely type.
• The ColNet AI assistant annotates data with semantic information from a knowledgegraph such as DBpedia (Lehmann et al., 2015). It uses a Convolutional Neural Net-work model to calculate the score that sampled data is of a given semantic typeand then finds the type with the greatest score. The semi-interactive AI assistantadapts the scoring, allowing the user to specify that a given sample is (or is not) ofa specified semantic type.
In Chapter 11, we evaluate the effectiveness of the four AI assistants both qualitativelyand quantitatively. Our qualitative evaluation uses three scenarios in which the differentearlier datawrangling tools are unable to solve a real-world datawrangling challenge usingthe onetime interaction. We document how the user can use iterative prompting to obtain

the desired result, by repeatedly choosing one option from the offered list. To evaluate AIassistants quantitatively, we developed a benchmark that counts how many human inter-actions are needed to complete a given data wrangling task for multiple datasets (eitherreusing an existing benchmark or synthetically generated). The evaluation shows that 1-2human interactions are usually sufficient to complete the task.
4.4 Contributions

L Key contributions. The publications included in Part IV include three main con-tributions. They introduce the novel iterative prompting interaction principle.They use it as the basis of AI assistants, novel semi-automated data wrangling tools,as well as multiple type providers for accessing data in graph databases, data cubes,and relational databases.
This chapter brings together two contributions that aim to reduce the gap between pro-gramming and spreadsheets by making two tasks that typically require some kind of pro-gramming easier. In the first contribution, I focused on data exploration, whereas the sec-ond contribution tackles the task of data wrangling. My work shows that, in both cases,it is possible to solve a large class of problems using the iterative prompting interactionprinciple where the user repeatedly chooses one from the offered options. The interac-tion principle is simple in that it reduces the cognitive load by using the recognition over
recall design heuristic. When using iterative prompting, the users do not need to recall thekind of operation they could use to solve the problem. Instead, they can review the list ofoffered options and recognize the most suitable one.The work included in Chapter 10 introduces the iterative prompting interaction prin-ciple and uses it to view the type provider for data querying outlined in Chapter 2 from anovel perspective using the human-computer interaction research methodology. Ratherthan treating auto-completion as a programmer assistance tool, it is now used as a mech-anism that allows non-programmers to construct entire programs. The key characteristicsof the type provider that make this possible are that it is complete and correct, i.e. itmakes it possible to construct all programs and any program constructed by repeatedlychoosing one of the offered options is correct (even though some may result in emptydata). The user study that I briefly discussed in this chapter shows that iterative prompt-ing can be used by non-programmers to complete a range of data exploration tasks in acode-oriented environment. This suggests that it is possible to combine the reproducibilityand transparency of using code with ease of use approaching that of spreadsheets.The work included in Chapter 11 uses the iterative prompting interaction principle (al-beit without using the term) to provide human insights to semi-automatic data wranglingtools that I refer to as AI assistants. The challenge addressed by AI assistants is how toguide data wrangling tools based on AI techniques. Although such tools can solve manyproblems automatically, the complexity of real-world data sets often means that somehuman guidance is needed. Iterative prompting provides an easy method through whichhumans can provide such guidance. The chapter introduces a formalmodel of AI assistantsand uses it as the basis for the implementation of four practical tools.

The contributions presented in this chapter link together many of the themes and con-tributions discussed in earlier chapters. In particular, the notion of type providers wasintroduced as a programming tool from the programming language theory perspectivein Chapter 2. This chapter provides an alternative human-centric perspective. The tech-niques discussed in Chapter 3 make type providers even more usable by providing livepreviews during their usage. Finally, the Wrattler notebook system serves as a platformfor integrating many of the experiments discussed in this thesis. For example, it makes itpossible to combine interactive AI assistants with conventional programmatic data explo-ration using the widely used Python and R languages.

Chapter 5

Data visualization

Data visualization plays a dual role in the data science lifecycle. Quick data visualizationsare needed during data exploration to help data analysts make sense of data, find errors,andunderstandhow their processing scriptswork. However, data visualizations can also beone of the outcomes of data science projects. In particular, data journalists often analyzedata in order to find interesting insights and share thosewith their readers. A sophisticatedand illuminating data visualization can be a powerful tool for such storytelling.Producing a quick data visualization during data exploration is usually easy. In program-matic environments, it is typically a matter of calling a function with a few parameters tospecify the type of chart one wants to see. However, developing a data visualization thathelps the reader gain insight into a complex problem and critically think about it is typicallya challenging programming task.As an example, consider the interactive data visualization shown in Figure 5.1, createdusing the Compost library discussed below. The visualization is inspired by the New YorkTimes “You draw it” article series (Aisch et al., 2015). It encourages critical thinking by firstasking the reader to make a guess about the actual data. Only after the reader drags thebars according to their presuppositions, the chart reveals the actual values.

(a) The user first has to guess what the values are (here,guess how much the UK government spends per category). (b) After clicking a button, actual data is shown(together with a marker showing the guess).
Figure 5.1: An interactive data visualization to encourage critical thinking about data created usingthe composable Compost data visualization library.

53

The chart is based on a standard bar chart, but there are multiple additional aspectsthat make creating such a chart a challenging programming problem:
• The chart combines multiple different visual elements. In addition to the bars them-selves, it also needs to include the markers (dashed lines) that show the guess.
• The chart uses a custom color scheme, and background to indicate possible areas ofthe bar and it greys out the bars for which the user has not yet made a guess.
• The chart is interactive, allowing the user to drag the end of the bar to any locationin the specified range (until the button is clicked).
• Once the button is clicked, a brief animation runs, and the bars move from theguessed value to the actual value (the marker stays at the original position).
Although numerous charting libraries support some of the above features, creating acustom data visualization such as the above typically requires using a low-level visualiza-tion library such as D3 (Bostock et al., 2011), which requires advanced programming skills.More advanced programming skills are needed if one wants to implement data visual-izations that support features such as brushing and linking (Buja et al., 1991). The formerallows the user to focus on a particular region of the chart, while the latter connects twocharts and adapts the visualization in the second chart based on the data selection in thefirst chart. Implementing linking is particularly challenging because it requires understand-ing what inputs contributed to the selected data points and then recomputing the datadisplayed in the other visualization.In the following two sections, I provide an overview of two systems that are presentedin Part V. The systems make it easier to create rich interactive visualizations. First, the pa-per included as Chapter 12 presents Compost, a novel functional data visualization librarythat makes it possible to compose rich charts from a small number of primitive buildingblocks and combinators. Second, the paper included as Chapter 13 presents a programanalysis technique that can be used to automatically create linked data visualizations basedon the code of scripts that construct charts from shared data. The two systems are aimedat programmers, but they are simple in that they make it possible to create sophisticatedinteractive visualizations using a small amount of straightforward code.Both of the papers introduced in this chapter use programming language researchmethods. Chapter 13 presents the analysis technique formally, using a small model pro-gramming language, and discusses its properties. Chapter 12 gradually introduces the con-cepts of the Compost library in the form of a tutorial. Published as a functional pearl (Gib-bons, 2010), it relies on the tacit assessment of the functional programming community.

5.1 Visualisations to encourage critical thinking

Data visualizations that aim to present data-driven insights to a broader audience oftenrequire significant programming effort. The “You draw it” series by New York Times (Aischet al., 2015) lets the user draw on the chart, while the award-winning visualization of pop-ulation density in Asian cities by Bremer and Ranzijn (2015) tells a story through multipleanimated and interlinked charts. Visualizations like these are often built using D3 (Bostocket al., 2011), by constructing the chart piece by piece. D3 is easier than drawing pixels orprimitive shapes, but it still requires tediously transforming values to coordinates, specify-ing positions in pixels, and modifying shape properties in response to events.

Figure 5.2: A bar chart thatcompares the UK general electionresults for years 2017 (left) and2019 (right), created using theCompost library.

Higher-level compositional approaches to chart construction are typically based on thegrammar of graphics (Wilkinson, 1999). In the grammar of graphics, a chart is a mappingfrom data to chart elements and their visual attributes. Libraries based on this idea in-clude ggplot2 (Satyanarayan et al., 2016; Wickham, 2016) and Vega (Wickham, 2010). Themapping is limited to a number of built-in operations, which works well for common typesof scientific charts, but has a limited generality. For example, in Altair (VanderPlas et al.,2018), it is possible to link multiple charts by specifying a data transformation that relatesthem, but this has to be specified using a limited set of combinators provided (and under-stood) by the library.In contrast to systems based on the grammar of graphics, the two systems presentedin this chapter rely on the host programming language to specify the mapping from datato chart elements. A chart is merely a resulting data type describing the visual elementsusing domain-specific primitives. In the two chapters, summarised in the next two sec-tions, we first define a small, orthogonal set of expressive primitives and then introducea program analysis technique that can automatically infer the mapping between sourcedata and elements of the chart.
5.2 Composable data visualisations

The Compost library, presented in Chapter 12 can be seen as a functional domain-specificlanguage for describing charts. As is often the casewith domain-specific languages, findingthe right primitives is more of an art than science. The Compost library is designed in away that gives it a number of desirable properties:
• Concepts such as bar charts, line charts, or charts with aligned axes are all expressedin terms of more primitive building blocks using a small number of combinators.
• The primitives are specified in domain terms. When drawing a line, the value of an
y coordinate is an exchange rate of 1.36 USD/GBP, not 67 pixels from the bottom.

• Common chart types such as bar charts or line charts can be easily captured as high-level abstractions, but many interesting custom charts can be created as well.
• The approach can easily be integrated with the Elm architecture (Czaplicki, 2016) tocreate web-based charts that involve animations or interaction with the user.

0 50 100 150 200 250

0 0.5 1 0 0.5 1 0 0.5 1
Conservative Labour LibDem

Figure 5.3: On a continuous scale (above), a position is determined by a number. On a categoricalscale (below), a position is determined by the category and a number between 0 and 1.

5.2.1 Declarative chart descriptions

To illustrate the first two points, consider the chart in Figure 5.2, which compares UK elec-tion results for the years 2017 and 2019. In the chart, the x axis shows categorical valuesrepresenting the political parties such as “Conservative” or “Labour”. The y axis showsnumerical values representing the number of seats won such as 365 MPs. When creatinga chart, most high-level libraries such as Google Charts expect values in domain terms, butmore flexible libraries like D3 expect the user to first explicitly translate such domain val-ues to pixels. In Compost, the user composes primitive graphical elements such as filledrectangles, but their position is specified in terms of domain values.Our design focuses on two-dimensional charts with x and y axes. Values mappedto those axes can be either categorical (e.g. political parties, countries) or continuous(e.g. number of votes, exchange rates). The mapping from categorical and continuousvalues to positions on the chart, as well as the range of values associated with a scale,are calculated automatically. Figure 5.3 illustrates the two kinds of values. A continuousvalue, written as cont n contains any number n. A categorical value cat c, r consists of acategorical value c and a number r between 0 and 1. The second parameter determinesan exact position in the range allocated for the categorical value such as “Green”.Assuming we have a list elections which contains 5-element tuples with the partyname, colours for 2017 and 2019 and the number of MPs for 2017 and 2019, we can con-struct the chart in Figure 5.2 as follow (using F# or similar language with list comprehen-sions):
1 axisl (axisb (overlay [
2 for party, c17, c19, mp17, mp19 in elections →
3 padding 0, 10, 0, 10, overlay [
4 fill clr17, [
5 (cat party, 0), (cont 0); (cat party, 0), (cont mp17);
6 (cat party, 0.5), (cont mp17); (cat party, 0.5), (cont 0)],
7 fill clr19, [
8 (cat party, 0.5), (cont 0); (cat party, 0.5), (cont mp19);
9 (cat party, 1), (cont mp19); (cat party, 1), (cont 0)]
10]
11]))

The central part of the code (lines 4-6 and 7-9) constructs two filled rectangles (bars) rep-resenting the number of MPs for 2017 and 2019, respectively. Each rectangle is specifiedby four corners (separated using “;”). The y axis is continuous and the rectangle occupiesspace from 0 to the specified number. The x axis is categorical. The first bar takes the firsthalf of the space available for the party (0 to 0.5) while the second occupies the second

half (0.5 to 1). We then compose the two rectangles using overlay, which ensures theyare rendered on a shared scale. The padding primitive adds a space around a given shape(specified in pixels). We generate a pair of rectangles for each party using a list compre-hension and then overlay all the rectangles before adding axes on the left and bottom.In addition to the primitives illustrated by the above example, Compost has a numberof other basic shapes (lines, text, bubbles). Perhaps more interestingly, there are also acouple of combinators that make it possible to combine charts or create charts that shareaxes. The nest combinator, explained in Chapter 12, takes a shape (with its own scales) andnests it inside an explicitly specified range. We can, for example, take a space defined bya categorical value (from cat c, 0 to cat c, 1) and nest another shape, or even a line chart,inside this space. In practice, this is useful for combining multiple charts. The combinatorcan also apply to one axis only, making it possible to create two charts that are side-by-sideon one axis but share the other axis.
5.2.2 Rendering a Compost chart

The rendering logic of Compost takes a declarative chart description such as the one gen-erated by the simple functional program above and transforms it to an SVG in three steps:
• Inferring the scales of a shape. The implementation first recursively walks over thecomposed shape and infers the ranges of the x and y scales of the shape. For shapesconstructed using overlay, this unions the ranges of the scales of the containedshapes. In the case of continuous scale, we take the overall minimumandmaximum.For a categorical scale, the sets of categories obtained for each shape are unioned.
• Projecting coordinates. Once the chart is annotatedwith the inferred scales, we turnall positions from values defined in domain terms to values specified in pixels. Thisis done using a projection function that takes a scale, a space it should be mappedonto (in pixels) and a value on the scale. The results are x and y coordinates in pixels.
• Rendering chart shapes. Finally, the recursively defined shape is turned into a flatlist of shapes in the SVG format. This involves collecting and concatenating all theprimitive shapes, lines, and text elements.
The implementation of the core logic consists of only 800 lines of code. Althoughthe process is conceptually simple, there are a number of subtle details. In particular,operations that specify some parameters in pixels (such as padding) have to transform theprojection operation so that the resulting shapes only occupy a spacewithout the specifiedpadding. Nesting also requires keeping track of the outer range and the inner scale. It isalso worth noting that some operations, such as axis that add an axis with labels, can beeliminated at some point in the process. In particular, axis is replaced by overlaid linesand text elements in the first step.

5.2.3 Functional abstraction and interactivity

As noted earlier, Compost differs from libraries based on the grammar of graphics such asggplot2 (Wickham, 2016) that treat a chart as as a mapping from data to chart elementsand their visual attributes. In Compost, a chart is a concrete description of chart elements,generated from data by code written in an ordinary programming language. I illustrated

this above with the code that generated a bar chart using list comprehensions. This meansthat Compost can leverage other capabilities of the host language and its ecosystem.First, it is possible to easily introduce new higher-level chart abstractions. For example,the chart shown in Figure 5.2 is sometimes referred to as Dual X-axis Bar Chart. Some high-level libraries such as Google Charts support this directly. We saw that the chart can beconstructed using Compost, but in a somewhat tedious way. However, in a host languagethat lets us define new functions like F#, we can introduce a new abstraction for this kind ofchart. The followingmerely extracts the rectangle construction from the previous exampleinto a function dualXBar:
1 let dualXBar xcat clr1 clr2 yval1 yval2 = overlay [
2 fill clr1, [(cat xcat, 0), (cont 0); (cat xcat, 0), (cont yval1);
3 (cat xcat, 0.5), (cont yval1); (cat xcat, 0.5), (cont 0)],
4 fill clr2, [(cat xcat, 0.5), (cont 0); (cat xcat, 0.5), (cont yval2);
5 (cat xcat, 1), (cont yval2); (cat xcat, 1), (cont 0)]
6]

We can now use the function inside a list comprehension to construct the original chart injust three lines of code:
1 axisl (axisb (overlay [
2 for party, c17, c19, mp17, mp19 in elections →
3 dualXBar party c17 c19 mp17 mp19]))

One last interesting aspect of the Compost library that is discussed in Chapter 12 is thesupport for interactivity. The library can be used in conjunction with the Elm (model-view-update) architecture (Czaplicki, 2016) where the programmer defines the program stateand events. They then provide a function that renders a chart based on the current state.They also specify a function that updates the state when an event occurs. For example, inthe earlier interactive chart in Figure 5.1, one event is clicking on a bar, which then updatesthe guessed value. Compost makes programming such charts easier by reporting eventsin terms of domain values (using a backward projection). When the user clicks on a bar,the event handler receives a pair of values such as cat “Health”, 0.3 and cont 12.7. It thenupdates the guessed value for the category Health to the new value 12.7% GDP.
5.3 Automatic linking for data visualizations

The Compost library makes it possible to compose an appealing data visualization fromindividual graphical elements. This is necessary if wewant to create rich interactive charts.However a single chart that offers a single perspective is not enough if we want to explaincomplex data. To support better understanding, linked visualisations (Buja et al., 1991)consist of multiple charts that display different aspects of the same data. When the userselects an element in one of the charts, the elements that are based on related data as theselected one are highlighted in the other charts. This makes it possible to relate differentperspectives on the same data.For example, consider the visualization in Figure 5.4 that displays data on energy pro-duction over time for different countries and different types of energy. A single chart withthree variables would be difficult to read, so the visualization instead filters and aggregatesthe data in two ways. It shows data per country for the year 2015 and the ratio of energy

Figure 5.4: Linked data visualization of energy production, showing aggregated data per country for2015 (left) and timeline with the ratio of production in the USA and China per energy type (right).

produced in the USA and China over time for each type of energy. The user can select aparticular data point (bar on the left, point on the right). If they select the bar representingthe USA, the system infers which input data contributed to the value (data for all types ofenergy for the USA in 2015) and computes what chart elements depend on this data in thesecond chart (data points for 2015). Selecting Germany would not highlight any points asthe right chart depends only on data points for China and the USA.Constructing linked visualization like the one in Figure 5.4 is difficult because the datavisualization needs to understand how to map selection between the charts. This can bedone automatically for simple data transformations in libraries based on the grammar ofgraphics such as Altair (VanderPlas et al., 2018). In those, simple data transformationscan be expressed using primitives provided by the library. However, the approach doesnot work if the data transformation is more complex or if the user prefers to express itin an ordinary programming language (as ordinary list processing) as opposed to using aspecial-purpose domain-specific language (grammar of graphics primitives).In Chapter 13, we use dynamic dependency analysis techniques to simplify the creationof linked data visualizations. Those techniques have traditionally been used in areas suchas information-flow security, optimization, and debugging. In our work, we extend thetechniques so that they can provide fine-grained dependency information for programsconstructing structured outputs, such as the data structures used to describe charts inthe Compost data visualization library. We introduce a simple functional programminglanguage Fluid that the users can use to write arbitrary data transformations and constructcharts. By combining two dynamic dependency analyses, we can then automatically inferthe relationships between multiple charts constructed from the same data.
5.3.1 Creating linked visualizations using Fluid

Consider again the visualization shown in Figure 5.4. The two charts are based on the sameinput data, which is a collection of records storing the country, energy type, year, and theamount produced. To produce the chart on the left, we filter the data by year and thensum the produced energy for each of the countries. In Fluid, this is written as a simplefunctional program using list comprehensions:
1 let data2015 =
2 [row | row ← data, row.year == 2015]
3 let totalFor c =
4 sum [row.output | row ← data2015, row.country == c]
5 let countryData =

6 [{ x: c, y: totalFor c } | c ← ["China", "USA", "Germany"]]
7 BarChart { data: countryData }

The code is similar towhat onewouldwrite inwidely-used functional languages such asF# or Haskell. It defines filtered data2015, a helper function totalFor and then computesdata per country using the helper before constructing the resulting chart. The last stepuses a built-in BarChart function. As discussed earlier, this could be implemented as anabstraction over more basic Compost primitives.The program analysis automatically infers what values from the source data contributeto the resulting y value, computed using the totalFor function. The relevant rows areonly those for the year 2015 (due to the filtering) and only those for the given country(due to the totalFor implementation). It is worth noting that unlike approaches basedon the grammar of graphics, we are not restricted to a set of pre-defined primitives. Thedata transformation can be arbitrary and we can write it using custom functions such as
totalFor.The code to construct the second chart is slightly more complicated because it con-structs a line chart with multiple lines. It defines series helper to obtain a time series fora given country and energy type, plot helper that calculates the ratio between the USAand China for a given energy type and then composes the chart:

1 let series type country =
2 [{ x: year, y: row.output } | year ← [2013..2018], row ← data,
3 row.year == year, row.energyType == type, row.country == country]
4 let plot type =
5 zipWith (fun p1 p2 → { x: p1.x, y: p1.y / p2.y })
6 (series type "USA") (series type "China")
7 LineChart { plots: [
8 LinePlot { name: type, data: plot type }
9 | type ← ["Bio", "Hydro", "Solar", "Wind"]] }

The example illustrates two requirements that we have for dynamic dependency analysesthat let us automatically generate linked data visualizations. First, we are not interestedin the resources (code and data) needed to produce the entire result, but only in the re-sources needed to produce a part of the result. Specifically, if the user clicks on a datapoint of the line chart, we want to know what resources contributed to the data field ofa specific record in the list passed to one particular LinePlot. In the analyses, we addressthis by introducing the concept of a selection for structured values, which lets us marka particular part of the value. (We use this mechanism for analyzing charts, but it couldequally be used to analyze code that produces e.g., representations of documents.)Second, we needmultiple different kinds of dependency analyses to automatically linkthe charts. If the user selects a part of one chart, we need a backward analysis to trace itback to the original data. This analysis needs to determine parts of the input that wereneeded for the output, even if they were also used elsewhere (an alternative analysiswould look for inputs needed only for the particular output). Then we need a forwardanalysis to determine what outputs it affects in the linked chart. This, again, needs to de-termine parts of the output that needed the specific parts of the input, even if they alsoneeded other unmarked inputs (an alternative analysis would look for outputs that onlyneeded the particular inputs). As we will see, this analysis leads to four different programanalyses. We use two of them to automatically generate linked data visualizations.

5.3.2 Language-based foundation for explainable charts

The program analyses introduced in Chapter 13 can be, more broadly, seen as tools thathelp us understand how programs work. They could be used to support a range of usecases outside of the narrow domain of data visualization. However, to keep the presenta-tion simpler, I will focus on this particular use case. Given the scope of the Fluid languageand the considerable number of analyses, I do not discuss many details in this overviewand focus on sketching the overall structure of the analyses and their key properties.The analyses are built around the central notion of a program trace T . The traces aregenerated during program evaluation and they collect information about how the eval-uation proceeded. More formally, a trace is a compact representation of the derivationtrees in the operational semantics. Given a program e and a variable environment ρ, thefollowing judgment states that the program reduces to a value v, producing a trace T :
T :: ρ, e⇒ v

The program analyses operate on values where some parts are marked as selected. Forexample, if a program e produces a value v that represents a chart using the primitivesof the Compost library, we can mark some parts of the resulting chart, for example, a barcreated using the fill primitive.Formally, we annotate values and terms with selection statesα from a bounded latticeof selections A. It is possible to annotate primitive values such as numbers nα or emptylists []α but also values that contain further values such as a non-empty list (a cons cell)such as v1 :α v2. Thiswould indicate thatwe are interested in data that determined that thelist will be non-empty (but not the specific values it contains). In practice, the most usefulkind of annotation is a two-point lattice (selected, non-selected), but the generality allowsfor other uses, such as a vector of selections (to be computed in one step and displayedusing different colors).
5.3.3 Bidirectional dependency analyses

The program analyses that are introduced in Chapter 13 are defined for a fixed computa-tion T :: ρ, e ⇒ v where T is the trace. In practice, the system evaluates the expression
e and uses the resulting trace T repeatedly for different analyses and with multiple pos-sible selections. The first two analyses that we define are the backward and forward datadependency analyses written as ⇒T and ⇒T , respectively. The two analyses are definedover the traceT and take the availability-annotated variable context and an expression ρ, eas inputs. They produce an annotated value v, which is the same as the value computedinitially, but with availability annotations. Their intuitive meaning is as follows:

• Forward data dependency ρ, e, α ⇒T v or “what only needs me”. Given a contextand expression where annotations indicate what resources (data and parts of theprogram) are available, the analysis produces a value with annotations indicatingwhat part of the value can be computed using only the available resources.
• Backward data dependency ρ, e, α ⇒T v or “what do I need”. Given an annotatedvalue v, the analysis follows the evaluation backward (using the trace T) and anno-tates resources (data and parts of the program) that have to be available in order toproduce the annotated parts of the value v.

The two analyses form a Galois connection, i.e., the two analyses are not exactly in-verses, because they approximate in some ways, but they are close. For example, if wehave a value with a selection v, ask what is needed for the selection using ⇒T and thenask what can be computed using the same data using⇒T , we may find that other parts ofthe value can also be computed, but the original selection will certainly also be included.Interestingly, the forward and backward data dependency analyses are not sufficientto support linked data visualizations. The backward analysis can correctly determine whatparts of the input are needed in order to produce the selected output. However, to high-light the related elements of the other chart, we do not need to know what the inputselection is sufficient for, but what it is necessary for. In other words, we do not need toknow what can be computed using only the selected parts of the input, but what part ofthe result will they certainly contribute to. This can be formulated as a dual of the originalanalyses. What would we not be able to compute if the selected data were unavailable?In the paper included as Chapter 13, we define this duality formally and exploit it todefine De Morgan dual (⇒T
◦, ⇒T

◦) of the Galois connection (⇒T ,
⇒

T), which itself alsoforms a Galois connection. The intuitive meaning of the new analyses is as follows:
• Dual forward data dependency ρ, e, α ⇒T

◦ v or “what needs me”. For an anno-tated context and expression (resources), the analysis highlights what parts of theresulting value depend on the specified resources, i.e., what would we not be ableto compute if the selected parts of the value were unavailable.
• Dual backward data dependency ρ, e, α ⇒T

◦ v “what do only I need”. Given anannotated value, the analysis highlights parts of the program and data that are onlyneeded for producing the selected output, i.e., resources that would not be neededif the selected part of the output was not needed.
In order to construct a linked data visualization, we need to combine two of the dataanalyses. When the user selects a part of one chart, we annotate the relevant part of thestructured value that represents the chart with a selection α ∈ A that marks the part.We then use the backward data dependency analysis ⇒T to compute what resources areneeded for producing the output. To mark corresponding parts of another chart, we thenuse the dual forward dependency analysis ⇒T

◦. This marks parts of the other chart thatdepend on the resources needed for the first chart.
5.4 Contributions

L Key contributions. The publications included in Part V include two main contri-butions. They introduce a composable data visualization library based on novelfunctional design and a dynamic program analysis technique that enables easy con-struction of linked data visualizations.
In this chapter, I provided an overview of the contributions to data visualization includedin Part V. The focus of this work has been on simplifying the construction of rich interactivecharts that assist the viewer gain deeper insight into the presented data. While producingsimple charts is often easy, building a visualization that combines custom visual elements,interactivity and allows linking multiple charts requires advanced programming skills. Un-like with the work outlined in Chapter 4, I do not hope that the work presented here will

allow non-programmers to create rich interactive data visualizations. However, Compostand Fluid show that programming data visualisations that encourage critical thinking aboutdata can be significantly easier than using systems that are widely used today.The two contributions presented in this chapter also serve as a good justification forusing programming language research methods in the context of tools for data science. Inparticular, the work included as Chapter 12 relies on the minimalist design of highly com-posable functional (domain-specific) languages. It presents the Compost charting library,which lets programmers compose charts by combining a small number of primitives (suchas a filled shape or a text) using a small number of combinators (overlaying, nesting ofscales). The library is simple to use mainly due to the fact that all positions are specifiedin terms of domain units on a continuous numerical scale or a categorical scale (with 0 to1 range for each category).The work included as Chapter 13 uses dynamic program analysis techniques to auto-matically create linked data visualizationwhere the user can explore relationships betweendata in multiple charts. The system works by analyzing the program that is used to con-struct the chart from source data (by filtering and aggregating it in various ways). Whenthe user clicks on an element of a chart, the system uses two different dynamic depen-dency analysis techniques to highlight elements of other charts that depend on the samedata as the element selected by the user. The Chapter 13 uses methods of programminglanguage theory to describe the mechanism. We formalize the programming language,define two analyses, derive their duals, and describe their formal properties.Although the prototype implementation of the two systems is not currently integrated,the two contributions presented in this chapter are closely related. In particular, the pro-gram analysis techniques developed for Fluid would combine well with a composable datavisualization library like Compost.In this chapter, I also completed one loop of the data science lifecycle illustrated inFigure 1.4. The loop started with data acquisition using type providers, continued withdata cleaning and exploring using novel notebook systems and iterative prompting andnow concludes with data visualization. This is the last step in an exploratory phase of thedata science lifecycle where the aim is to understand and explain interesting aspects ofdata. An illuminating data visualization that conveys interesting insights found in data isoften the end goal of the process. The production phase that aims to turn the result of thedata analysis into a running component of a larger system is perhaps equally interestingbut is out of scope for this thesis.

Part II

Publications: Type providers

64

Chapter 6

Types from data: Making structured data first-class
citizens in F#

Tomas Petricek, Gustavo Guerra, and Don Syme. 2016. Types from data: making struc-tured data first-class citizens in F#. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA,
USA, June 13-17, 2016, Chandra Krintz and Emery D. Berger (Eds.). ACM, 477–490. https:
//doi.org/10.1145/2908080.2908115

65

https://doi.org/10.1145/2908080.2908115
https://doi.org/10.1145/2908080.2908115

Chapter 7

Data exploration through dot-driven development

Tomas Petricek. 2017. Data Exploration through Dot-driven Development. In 31st European
Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona,
Spain (LIPIcs, Vol. 74), PeterMüller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,21:1–21:27. https://doi.org/10.4230/LIPICS.ECOOP.2017.21

66

https://doi.org/10.4230/LIPICS.ECOOP.2017.21

Part III

Publications: Data infrastructure

67

Chapter 8

Foundations of a live data exploration environment

Tomas Petricek. 2020. Foundations of a live data exploration environment. Art Sci. Eng.
Program. 4, 3 (2020), 8. https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2020/4/8

68

https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2020/4/8

Chapter 9

Wrattler: Reproducible, live and polyglot notebooks

Tomas Petricek, James Geddes, and Charles Sutton. 2018. Wrattler: Reproducible, live andpolyglot notebooks. In 10th USENIX Workshop on the Theory and Practice of Provenance,
TaPP 2018, London, UK, July 11-12, 2018, Melanie Herschel (Ed.). USENIX Association.

69

Part IV

Publications: Iterative prompting

70

Chapter 10

The Gamma: Programmatic data exploration for
non-programmers

Tomas Petricek. 2022. The Gamma: Programmatic Data Exploration for Non-programmers.In 2022 IEEE SymposiumonVisual Languages andHuman-Centric Computing, VL/HCC2022,
Rome, Italy, September 12-16, 2022, Paolo Bottoni, Gennaro Costagliola, Michelle Brach-man, and Mark Minas (Eds.). IEEE, 1–7. https://doi.org/10.1109/VL/HCC53370.2022.9833134

71

https://doi.org/10.1109/VL/HCC53370.2022.9833134

Chapter 11

AI Assistants: A framework for semi-automated data
wrangling

Tomas Petricek, Gerrit J. J. van den Burg, Alfredo Nazábal, Taha Ceritli, Ernesto Jiménez-Ruiz, and Christopher K. I. Williams. 2023. AI Assistants: A Framework for Semi-AutomatedData Wrangling. IEEE Trans. Knowl. Data Eng. 35, 9 (2023), 9295–9306. https://doi.org/10.
1109/TKDE.2022.3222538

72

https://doi.org/10.1109/TKDE.2022.3222538
https://doi.org/10.1109/TKDE.2022.3222538

Part V

Publications: Data visualization

73

Chapter 12

Composable data visualisations

Tomas Petricek. 2021. Composable data visualizations. J. Funct. Program. 31 (2021), e13.
https://doi.org/10.1017/S0956796821000046

74

https://doi.org/10.1017/S0956796821000046

Chapter 13

Linked visualizations via Galois dependencies

Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang. 2022. Linked visualisationsvia Galois dependencies. Proc. ACM Program. Lang. 6, POPL (2022), 1–29. https://doi.org/
10.1145/3498668

75

https://doi.org/10.1145/3498668
https://doi.org/10.1145/3498668

Part VI

Conclusions

76

Chapter 14

Contributions and outlook

The work presented in this thesis is the result of my long-term effort to rethink data sci-ence tooling from the perspective of programming languages research. The research hasbeen undertaken at multiple institutions (Microsoft Research, The Alan Turning Institute,University of Kent) and involved collaboration with a number of co-authors.The work presented in this thesis is not merely theoretical. An important contributionof this thesis is a practical implementation of the presented programming systems, lan-guages and libraries. The resulting software packages have been made available as open-source. Somewere developed by a larger teamof collaborators, while others later receivedvaluable contributions from the broader community. In some cases, industry adopters fur-ther developed the project and became maintainers of the tool.This chapter briefly reviewsmy own contributions to the papers included in this thesis,as well as my role in the resulting open-source projects. I will then reflect on the newperspective on programming and data science tooling that emerges from the work, as wellas future research directions inspired by the presented work.
14.1 Contributions to included publications

The publications selected for this thesis focus on an independent research direction that Ihave been pursuing after completing my PhD. I often developed the initial idea or a proto-type, butmany paperswere the result of a broader collaboration or an attempt to integratethe idea with the work of my colleagues and collaborators.
• Chapter 6 (Petricek et al., 2016) – I developed the initial version of the library, de-veloped the formal model, and wrote most of the paper. Gustavo Guerra signifi-cantly improved the initial implementation. Don Syme first developed the CSV typeprovider, assisted with the formalization, and provided the problem framing.
• Chapter 7 (Petricek, 2017) – I am the sole author of the paper, but some aspects ofthe work have benefited from discussion with Don Syme.
• Chapter 8 (Petricek, 2020) – I am the sole author of the paper, but the work hasbenefited from discussions with Dominic Orchard, Stephen Kell, Roly Perera andJonathan Edwards and detailed feedback from Dominic Orchard.
• Chapter 9 (Petricek et al., 2018) – I developed the prototype implementation of thepresented system and wrote most of the paper. Charles Sutton provided inspirationfor work on provenance and James Geddes shaped the system design.

77

• Chapter 10 (Petricek, 2022) – I am the sole author, but valuable implementationwork, adjacent to the paper, has been done by May Yong and Nour Boulahcen.
• Chapter 11 (Petricek et al., 2023) – Thework on individual AI assistants has been doneby the first five authors. I proposed the initial formal model and system architectureand led paper writing jointly with Christopher Williams.
• Chapter 12 (Petricek, 2021) I am the sole author of the paper, but the earliest formof the idea was born in discussion with Mathias Brandewinder.
• Chapter 13 (Perera et al., 2022) – The work was led by Roly Perera, Minh Nguyencontributed to implementation and formalization andMengWang to paper writing.I was involved in the original conceptual development with Roly Perera and writing.

14.2 Open-source software contributions

The ideas discussed in the earlier parts of the thesis have been implemented in severalopen-source software packages that are available under the permissive Apache 2.0 (F#Data) and MIT (all other projects) licenses.
• F# Data (https://github.com/fsprojects/FSharp.Data) has became a widely-used F# li-brary for data access. It implements utilities, parsers, and type providers for workingwith structured data in multiple formats (XML, JSON, HTML, and CSV). I developedthe initial version of the library and later described it in the paper included as Chap-ter 6. The library has since attracted over 100 industry contributors and furtherdevelopment has been led by industry maintainers including Gustavo Guerra, ColinBull, Chet Husk, Taylor Wood, Steffen Forkmann, Don Syme and others.
• The Gamma (https://github.com/the-gamma) is a simple data exploration environ-ment for non-programmers such as data journalists. It implements the iterativeprompting mechanism for data access (Chapters 10 and 7) and live preview mecha-nism (Chapter 8). I createdmost of the implementation. May Yong, Nour Boulahcen,and TomKnowles implemented support for further data sources andworked on casestudies using the system. Live demos using the environment in a web browser canbe found at https://thegamma.net and https://turing.thegamma.net.
• Wrattler (https://github.com/wrattler) is an experimental notebook system describedin Chapter 9 that tracks dependencies between cells, makes it possible to combinemultiple languages in a single notebook and hosts AI assistants for data wranglingdescribed in Chapter 11. I created the initial prototype and oversaw later develop-ment donemainly byMay Yong andNick Barlowwith contributions fromRoly Perera,Camila Rangel Smith, Gertjan van den Burg, and others. More information can befound at http://www.wrattler.org.
• Compost.js (https://github.com/compostjs) is a composable library for creating datavisualizations described in Chapter 12. Although the library is implemented in the F#language, it is compiled to JavaScript and provides a convenient interface for Java-Script users. I am currently the sole developer of the library, although it also servedas a design inspiration for some aspects of Fluid (below). A range of demos illustrat-ing the use of the library can be found online at https://compostjs.github.io.

https://github.com/fsprojects/FSharp.Data
https://github.com/the-gamma
https://thegamma.net
https://turing.thegamma.net
https://github.com/wrattler
http://www.wrattler.org
https://github.com/compostjs
https://compostjs.github.io

• Fluid (https://github.com/explorable-viz/fluid) is a programming language for buildinglinked data visualizations described in Chapter 13. The project has since been de-veloped into a general-purpose language for transparent, self-explanatory researchoutputs by the Institute of Computing for Climate Science, University of Cambridge.The development has been led by Roly Pererawith recent contributions from JosephBond and Achintya Rao. I participated in the project in an advisory role and collab-orated on some of the research behind the implementation. A live example can befound at https://f.luid.org.

14.3 New look at data exploration

From a narrow technical perspective, the work presented in this thesis may seen as an as-sorted list of contributions to a wide range of research areas including type systems, pro-gramming languages, provenance tracking, interactive programming environments, datawrangling, data visualization, and program analysis. But looking at the work from this per-spective would be missing the forest for the trees. Collecting the individual contributionsin a single body of work reveals two unifying themes behind the research.The first unifying theme is the broader motivation. If society is to benefit from the in-creasing availability of open data and data processing capabilities, we must make workingwith data accessible to a broader audience. Experts who are not trained as programmersneed to be able to gain valuable insights from data. They also need to be able to do soin ways that support transparency and openness and encourage critical engagement withdata. Unlike in much programming languages research where the typical user is a profes-sional programmer, the typical user for much of the work presented in this thesis has beena data journalist, who is exploring an interesting dataset in order to share relevant insightswith the broader public.The above motivation justifies a number of technical choices made in the presentedwork. I typically tried tomake some aspect of programming simpler, reduce the complexityof programming or design, and develop tools that will assist with the task. The focus madeit possible to restrict problems inways thatwould, in other contexts, seem too constrained.Examples include the data exploration calculus, which does not let users introduce customabstractions, and the iterative prompting mechanism, which restricts aggregations in aquery to a fixed set of pre-defined operations. I believe in the value of restrictions likethese. A programming language research is asmuch a designer as a scientist and designers“tend to (. . .) seek, or impose a ‘primary generator’ (. . .) which both defines the limits ofthe problem and suggests the nature of its possible solution” (Cross, 2007). The focus onsimple tools for users like data journalists has been such ‘primary generator’ for some ofthe research presented in this work.The second unifying theme of this thesis is methodological. The contributions pre-sented here generally approach a problem related to working with data through the per-spective of programming languages and systems research. I do not claim to be the firstor the only one to view data science tooling from this perspective, but my work showsthat the perspective can be fruitful for tackling problems across the entire data sciencelifecycle. In other words, I strongly believe there is a strong mutually beneficial relation-ship between programming languages and systems research and data science tooling. Onthe one hand, methods from programming languages and systems research can be used

https://github.com/explorable-viz/fluid
https://f.luid.org

to build new powerful data science tools. On the other hand, data science tools provideinteresting challenges and design constraints that force us to rethink established assump-tions in programming language research and can inspire new techniques and approaches.I also believe there is more to be done in the space explored by this thesis, both in terms ofbuilding simpler andmore open data science tools and in terms of advancing programminglanguage and systems research.Despite the recent developments in large language models (LLMs), I believe that thedirection outlined in this thesis is still the right one. In many of the systems presentedin this thesis, my aim has been to make the code of a data analysis or data visualizationas simple as possible, possibly to the point where a non-programmer would be able toread and understand it. With the rise of LLMs, the ability to review and understand codeis becoming even more important. If we are faced with a data processing task and use a100-line script generated by an LLM, it may be difficult to gain confidence in the results.But if we use a 10-line script in a language like The Gamma that has been generated withthe assistance of an LLM, as recently explored by Fromm (2024), and if the step-by-stepexecution of the program can be inspected through live previews, gaining the confidencein the results may be much easier.
14.4 Towards programming systems research

Looking at the problem of data exploration from the perspective of programming lan-guages is beneficial in both directions. On the one hand, the programming languages per-spective lets us see the problem in newways and develop new, simple, practical, andmoreprincipled tools for data exploration. This has been the subject of the present thesis. Onthe other hand, a close look at how data scientists interact with programming tools alsoforces us to rethink how we conceptualize programming languages. We need to think lessabout programming languages andmore about interactive and stateful programming sys-
tems. I started exploring this perspective in recent joint work with Jakubovic et al. (2023).When working with data, data scientists often interleave writing of code, running it,and manual tweaking of data and script parameters. If we look merely at the program-ming languages they use, the work may seem uninteresting. But if we look at the richinteractions between the current state, scripts that data scientists are tweaking and whatthey see on the screen, we can see that data exploration is a remarkably interesting kindof programming practice. We should thus see programming more as an interaction witha stateful and interactive system than as the process of writing of textual code. To studyprogramming from this perspective, we will need new formal models, that can accountfor the interactivity lacking from conventional programming language theories, as well asnew research methodologies, which make it possible to contrast and evaluate differentkind of interactions with the programming system. Data science can provide a convenientand familiar testbed for exploring this new perspective on programming.

Bibliography

Martin Abadi and Luca Cardelli. 2012. A theory of objects. Springer Science & Business.
Gregor Aisch, Amanda Cox, and Kevin Quealy. 2015. You draw it: How family income pre-
dicts children’s college chances. https://www.nytimes.com/interactive/2015/05/28/upshot/
you-draw-it-how-family-income-affects-childrens-college-chances.html New York Times.

Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher, and SteveMock. 2004. Kepler: an extensible system for design and execution of scientific work-flows. In Scientific and Statistical Database Management. IEEE, 423–424.
Judie Attard, Fabrizio Orlandi, Simon Scerri, and Sören Auer. 2015. A systematic reviewof open government data initiatives. Government Information Quarterly 32, 4 (2015),399–418. https://doi.org/10.1016/j.giq.2015.07.006

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3 data-driven documents.
IEEE Transactions on visualization and computer graphics 17, 12 (2011), 2301–2309.

Liliana Bounegru and Jonathan Gray. 2021. The Data Journalism Handbook: Towards a
Critical Data Practice. Amsterdam University Press.

Nadieh Bremer and Marlieke Ranzijn. 2015. Urbanization in East Asia between 2000 and2010. http://nbremer.github.io/urbanization/

A. Buja, J. A. McDonald, J. Michalak, and W. Stuetzle. 1991. Interactive data visualizationusing focusing and linking. In Proceedings of Visualization ’91. 156–163. https://doi.org/
10.1109/VISUAL.1991.175794

Sarah E. Chasins, Elena L. Glassman, and Joshua Sunshine. 2021. PL and HCI: better to-gether. Commun. ACM 64, 8 (jul 2021), 98–106. https://doi.org/10.1145/3469279

Nigel Cross. 2007. Designerly ways of knowing. Birkhauser Verlag Gmbh, Basel.
Evan Czaplicki. 2016. A Farewell to FRP: Making signals unnecessary with The Elm Archi-
tecture. https://elm-lang.org/news/farewell-to-frp

William Davies. 2017. How statistics lost their power–and why we should fear what comesnext. The Guardian (19 January 2017). https://www.theguardian.com/politics/2017/jan/19/
crisis-of-statistics-big-data-democracy

Jonathan Edwards. 2015. Transcript: End-User Programming Of Social Apps. https://www.
youtube.com/watch?v=XBpwysZtkkQ YOW! 2015.

81

https://www.nytimes.com/interactive/2015/05/28/upshot/you-draw-it-how-family-income-affects-childrens-college-chances.html
https://www.nytimes.com/interactive/2015/05/28/upshot/you-draw-it-how-family-income-affects-childrens-college-chances.html
https://doi.org/10.1016/j.giq.2015.07.006
http://nbremer.github.io/urbanization/
https://doi.org/10.1109/VISUAL.1991.175794
https://doi.org/10.1109/VISUAL.1991.175794
https://doi.org/10.1145/3469279
https://elm-lang.org/news/farewell-to-frp
https://www.theguardian.com/politics/2017/jan/19/crisis-of-statistics-big-data-democracy
https://www.theguardian.com/politics/2017/jan/19/crisis-of-statistics-big-data-democracy
https://www.youtube.com/watch?v=XBpwysZtkkQ
https://www.youtube.com/watch?v=XBpwysZtkkQ

Jonathan Edwards and Tomas Petricek. 2021. Typed Image-based Programmingwith Struc-ture Editing. CoRR abs/2110.08993 (2021). arXiv:2110.08993 https://arxiv.org/abs/2110.
08993 Presented at Human Aspects of Types and Reasoning Assistants (HATRA’21), Oct19, 2021, Chicago, US.

Jonathan Edwards, Tomas Petricek, and Tijs van der Storm. 2025. Schema Evolution inInteractive Programming Systems. Art Sci. Eng. Program. 9, 2 (2025). Issue 1. https:
//doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2025/9/2

Mikolas Fromm. 2024. Design of LLM Prompts for Iterative Data Exploration.
Murdoch J. Gabbay and Aleksandar Nanevski. 2013. Denotation of contextual modal typetheory (CMTT): Syntax and meta-programming. Journal of Applied Logic 11, 1 (2013),1–29. https://doi.org/10.1016/j.jal.2012.07.002

Richard P. Gabriel. 2012. The structure of a programming language revolution. In Proceed-
ings of the ACM International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software (Tucson, Arizona, USA) (Onward! 2012). Associationfor Computing Machinery, New York, NY, USA, 195–214. https://doi.org/10.1145/2384592.
2384611

Jeremy Gibbons. 2010. Editorial. Journal of Functional Programming 20, 1 (2010), 1–1.
https://doi.org/10.1017/S0956796809990256

J. Heer, J. M. Hellerstein, and S. Kandel. 2015. Predictive Interaction for Data Transforma-tion. In Proceedings of the Conference on Innovative Data Systems Research (CIDR).
IBM. 2020. The Data Science Lifecycle: From experimentation to production-level data sci-
ence. https://public.dhe.ibm.com/software/data/sw-library/analytics/data-science-lifecycle/

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: a min-imal core calculus for Java and GJ. ACM Trans. Program. Lang. Syst. 23, 3 (may 2001),396–450. https://doi.org/10.1145/503502.503505

Shaveta Jain and Agrawal Kushagra. 2022. Comprehensive Survey on Data science, Lifecy-cle, Tools and its Research Issues. In 2022 International Conference on Machine Learn-
ing, Big Data, Cloud and Parallel Computing (COM-IT-CON), Vol. 1. 838–842. https:
//doi.org/10.1109/COM-IT-CON54601.2022.9850751

Joel Jakubovic, Jonathan Edwards, and Tomas Petricek. 2023. Technical Dimensions ofProgramming Systems. The Art, Science, and Eng. of Programming 7, 3 (2023), 1–13.
S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. Van Ham, N. H. Riche, C. Weaver, B. Lee, D.Brodbeck, and P. Buono. 2011. Research directions in data wrangling: Visualizations andtransformations for usable and credible data. Information Visualization 10, 4 (2011),271–288.
Helen Kennedy, Martin Engebretsen, Rosemary L Hill, Andy Kirk, and Wibke Weber. 2021.Data visualisations: Newsroom trends and everyday engagements. The Data Journalism
Handbook: Towards a Critical Data Practice (2021), 162–173.

https://arxiv.org/abs/2110.08993
https://arxiv.org/abs/2110.08993
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2025/9/2
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2025/9/2
https://doi.org/10.1016/j.jal.2012.07.002
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1017/S0956796809990256
https://public.dhe.ibm.com/software/data/sw-library/analytics/data-science-lifecycle/
https://doi.org/10.1145/503502.503505
https://doi.org/10.1109/COM-IT-CON54601.2022.9850751
https://doi.org/10.1109/COM-IT-CON54601.2022.9850751

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias Bus-sonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain Corlay,et al. 2016. Jupyter Notebooks-a publishing format for reproducible computationalworkflows. In 20th International Conference on Electronic Publishing, Fernando Loizidesand Birgit Schmidt (Eds.). 87–90. https://doi.org/10.3233/978-1-61499-649-1-87

David Koop and Jay Patel. 2017. DataflowNotebooks: Encoding and Tracking Dependenciesof Cells. In 9th {USENIX} Workshop on the Theory and Practice of Provenance (TaPP
2017). USENIX Association.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo NMendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören Auer, et al.2015. DBpedia–a large-scale, multilingual knowledge base extracted from Wikipedia.
Semantic web 6, 2 (2015), 167–195.

J. M. Lucassen and D. K. Gifford. 1988. Polymorphic effect systems. In Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (SanDiego, California, USA) (POPL ’88). Association for Computing Machinery, New York, NY,USA, 47–57. https://doi.org/10.1145/73560.73564

Sean McDirmid. 2007. Living it up with a live programming language. In Proceedings of
the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (Montreal, Quebec, Canada) (OOPSLA ’07). Association forComputing Machinery, New York, NY, USA, 623–638. https://doi.org/10.1145/1297027.
1297073

Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput. System
Sci. 17, 3 (1978), 348–375. https://doi.org/10.1016/0022-0000(78)90014-4

Stefan K. Muller and Hannah Ringler. 2020. A rhetorical framework for programminglanguage evaluation. In Proceedings of the 2020 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming and Software
(Onward! 2020). Association for Computing Machinery, New York, NY, USA, 187–194.
https://doi.org/10.1145/3426428.3426927

Greg Myre. 2016. If Michael Phelps Were A Country, Where Would His Gold Medal Tally
Rank? https://www.npr.org/sections/thetorch/2016/08/14/489832779/

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual modal typetheory. ACM Transactions on Computational Logic (TOCL) 9, 3 (2008), 23. https://doi.
org/10.1145/1352582.1352591

Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark Greenwood,Tim Carver, Kevin Glover, Matthew R Pocock, Anil Wipat, et al. 2004. Taverna: a toolfor the composition and enactment of bioinformatics workflows. Bioinformatics 20, 17(2004), 3045–3054.
Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019. Live functional pro-gramming with typed holes. Proc. ACM Program. Lang. 3, POPL, Article 14 (jan 2019),32 pages. https://doi.org/10.1145/3290327

https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/1297027.1297073
https://doi.org/10.1145/1297027.1297073
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/3426428.3426927
https://www.npr.org/sections/thetorch/2016/08/14/489832779/
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/3290327

Raymond R. Panko. 2015. What We Don’t Know About Spreadsheet Errors Today. In Pro-
ceedings of the EuSpRIG 2015 Conference “Spreadsheet Risk Management”. EuropeanSpreadsheet Risks Interest Group, 1–15.

Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang. 2022. Linked visualisationsvia Galois dependencies. Proc. ACM Program. Lang. 6, POPL (2022), 1–29. https://doi.
org/10.1145/3498668

Tomas Petricek. 2017. Data Exploration through Dot-driven Development. In 31st European
Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona,
Spain (LIPIcs, Vol. 74), Peter Müller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Infor-matik, 21:1–21:27. https://doi.org/10.4230/LIPICS.ECOOP.2017.21

Tomas Petricek. 2020. Foundations of a live data exploration environment. Art Sci. Eng.
Program. 4, 3 (2020), 8. https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2020/4/8

Tomas Petricek. 2021. Composable data visualizations. J. Funct. Program. 31 (2021), e13.
https://doi.org/10.1017/S0956796821000046

Tomas Petricek. 2022. TheGamma: Programmatic Data Exploration for Non-programmers.In 2022 IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC
2022, Rome, Italy, September 12-16, 2022, Paolo Bottoni, Gennaro Costagliola, MichelleBrachman, and Mark Minas (Eds.). IEEE, 1–7. https://doi.org/10.1109/VL/HCC53370.2022.
9833134

Tomas Petricek, James Geddes, and Charles Sutton. 2018. Wrattler: Reproducible, live andpolyglot notebooks. In 10thUSENIXWorkshop on the Theory and Practice of Provenance,
TaPP 2018, London, UK, July 11-12, 2018, Melanie Herschel (Ed.). USENIX Association.

Tomas Petricek, Gustavo Guerra, and Don Syme. 2016. Types from data: making struc-tured data first-class citizens in F#. In Proceedings of the 37th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2016, Santa Barbara,
CA, USA, June 13-17, 2016, Chandra Krintz and Emery D. Berger (Eds.). ACM, 477–490.
https://doi.org/10.1145/2908080.2908115

Tomas Petricek, Gerrit J. J. van den Burg, Alfredo Nazábal, Taha Ceritli, Ernesto Jiménez-Ruiz, and Christopher K. I. Williams. 2023. AI Assistants: A Framework for Semi-Automated Data Wrangling. IEEE Trans. Knowl. Data Eng. 35, 9 (2023), 9295–9306.
https://doi.org/10.1109/TKDE.2022.3222538

Simon L. Peyton Jones and Philip Wadler. 1993. Imperative functional programming. In
Proceedings of the 20th ACMSIGPLAN-SIGACT SymposiumonPrinciples of Programming
Languages (Charleston, South Carolina, USA) (POPL ’93). Association for ComputingMa-chinery, New York, NY, USA, 71–84. https://doi.org/10.1145/158511.158524

João Felipe Nicolaci Pimentel, Vanessa Braganholo, Leonardo Murta, and Juliana Freire.2015. Collecting and analyzing provenance on interactive notebooks: when IPythonmeets noWorkflow. InWorkshop on the Theory and Practice of Provenance (TaPP). 155–167.
Tye Rattenbury, Joseph M Hellerstein, Jeffrey Heer, Sean Kandel, and Connor Carreras.2017. Principles of data wrangling: Practical techniques for data preparation. O’Reilly.

https://doi.org/10.1145/3498668
https://doi.org/10.1145/3498668
https://doi.org/10.4230/LIPICS.ECOOP.2017.21
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2020/4/8
https://doi.org/10.1017/S0956796821000046
https://doi.org/10.1109/VL/HCC53370.2022.9833134
https://doi.org/10.1109/VL/HCC53370.2022.9833134
https://doi.org/10.1145/2908080.2908115
https://doi.org/10.1109/TKDE.2022.3222538
https://doi.org/10.1145/158511.158524

Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape. 2019. Ex-ploratory and Live, Programming and Coding. The Art, Science, and Engineering of Pro-
gramming 3, 1 (2019). https://doi.org/10.22152/programming-journal.org/2019/3/1

Advait Sarkar and Andrew D Gordon. 2018. How do people learn to use spreadsheets?. In
Proceedings of the Psychology of Programming Interest Group (PPIG),MarianaMarasoiuEmma S oderberg, Luke Church (Ed.).

Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer. 2016.Vega-lite: A grammar of interactive graphics. IEEE transactions on visualization and
computer graphics 23, 1 (2016), 341–350.

C. A. Sutton, T. Hobson, J. Geddes, and R. Caruana. 2018. Data Diff: Interpretable, Exe-cutable Summaries of Changes in Distributions for DataWrangling. In 24th ACM SIGKDD
Conference.

Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, Jomo Fisher, Jack Hu, Tao Liu,Brian McNamara, Daniel Quirk, Matteo Taveggia, et al. 2012. Strongly-typed language
support for internet-scale information sources. Technical Report MSR-TR-2012-101. Mi-crosoft Research.

Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, and Tomas Petricek. 2013.Themes in information-rich functional programming for internet-scale data sources. In
Proceedings of the 2013 Workshop on Data Driven Functional Programming (DDFP ’13).ACM, New York, NY, USA, 1–4. https://doi.org/10.1145/2429376.2429378

S. Thirumuruganathan, L. Berti-Equille, M. Ouzzani, J.-A. Quiane-Ruiz, and N. Tang. 2017.UGuide: User-guided discovery of FD-detectable errors. In Proceedings of the ACM In-
ternational Conference on Management of Data (SIGMOD ’17). 1385–1397.

Gerrit JJ van den Burg, Alfredo Nazábal, and Charles Sutton. 2019. Wrangling messy CSVfiles by detecting row and type patterns. Data Mining and Knowledge Discovery 33, 6(2019), 1799–1820.
Jacob VanderPlas, Brian E. Granger, Jeffrey Heer, Dominik Moritz, Kanit Wongsuphasawat,Arvind Satyanarayan, Eitan Lees, Ilia Timofeev, BenWelsh, and Scott Sievert. 2018. Altair:Interactive Statistical Visualizations for Python. The Journal of Open Source Software 3,32 (2018). https://doi.org/10.21105/joss.01057

Bret Victor. 2012a. Inventing on Principle. http://worrydream.com/InventingOnPrinciple

Bret Victor. 2012b. Learnable programming: Designing a programming system for under-
standing programs. http://worrydream.com/LearnableProgramming

Richard Wesley, Matthew Eldridge, and Pawel T. Terlecki. 2011. An analytic data engine forvisualization in tableau. In Proceedings of the 2011 ACM SIGMOD International Confer-
ence onManagement of Data (Athens, Greece) (SIGMOD ’11). Association for ComputingMachinery, New York, NY, USA, 1185–1194. https://doi.org/10.1145/1989323.1989449

Hadley Wickham. 2010. A layered grammar of graphics. Journal of Computational and
Graphical Statistics 19, 1 (2010), 3–28.

https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/2429376.2429378
https://doi.org/10.21105/joss.01057
http://worrydream.com/InventingOnPrinciple
http://worrydream.com/LearnableProgramming
https://doi.org/10.1145/1989323.1989449

Hadley Wickham. 2016. ggplot2: Elegant graphics for data analysis. Springer.
Hadley Wickham, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino Mc-Gowan, Romain François, Garrett Grolemund, Alex Hayes, Lionel Henry, JimHester, et al.2019. Welcome to the Tidyverse. Journal of open source software 4, 43 (2019), 1686.
Leland Wilkinson. 1999. The grammar of graphics. Springer-Verlag New York. https://doi.

org/10.1007/978-1-4757-3100-2

https://doi.org/10.1007/978-1-4757-3100-2
https://doi.org/10.1007/978-1-4757-3100-2

	Acknowledgements
	Contents
	I Commentary
	Introduction
	How data journalists explore data
	Requirements of simple tools for data exploration
	Data exploration as a programming problem
	Utilised research methodologies
	What makes a programming tool simple
	Structure of the thesis contributions
	Research outlook

	Type providers
	Information-rich programming
	Type providers for semi-structured data
	Shape inference and provider structure
	Relative safety of checked programs
	Stability of provided types

	Type providers for query construction
	Formalising lazy type provider for data querying
	Safety of data acquisition programs

	Contributions

	Data infrastructure
	Notebooks and live programming
	Live data exploration environment
	Data exploration calculus
	Computing previews using a dependency graph

	Live, reproducible, polyglot notebooks
	Architecture of a novel notebook system
	Dependency graphs for notebooks

	Contributions

	Iterative prompting
	Data wrangling and data analytics
	Iterative prompting
	Iterative prompting for data querying
	Usability of iterative prompting

	AI assistants
	Merging data with Datadiff
	Formal model of AI assistants
	Practical AI assistants

	Contributions

	Data visualization
	Visualisations to encourage critical thinking
	Composable data visualisations
	Declarative chart descriptions
	Rendering a Compost chart
	Functional abstraction and interactivity

	Automatic linking for data visualizations
	Creating linked visualizations using Fluid
	Language-based foundation for explainable charts
	Bidirectional dependency analyses

	Contributions

	II Publications: Type providers
	Types from data: Making structured data first-class citizens in F#
	Data exploration through dot-driven development

	III Publications: Data infrastructure
	Foundations of a live data exploration environment
	Wrattler: Reproducible, live and polyglot notebooks

	IV Publications: Iterative prompting
	The Gamma: Programmatic data exploration for non-programmers
	AI Assistants: A framework for semi-automated data wrangling

	V Publications: Data visualization
	Composable data visualisations
	Linked visualizations via Galois dependencies

	VI Conclusions
	Contributions and outlook
	Contributions to included publications
	Open-source software contributions
	New look at data exploration
	Towards programming systems research

