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Preface

This habilitation thesis deals with structural tests for time series, specifically with goodness-
of-fit tests and change-point tests. The thesis summarizes the achievements of the follow-
ing five papers, co-authored by Šárka Hudecová:

[1] Hudecová, Š. (2013): Structural changes in autoregressive models for binary time
series. Journal of Statistical Planning and Inference 143(10), 1744–1752.

[2] Hudecová, Š., M. Hušková, and S.G. Meintanis (2015): Tests for time series of counts
based on the probability-generating function. Statistics 49(2), 316–337.

[3] Hudecová, Š., M. Hušková, M. and S.G. Meintanis (2017): Tests for structural changes
in time series of counts. Scandinavian Journal of Statistics 44(4), 843–865.

[4] Neumeyer, N., M. Omelka, M. and Š. Hudecová (2019): A copula approach for de-
pendence modeling in multivariate nonparametric time series. Journal of Multivari-
ate Analysis 171, 139–162.

[5] Omelka, M., Š. Hudecová, and N. Neumeyer (2020): Maximum pseudo-likelihood
estimation based on estimated residuals in copula semiparametric models. Scandi-
navian Journal of Statistics 48, 1433–1473.

Paper [1] deals with autoregressive models for binary time series and proposes a proce-
dure for detecting a single change in model parameters. Details can be found in Chapter 2.

Articles [2] and [3] introduce structural tests for important classes of count time series
models. Goodness–of–fit tests are considered in [2], while an online detection method for
an abrupt structural break is proposed and studied in [3]. The content of both papers is
summarized in Chapter 3.

Papers [4] and [5] deal with copula modelling of sequences of multivariate observa-
tions, and their results are provided in Chapter 4.

The thesis introduces the considered problems and presents the main theoretical re-
sults proved in the five articles. The attached papers also contain additional details on
computational aspects, practical simulation studies, and real data illustrations, which are
not part of this thesis.

The notation in the thesis is unified and, therefore, it need not match the notation used
in the attached published versions of papers.
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Chapter 1
Introduction

Time series analysis is a statistical technique used to analyze data measured sequentially
in time. Such observations are often mutually dependent, so the future behavior of the
series can be deduced from the historical data. The aim is to build a suitable model that
reasonably describes the underlying structure and enables to estimate quantities of inter-
est, to test hypotheses, and to construct accurate predictions.

Given a specified time series modelM for the observed data, the unknown quantities
(often finite dimensional parameters) appearing in the model specification need to be esti-
mated, leading to a fitted model M̂. This estimated model can then be used for the desired
inference tasks. However, an assessment of validity of structural assumptions of model
M is a crucial task because an incorrect model can lead to false conclusions or misleading
predictions. Model verification is an objective of goodness-of-fit testing, where the aim is to
test the null hypothesis

H0 : the observed data are generated byM

against a general or a specified alternative H1.

A model structure can be inappropriate for various reasons. For instance, distribu-
tional assumptions might not be feasible and/or the functional dependence on the un-
known parameters is not suitable. Different goodness-of-fit tests focus on different types
of model violations. Since the world is dynamically evolving, a time series model might be
inappropriate due to time instabilities. Structural tests, which focus on this type of viola-
tion of H0, belong to the change point analysis. Their aim is to evaluate whether the model
is stable over the whole observational period, or if there is a change in the data generating
process.

This thesis is devoted to structural tests for certain classes of time series.

1.1 Univariate time series models for discrete data

A time series is a sequence of random variables or random vectors measured sequentially
in time, typically in equidistant time points. In theory, we typically consider a model for
{Yt}t∈Z, where Z is a set of all integers and, therefore, it is assumed that the process started
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2 CHAPTER 1. INTRODUCTION

infinitely in the past and it will continue infinitely in the future. In practice, however, ob-
servations from a time window of length T are available, so the data form a finite sequence
{Yt}Tt=1. In the following we use notation {Yt} := {Yt}t∈Z. We refer to Brockwell and Davis
(2006) for basic introduction to time series.

A suitable approach to modeling {Yt} depends on the nature of the individual observa-
tions. Consider the univariate situation where {Yt} is a sequence of random variables tak-
ing values in R. The traditional modeling approach is based on ARMA or ARMA-GARCH
models, see, e.g., Hamilton (1994); Brockwell and Davis (2002); Tsay (2002); Box et al.
(2016); Francq and Zakoian (2019). However, this framework is designed for real-valued
data. Let

Ft = σ {Ys, s ≤ t}

stand for the σ -algebra of information known at time t. An autoregressive model AR(p),
p ≥ 1, is defined as

(1.1) Yt = α0 +
p∑
i=1

αiYt−i + εt ,

where {εt} is a white noise with variance σ2 > 0, and αi ∈ R, i = 1, . . . ,p, are model param-
eters assumed to satisfy certain stationarity and causality conditions. For construction of
prediction intervals or for a probabilistic forecast one often has to make a distributional
assumption about {εt}. It is typically assumed that the process {εt} is Gaussian, which
implies that the conditional distribution of Yt given Ft−1 is normal,

(1.2) Yt |Ft−1 ∼ N

α0 +
p∑
i=1

αiYt−i , σ
2

 ,
where we use the notation Z ∼ G to specify that a distribution of a random variable Z is G;
alternatively, we also write L(Z) = G.

Various applications require modeling of data {Yt} where Yt has a discrete distribution
on N0 for each t, see particular examples in Sections 1.1.1 and 1.1.2. When dealing with
such discrete time series, particularly with those that represent low counts or binary out-
comes, then AR models from (1.1) are not suitable, because they neglect the discreteness
and they are not able to describe the data adequately. Indeed, since Yt takes values in N0,
the right hand side of (1.1) would have to be in N0 for all t, and this would hold only under
quite restrictive conditions. Moreover, discrete data often exhibit non-linear relationships
and a mean-variance relationship that cannot be captured effectively by ARMA-GARCH
models. A solution is to consider special models that account for the discrete nature and
specific distributional properties of discrete data. When trying to modify the existing
methodologies, one often attempts to recover the basic characteristics of real-valued time
series and at the same time borrows useful ideas from the discrete world. In doing so mod-
els for discrete time series often mimic the dependence structure of real-valued ARMA (or
GARCH) models, while using a formalization that preserves the discreteness.

Assume that {Yt} is a time series of variables taking values in N0. A natural modifica-
tion to (1.2) is to replace the normal distribution with a suitable discrete distribution on
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N0 and to assume that

(1.3) Yt |Ft−1 ∼ G(ϑt), ϑt = h(Ft−1,θ),

where G(ϑ) is a discrete distribution depending on a parameter ϑ ∈Ω ⊂R
k , k ≥ 1, and h is

a link which reflects the dependence of the conditional distribution G(ϑt) on the past Ft−1,
typically via some unknown finite dimensional parameter θ ∈ Θ ⊂ R

d . Several important
examples are provided in the next paragraphs.

1.1.1 Binary time series

If Yt takes only values 0 and 1 for all t ∈Z, then the series is formed by binary observations.
In practice, such data often arise as a sequence of indicators of a presence of a specified
event, e.g., precipitation, or whether a stock price was higher or lower compared to the
previous day. An example of a binary time series is shown in Figure 1.1, which plots
the US quarterly recession data from 1855–2011 obtained from The National Bureau of
Economic Research (628 records).
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Figure 1.1: An examples of a binary time series: Quarterly indicators of recession in the
US. Here, Yt is coded as 1 if any month in the quarter is being in a recession.

Flexible models for such dependent binary data are based on the principles of general-
ized linear models (McCullagh and Nelder, 1989; Kedem and Fokianos, 2002). Denote as
πt = P(Yt = 1|Ft−1). Then

Yt |Ft−1 ∼ B(πt),

where B(π) stands for the Bernoulli distribution with the success probability π ∈ [0,1]. A
binary autoregressive model of order p ≥ 1 assumes that

πt = h
(
β0 +

p∑
i=1

βiYt−i

)
,



4 CHAPTER 1. INTRODUCTION

for a certain specified function h : R → (0,1) and some unspecified parameters βi ∈ R,
i = 0, . . . ,p. The use of the function h guarantees that the conditional probability πt lies in
(0,1) and the model is well-defined. In the notation of model (1.3), G(ϑ) is B(ϑ) with ϑ ∈
(0,1) ⊂ R, Ω = (0,1), and k = 1. The unknown parameter of the model is θ = (β0, . . . ,βp)>.
Such model for binary observations is considered in Chapter 2, where a structural test of
a single parametric change point is described.

1.1.2 Count time series

If Yt has a general discrete distribution on N0 for all t ∈ Z we say that {Yt} is a count time
series. Such data typically represent counts of specified events occurring in successive time
intervals of equal length, as daily numbers of patients, numbers of stock transactions in
5-min intervals, numbers of scored goals in a match of a given team, etc. Examples of
such data are provide in Figures 1.2 and 1.3. Figure 1.2 presents a series of monthly polio
incidence counts in US from January 1970 to December 1983 (168 observations), (Zeger
and Quaqish, 1988; Jung and Tremayne, 2011). Figure 1.3 shows monthly numbers of
claims made by injured workers to the British Columbia Workers Compensation Board
(burn injuries only) during observation period January 1985 to December 1994, (Freeland,
1998).
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Figure 1.2: Monthly polio incidence counts in the US (Jan 1970 to Dec 1983).

Below we introduce two most important classes of models for such data that are also
later used in Chapter 3. We refer to overviews in McKenzie (2003); Davis et al. (2015);
Weiss (2018a); Davis et al. (2021) for more details and different approaches.
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Figure 1.3: Monthly insurance claims (Jan 1985 to Dec 1994).

INGARCH models

For count data, the Poisson distribution plays a similar role as the normal distribution in
real–valued models because it often serves as a baseline assumption. Hence, one of the
basic variants of (1.3) assumes that the conditional distribution Yt |Ft−1 is Poisson with
mean λt that depends on the past values of the process. Since the mean and variance of
the Poisson distribution coincide, that is

λt = E[Yt |Ft−1] = var [Yt |Ft−1],

a model for the conditional mean is also a model for the conditional variance, leading to a
conditionally hereroscedastic model.

Using similar ideas from generalized linear models combined with the canonical link
for Poisson distribution lead to log-linear models, which were considered in various vari-
ants by Zeger and Quaqish (1988); Kedem and Fokianos (2002); Davis et al. (2003); Jung
et al. (2006); Fokianos and Tjøstheim (2011) among others. An autoregressive model of
order p ≥ 1 can be defined for such data as

Yt |Ft−1 ∼ Po(λt), log(λt) = ω+
p∑
i=1

αiYt−i ,

where ω,αi ∈ R, i = 1, . . . ,p, are unknown parameters. In notation of (1.3), k = 1, Ω =
(0,∞), G(ϑ) = Po(λ) and the unknown parameter is θ = (ω,α1, . . . ,αp)> ∈ Rp+1. An identity
link together with inclusion of lagged values of λ in the model for λt leads to so called
INGARCH(p,q) model, p,q ≥ 0, considered in Ferland et al. (2006), where

Yt |Ft−1 ∼ Po(λt), λt =ω+
p∑
i=1

αiYt−i +
q∑
j=1

βjλt−j ,
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where ω ∈ R and αi ,βj > 0, i = 1, . . . ,p, j = 1, . . . , q. An advantage of the linear model over
the log-linear one is that it has analogous second-order properties as the classical ARMA
model. A more general variant assumes a general (specified) non-linear dependence of
λt on its past values and past values of the process (Fokianos and Tjøstheim, 2009, 2012;
Fokianos, 2012), which leads to a non-linear INGARCH(p,q) model

Yt |Ft−1 ∼ G(λt), λt = r(Yt−1, . . . ,Yt−p,λt−1, . . . ,λt−q,η),

where G(λ) is some distribution on N0 with mean λ, and the function r : [0,∞)p+q ×Θ
belongs to some specific parametric family of functions R = {r(·,θ) : θ ∈ Θ ⊂ R

k} for some
k ≥ 1.

Although the Poisson distribution is by far the most popular specification for G, dif-
ferent choices have been considered as well (Zhu, 2011; Christou and Fokianos, 2014;
Davis and Liu, 2016), for instance, the conditional negative binomial distribution, the
zero-inflated Poisson distribution or a mixture of two Poisson distributions.

Models based on thinning operator

A different class of count time series models is derived as a modification of the classical
autoregressive (AR) model for count data. Recall that a causal stationary AR(1) model
takes form

(1.4) Yt = α ·Yt−1 + εt ,

where {εt} is a white noise sequence and α ∈ (−1,1) is a parameter. One possibility how to
preserve the discreteness of the data is to replace the multiplication in (1.4) with a different
operator ◦ such that for any random variable Y with values in N0 the random variable α◦Y
is also discrete with values in N0.

Integer-valued autoregressive (INAR) models (McKenzie, 1985; Al-Osh and Alzaid,
1987; Alzaid and Al-Osh, 1988; Du and Li, 1991; Scotto et al., 2015) use the Steutel and
van Harn’s thinning operator ◦, which is defined as follows. If Y is a random variable with
values in N0 and α ∈ (0,1) then

(1.5) α ◦Y :=
Y∑
i=1

Ui ,

where {Ui} are independent and identically distributed (iid) Bernoulli variables with α =
P(Ui = 1) = 1− P(Ui = 0), which are independent of Y , with the convention that an empty
sum (the case Y = 0) equals 0. INAR(1) model then takes the form

(1.6) Yt = α ◦Yt−1 + εt ,

where α ∈ (0,1) is an unknown parameter and {εt} is a sequence of iid count random
variables with distribution Gε, independent of the Bernoulli variables involved in the def-
inition of ◦. The model can be straightforwardly generalized to INARMA(p,q) models, see
Section 3.2.2. If Gε is Poisson, then the marginal distribution of Yt is Poisson as well. For
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this nice property, a model with Poisson Gε often serves as a baseline model within this
class.

Note that model (1.6) can be rewritten as (1.3) via the specification of the conditional
distribution of Yt given Ft−1. Namely, Yt |Ft−1 ∼ G(ϑt), where G(ϑt) is the convolution of Gε
and the binomial distribution Bi(Yt−1,α).

The two classes of models mentioned above, INGARCH and INARMA, have received
enormous attention in the literature. They are known to fit well empirical data in diverse
areas of application such as in business, accident prevention, and medicine. However,
there exists a number of other models with different structures, see McKenzie (2003). It is,
therefore, extremely desirable to have verification tools which would enable a practitioner
to validate whether the chosen model is suitable for the data at hand. Chapter 3 presents
such structural tests for count time series.

1.2 Multivariate time series models

In various real-life situations, multiple variables are recorded simultaneously in time, re-
sulting in a multivariate time series {Y t} such that Y t = (Y1t , . . . ,Ykt)> for some k > 1. The
components of Y t are often correlated, so a suitable model for {Y t} has to account for
both the mutual dependence among the variables and their time dependence. An example
of such multivariate time series is provided in Figure 1.4 for daily exchange rates of US
Dollar (USD), British Pound (GBP), and Euro (EUR) to the Czech Koruna (CZK) in 2010–
2012 (i.e., k = 3) . Each individual series consists of dependent observations, and there are
visible trends common to all three series, reflecting their mutual dependence.

20
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2010 2011 2012 2013
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EUR GBP USD

Exchange Rates

Figure 1.4: Multivariate time series of daily exchange rates of USD/CZK, GBP/CZK, and
EUR/CZK in 2010–2012.

The standard approach for modeling stationary multivariate time series is based on
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multivariate ARMA-GARCH models (Lütkepohl, 2005; Tsay, 2013). These models extend
the classical univariate ARMA-GARCH models to the multivariate context, enabling to
model interdependencies between multiple univariate time series. However, they are not
able to capture certain non-linear relationships among the component variables. Recently,
time series models based on copulas have proved useful as they allow flexible modeling of
complex dependencies and separate the marginal models from the dependence structure.

Modeling of joint distributions using copulas has attained much interest in the litera-
ture in the past 20 years (Nelsen, 2006; Embrechts, 2009; Joe, 2014). The approach is based
on famous Sklar’s theorem (Sklar, 1959) which states that there is a relationship between
a cumulative distribution function (cdf) of a random vector X and its marginals, captured
by the so called copula function or also copula. In particular, the cdf H of a random vector
X = (X1, . . . ,Xk)> can be written as

(1.7) H(x1, . . . ,xk) = P(X1 ≤ x1, . . . ,Xk ≤ xk) = C(F1(x1), . . . ,Fk(xk)), ∀(x1, . . . ,xk) ∈Rk ,

where Fi is the marginal cdf of Xi , i = 1, . . . , k, and C : [0,1]k → [0,1] is a cdf with uniform
marginals, called copula. Moreover, C is uniquely determined on

�k
i=1Range(Fi), see also

(Nelsen, 2006, Chapter 2).

The copulas can be utilized in time series analysis in various ways (Patton, 2009, 2012;
Fan and Patton, 2014; Rémillard et al., 2012). Denote as before Ft = σ {Y s, s ≤ t} the in-
formation set known at time t. Assume that the conditional distribution of Y t given Ft−1

depends on Ft−1 only through a d-dimensional vector X t for some d ∈ N, i.e., X t is Ft−1

measurable and L(Y t |Ft−1) = L(Y t |X t). For instance, it is often reasonable to consider
X t = (Y >t−1, . . . ,Y

>
t−p)> for some p ≥ 1. A copula time series model can be written as

(1.8) Y t =m(X t) +Σ(X t)εt ,

where

m(x) =
(
m1(x), . . . ,mk(x)

)>
, Σ(x) = diag

{
σ1(x), . . . ,σk(x)

}
for mean functions mj : Rd → R and volatility functions σj : Rd → (0,∞), j = 1, . . . , k, and
{εt} are iid random vectors with zero means, unit variances, continuous joint cdf Fε and
marginal cdfs Fjε, j = 1, . . . , k. Due to Sklar’s theorem, there exists a unique copula C which
links the marginal cdfs Fjε, j = 1, . . . , k to the joint Fε . Hence, model (1.8) can be rewritten
using the conditional distribution L(Y t |Ft−1) as

P(Y t ≤ y|Ft−1) = P(Y t ≤ y|X t) = C
(
F1ε(Z1), . . . ,Fkε(Zk)

)
, Zj =

yj −mj(X t)
σj(X t)

, j = 1, . . . , k,

where we use the convention that an inequality x ≤ y for two vectors x,y ∈ Rk is meant
componentwise, that is x ≤ y if and only if xi ≤ yi for all i = 1, . . . , k, where x = (x1, . . . ,xk)>

and y = (y1, . . . , yk)>. Thus, the copula C reflects the conditional dependence structure of
the individual k series after removing the influence of X t.

Hence, the following three components of the model (1.8) need to be estimated: (i) the
individual mean and volatility functions mj and σj , j = 1, . . . , k, (ii) the marginal cdfs of
the innovations Fjε, j = 1, . . . , k, and (iii) the copula function. The marginal cdfs in (ii) are
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typically estimated nonparametrically, see Chapter 4, while it is often suitable to specify a
parametric model for the copula in (iii) as

(1.9) C ∈ C = {Cθ ,θ ∈Θ},

where C can be, for example, a family of Gaussian or Clayton copulas, see (Joe, 2014,
Chapter 4).

Different copula models capture different types of dependence structures, as illus-
trated by Figure 1.5 which plots n = 500 independent copies of a random vector (Z1,Z2)>

with a bivariate distribution with the standard normal marginalsN (0,1) and two different
copulas C. In both cases, the Kendall’s tau is τ = 0.5. The left panel corresponds to C be-
ing a Clayton copula (with parameter θ = 2), while the right panel provides samples from
the Gaussian copula (with θ � 0.7). One can observe different tail dependencies (extreme
co-movements) for the two different copulas.
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Figure 1.5: Illustration of different dependence structures for different copula families:
n = 500 independent random vector sampled from a distribution with the standard normal
marginals and a copula C: Clayton copula (left panel) and Gaussian copula (right panel).
The Kendall’s tau is τ = 0.5 in both cases.

An inappropriate copula can lead to inaccurate description of the relationships among
the variables, especially their tail dependencies that are crucial, e.g., in risk management
and financial applications. Selecting appropriate copula model is crucial because it di-
rectly impacts the quality and reliability of the resulting multivariate time series model
(1.8). A verification of the assumption (1.9) via a structural goodness-of-fit test is, there-
fore, desirable in all applications. This setup is considered in Chapter 4.

1.3 Goodness-of-fit testing

Goodness-of-fit testing is a statistical method used to assess how well the observe data
Y1, . . . ,YT fit to a specified parametric model M. A difficulty in testing such a hypothe-
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sis is that the class of alternatives is typically enormously large (Lehmann et al., 2005,
Chapter 14).

The goodness-of-fit tests for iid univariate continuous data typically employ the cu-
mulative distribution function (cdf) and its empirical counterpart. Assume a parametric
model M which specifies cdf Fθ for Yt for some unknown parameter θ ∈ Θ. Let F̂T be
the empirical cdf and θ̂ be a consistent estimator of θ constructed from Y1, . . . ,YT under
the assumption that M holds. Then a typical goodness-of-fit test statistic is based on a
distance d(F̂T ,Fθ̂) for a suitable metric d. Most popular choices are

(1.10) ST ,1 = sup
x∈R

∣∣∣F̂T (x)−Fθ̂(x)
∣∣∣

leading to the Kolmogorov-Smirnov test statistic, and

(1.11) ST ,2 =
∫ ∞
−∞

(
F̂T (x)−Fθ̂(x)

)2
w(x)dx,

where w : R→ (0,∞) is an integrable weight function, leading to the Cramér–von Mises
test statistic. The model M is rejected if the chosen test statistic ST (being either ST ,1
or ST2

or some other distance) exceeds some threshold, let say c. This bound c = cα has
to be chosen such that the test keeps a prescribed (asymptotic) level α ∈ (0,1). It can be
determined as the corresponding quantile of the asymptotic distribution of ST .

When dealing with discrete distributions, the use of a cumulative distribution function
is often inconvenient due to its non-continuous nature. See, for instance, Gürtler and
Henze (2000) where the application of the Cramér–von Mises test is shown to be non–
trivial for the Poisson distribution. A modification of the Pearson’s χ2 test can be used
for discrete data (Lehmann et al., 2005, Chapter 14.3), but various practical issues arise.
A different approach is to replace the cdf by a different characteristic. An interesting
possibility is to use the probability generating function (PGF), introduced in Section 3.1, that
has been successfully used for testing goodness-of-fit for iid data in various situations, e.g.,
in Baringhaus and Henze (1992); Nakamura and Pérez-Abreu (1993); Kocherlakota and
Kocherlakota (1986). In the iid setup, reasonable test statistics can be obtained if the cdfs
are replaced with PGFs in (1.10) and (1.11). We follow this approach in Section 3.3 and
adapt it to the time series setup. The crucial task is to derive the formula for the critical
value cα.

Verification of copula models was considered by various authors, see Fermanian (2005),
Genest and Rémillard (2008), Genest and Rémillard (2006), Omelka et al. (2009) for the iid
case, Rémillard (2017) for time series, and Fermanian (2013) and Genest et al. (2009) for
some overviews. Since every copula is, in fact, a multivariate cdf, one can consider anal-
ogous versions of the Kolmogorov-Smirnov or Cramér von Mises test statistics. However,
in the considered time series model (1.8), C is not a cdf of the observed data, but rather a
cdf of unobserved innovations that depend on observations via an unknown transforma-
tion. Namely, C is the cdf of

(
F1ε(ε1t), . . . ,Fkε(εkt)

)>
, where Fjε, j = 1, . . . , k, are unknown

and εt = (ε1t , . . . , εkt)> are not directly observable. An empirical estimator ĈT can be con-
structed from the model residuals, but a crucial task is to show that the estimation of the
marginal means and volatilities together with the estimation of the marginal cdfs Fjε do
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not affect the asymptotic behavior of the corresponding goodness-of-fit test statistics. This
problem is considered in Chapter 4.

1.4 Change point detection

Stability of a time series model over a longer time period is always questionable. It is
often assumed that the system under consideration may change at some unknown time
moments, so called change points, while it remains stable between these points. The main
objective is then to decide whether a change has occurred, and if this is the case, to estimate
the change points. Detecting change points is crucial in various fields, including signal
processing, quality control, finance, and environmental monitoring.

There is a broad statistical literature related to the change point topic with (Csörgő and
Horváth, 1997) being one of the basic references. In the time series setting, various results
have been derived for ARMA models (e.g., Horváth, 1993; Davis et al., 1995; Hušková
et al., 2007) and GARCH models (e.g., Kokoszka and Teyssière, 2002; Berkes et al., 2004).
Ling (2007) deals with the detection of changes in general time series models (which in-
clude ARMA and GARCH models as special cases) under the near epoch dependence as-
sumption. Aue and Horváth (2013) provide an extensive overview of the recent work in
this field. More specific references to the literature on the change point problem within
count time series are provided in the introduction to Chapter 3.

We distinguish between offline and online (also sequential) monitoring, two different
approaches to detecting changes over time.

In offline change detection, the entire dataset is available before the analysis begins.
Assume that data Y1, . . . ,YT are available and we intend to test that a change point has
occurred within the observation period {1, . . . ,T }. The basic situation of a single change
aims to test

H0 : Yt follows modelM for all t = 1, . . . ,T ,

against

H1 : Yt followsM1 for 1 ≤ t ≤ t0 andM2 for t0 < t ≤ T ,

where t0 ∈ {2, . . . ,T − 1} is an unknown change point andM1 ,M2, for instance, due to a
parametric or distributional change. The test is based on a test statistic ST = ST (Y1, . . . ,YT )
and H0 is rejected if ST > cα where cα is the critical value which ensures that the test has
asymptotic level α, i.e.,

lim
T→∞

PH0
(ST > cα) = α

for a specified α ∈ (0,1), typically α = 0.05 in practice. Such test of H0 often naturally
induces an estimator of the unknown change point t0. This kind of change point problem
is considered in Chapter 2 for binary time series.

In the sequential (online) testing the observations arrive sequentially and the test is im-
plemented anew with each new arriving observation. It is assumed that for some T > 0,
there exists a training sample (historical data) Y1, . . . ,YT that involves no change. The
monitoring period begins with time t = T + 1 and continues till time T (m + 1) for some
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m ∈N∪ {∞}. If m <∞, the procedure is called close–end, while for m =∞ it is referred to
as an open–end procedure. Hence, the situation is as follows:

Y1, . . . ,YT︸     ︷︷     ︸
training data

YT+1,YT+2, . . . ,YT (m+1)
↑ ↑ ↑︸                      ︷︷                      ︸

monitoring period of length mT

Consider
H0 : Yt follows modelM for all t ∈Z

against
H1 : Yt follows modelM1 for all t ≤ T + t0 andM2 for t > T + t0,

where t0 > 1 is an unknown change point andM1 ,M2. The null hypothesis is rejected if
the value of a suitable detector statistic exceeds an appropriately chosen bound for the first
time. If the detector statistic at time T + t is below the threshold, we continue monitoring
and recompute the detector at time T + t + 1 etc.

A detector statistic is typically of the form

(1.12) DT ,t,γ =
∆̂T ,t

q2
γ

(
t
T

) , t ≥ 1,

where ∆̂T ,t is a suitable function of the observations Y1, . . . ,YT+t (sensitive to violations of
H0) and where qγ is a weight function,

(1.13) qγ (s) = (1 + s)
( s
s+ 1

)γ
, γ ∈ [0,1/2).

The parameter γ in (1.13) is a tuning parameter, see Aue and Horváth (2004) and Zeileis
(2005). Briefly, a value of γ close to 0 is appropriate for a late change while if an early
change is expected, γ should be taken close to 1/2.

The corresponding stopping rule is specified as

(1.14) τ(T ;m) = τ(T ) =

inf
{
1 ≤ t ≤mT :DT ,t,γ > cα,m

}
,

+∞, if DT ,t,γ ≤ cα,m for all 1 < t ≤mT ,

where cα,m is a constant that guarantees that the test has asymptotic size equal to α ∈ (0,1).
That is

(1.15) lim
T→∞

PH0

(
τ(T ) <∞

)
= lim
T→∞

PH0

(
max

1≤t≤mT
DT ,t,γ > cα,m

)
= α.

Under the alternative H1 we require

(1.16) lim
T→∞

PH1

(
τ(T ) <∞

)
= 1.

The crucial task is to determine the critical value cα,m for α ∈ (0,1), m > 0 and for a
given detector test statistic DT ,t,γ so that (1.15) holds. If H0 is rejected, then τ(T ), the
time when the detector DT ,t,γ crosses the threshold cα,m for the first time, is taken as an
estimator of the unknown time of change t0.



1.4. CHANGE POINT DETECTION 13

The described sequential change point detection is illustrated graphically in Figure 1.6.
In this example, we set T = 50 and m = 4, so we have a historical data of length 50 and
the monitoring is conducted sequentially on observations YT+t for t = 1, . . . ,200 = mT . In
each step t, a detector statistic DT ,t,γ is computed and compared with the red boundary
cα,m, which is determined such that (1.15) holds. The two plots show 20 trajectories of
{DT ,t,γ }mTt=1 simulated under H0 (left panel) and under H1 with one change point at t0 = 50
(right panel). Only 1 out of 20 trajectories simulated under H0 exceeds the boundary cα,m
(this realization is highlighted with a dark gray color), which illustrates the validity of
(1.15). Only 3 out of 20 trajectories simulated under H1 do not exceed cα,m (stressed by a
dark gray color), which is in agreement with the requirement (1.16). The time point τ(T ),
when the detector DT ,t,γ crosses the red boundary for the first time, is the estimator of the
unknown t0. In this example, its values range between 63 and 142.

H0 H1

0 50 100 150 200 0 50 100 150 200

0.00

0.05

0.10

0.15

0.20

Figure 1.6: An illustration of a sequential detection with T = 50 and m = 4: 20 trajectories
of {DT ,t,γ }mTt=1 simulated under H0 (left panel) and under H1 with a change point at t0 = 50
(right panel).

Procedures satisfying (1.15) and (1.16) were introduced and studied by Chu et al.
(1996) in the context of simple parameter change, and were further extended and mod-
ified in, e.g., Leisch et al. (2000), Horváth et al. (2004), Zeileis (2005), Aue and Horváth
(2004), and Aue et al. (2006). We consider this type of detection in Section 3.4.
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Chapter 2
Instabilities in Binary Time Series

Binary time series play an important role in many fields of application. They are typically
observed when one is concerned with an occurrence of an event in a time period. For ex-
ample, daily occurrences of precipitation can be modeled as binary time series (see Wilks
and Wilby, 1999). In a financial area, one might be interested in recession indicators (see
Kauppi and Saikkonen, 2008; Startz, 2008), or in a series of direction-of-change of stock
returns.

Detection of changes in the success probability of independent binary variables was
studied by Pettitt (1980) using a CUSUM type test statistic. Changes in the success proba-
bility of independent binomial variables were further considered, e.g., by Worsley (1983);
Horváth (1989); Ma (1997); Serbinowska (1996). In this chapter we deal with the change
point problem within the framework of dependent binary variables.

Section 2.1 introduces an autoregressive model for binary time series which serves as
the baseline model for our study. The procedure for a detection of a change in the model
parameters is introduced in Section 2.2. The derived test statistic is a maximum of normal-
ized sums of the estimated residuals, but the normalization is slightly more complicated
compared to the standard CUSUM type statistic. Our procedure is closely related to the
problem of detection of changes in generalized linear models studied by Antoch et al.
(2004). Due to the form of the test statistic, the test is sensitive to any change in the model
which leads to a change in the unconditional success probability.

This chapter introduces theoretical results from Hudecová (2013b).

2.1 Autoregressive models for binary time series

Let {Yt} be a binary (0-1 valued) time series of interest, and let Ft−1 = σ {Ys, s ≤ t − 1} be
the σ -field generated by the past {Ys, s ≤ t − 1}. Assume that the conditional distribution
of Yt given Ft−1 is binary B(πt) such that the success probability πt depends on p previous
values of the series via the model

(2.1) g (πt) = β0 + β1Yt−1 + . . .βpYt−p,

15
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where g is a suitable link function (logit, probit) and β = (β0,β1, . . . ,βp)> is a vector of
unknown parameters. Equivalently,

(2.2) πt = g−1
(
β0 + β1Yt−1 + . . .βpYt−p

)
.

This model is referred to as a binary autoregressive model (BAR), (e.g., Wang and Li, 2011),
or a binary dynamic response model, (Kauppi and Saikkonen, 2008; de Jong and Woutersen,
2011). It is shown by Wang and Li (2011) that there always exists a stationary solution
to (2.1).

The model (2.1) can be further extended by including explanatory variables or lagged
values of πt, (Kauppi and Saikkonen, 2008; Startz, 2008). All these models then belong
to a wide class of models, called time series following generalized linear models, (Kedem and
Fokianos, 2002).

Let Y1,Y2, . . . ,Yn be the observed data. The vector of parameters β from (2.1) can be
estimated by the conditional maximum likelihood method, so that the estimator β̂ is the
maximizer of the conditional likelihood function

L(β) =
n∏

t=p+1

[πt(β)]Yt [1−πt(β)]1−Yt ,

where πt(β) = πt is given by (2.2). Alternatively, the estimator β̂ can be computed as

(2.3) β̂ = argmaxβ∈Rp+1

n∏
t=1

[πt(β)]Yt [1−πt(β)]1−Yt ,

for some initial values Y−p+1, . . . ,Y0.

The estimator β̂ is almost surely unique for all sufficiently large sample size n, consis-
tent, and asymptotically normal under some regularity conditions (Kedem and Fokianos,
2002, Chap. 1). This estimation approach is convenient in applications, because software
tools available for generalized linear models can be directly used. Testing hypotheses
about β is based on the conditional maximum likelihood as well. The common tests are
based on likelihood ratio statistic, the Wald statistic, and the score statistic. The limiting
distribution of all these test statistics under the null hypothesis is a χ2, similarly as in the
classical maximum likelihood inference.

In the following, we consider the logit link function g(x) = logit(x) = log[x/(1 − x)]
in model (2.1), because this is the canonical link for a binary regression, and this fact
simplifies some of the formulas. Results for a different link function g : (0,1)→ R could
be derived in the same way, provided that g satisfies some standard regularity conditions,
(Kedem and Fokianos, 2002, Chap. 3).

2.2 Testing for a change

In order to simplify the notation, assume that Y−p+1, . . . ,Y1,Y2, . . . ,Yn are data generated
by model (2.1). This means that we have n realizations of (Yt ,Yt−1, . . . ,Yt−p)>. We would
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like to decide whether a change has appeared in the data generating process. Hence, we
introduce the model

(2.4) logit(πt) =

β0 +
∑p
j=1βjYt−j , t = 1, . . . ,m

β∗0 +
∑p
j=1β

∗
jYt−j , t =m+ 1, . . . ,n,

where β , β∗. Model (2.4) describes the situation where the first m observations follow the
model (2.1) with the parameters β, and the remaining n−m observations follow the model
(2.1) with the parameters β∗. The main objective is to test whether a change has occurred
or not, i.e., to test

(2.5) H0 :m = n against H1 :m < n.

We derive the test statistic for H0 against a simplified alternative of a change in the
intercept only, that is for the case where (2.4) holds with β0 , β

∗
0 and βj = β∗j for j = 1, . . . ,p.

Assume first that the change point is known, let say m = k for some k < n. Consider the
model

logit(πt) =

β0 + δ0 +
∑p
j=1βjYt−j t = 1, . . . , k

β0 +
∑p
j=1βjYt−j t = k + 1, . . . ,n,

and derive the score test statistic, denoted as c(k)
n , for the test ofH∗0 : δ0 = 0 againstH∗1 : δ0 ,

0 in this model. Let β̂ be the estimated vector of model parameters computed under the
null hypothesis of no change as (2.3) and π̂t be the corresponding estimated conditional
mean of Yt given Ft−1 computed from (2.2) with β replaced with β̂. Define

σ̂2
t = π̂t(1− π̂t).

After some computation, it follows that

(2.6) c
(k)
n =

[∑k
t=1(Yt − π̂t)

]2
Vk

,

where

(2.7) Vk =
k∑
t=1

σ̂2
t −

 k∑
t=1

σ̂2
t Z t−1


>  n∑

t=1

σ̂2
t Z t−1Z

>
t−1

−1  k∑
t=1

σ̂2
t Z t−1

 ,
and Z t−1 = (1,Yt−1, . . . ,Yt−p)>.

If the (possible) change point m is known then the test of H0 of no change in (2.4) can
be performed easily using the score statistic c(k)

n and its asymptotic χ2
1 distribution. In

practice, the time point of change is usually unknown and, thus, a natural idea is to base
the test of H0 on the maximum of c(k)

n over all possible k. Set

Ŝk =
k∑
t=1

(Yt − π̂t), k = 1, . . . ,n,

the cumulative sums (CUSUM) of residuals Yt − π̂t. Let k0 be such that Vk is well defined
and positive for all k0 ≤ k ≤ n− k0. Define the maximal score test statistic

(2.8) Tn = max
k0≤k≤n−k0

√
c

(k)
n = max

k0≤k≤n−k0

|Ŝk |√
Vk
.



18 CHAPTER 2. INSTABILITIES IN BINARY TIME SERIES

Furthermore, consider also the following variants with different normalization:

Un = max
k0≤k≤n−k0


√ ∑n

t=1 σ̂
2
t∑k

t=1 σ̂
2
t
∑n
t=k+1 σ̂

2
t

|Ŝk |

 ,(2.9)

Wn = max
k0≤k≤n−k0


√

n
k(n− k)

|Ŝk |√
1
n

∑n
t=1 σ̂

2
t

 .(2.10)

All statistics Tn,Un, and Wn are maxima of normalized cumulative sums of residuals
Yt − π̂t, but they differ in the normalization. Clearly, the power of the corresponding test
is the largest against the alternative of a change in β0. However, the test is sensitive to
any change in β which leads to a change in the unconditional success probability Eπt, and,
thus, it can be applied even in the general case (2.4), as illustrated in a simulation study in
Hudecová (2013b). Moreover, in many applications, it is common that any change in β is
accompanied with a change in β0.

In order to derive the asymptotic distribution of the test statistics Tn,Un, andWn under
the null hypothesis H0, we need to consider the following assumptions:

(A1) The true parameter β lies in an open subset of Rp+1.

(A2) The series {Yt} is strictly stationary.

Theorem 2.1. Let assumptions (A1)–(A2) hold. Then under H0 :m = n it holds that

(2.11) P

Tn <√
2loglogn+

logloglogn

2
√

2loglogn
+
t − 1

2 logπ√
2loglogn

→ exp
{
−2exp(−t)

}
as n→∞, t ∈R, and the test statistics Un and Wn have the same asymptotic distribution as Tn.

The test of the null hypothesis of no changeH0 :m = n can be based on a comparison of
the chosen test statistic (either Tn, Un or Wn) with the asymptotic critical value cα, which
can be easily computed from the limiting distribution (2.11). In particular, denote

an =
√

2loglogn+
logloglogn

2
√

2loglogn
, bn =

√
2loglogn,

and G(t) = exp{−2e−t} for t ≥ 0. For α ∈ (0,1) set

tα = G−1(α) = − log
[
−1

2
log(1−α)

]
and

cα = an +
tα − 1

2 logπ
bn

.

Then it follows from (2.11) that

lim
n→∞

P(Tn > cα) = α
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and the same holds if Tn is replaced with Un or Wn. Hence, we rejectH0 if the value of the
chosen test statistic exceeds cα. If the test statistic Tn is chosen and H0 is rejected, then

m̂ = argmaxk0≤k≤n−k0

|Ŝk |√
Vk

is an estimator of the unknown change point m. Similarly for tests based on statistics Un
and Wn.

Remark 2.1. The test statistics in (2.8)–(2.10) are defined as normalized sums of estimated
residuals Yt − π̂t. They are, therefore, sensitive to a change in the unconditional success
probability EYt = Eπt. If β , β∗, but the corresponding success probabilities satisfy Eπt =
Eπ∗t then the test is not able to detect the change. This problem of test statistics based on
estimated residuals is well known in the linear regression, (Hušková and Koubková, 2005;
Horváth et al., 2004). The same situation occurs in the Poisson autoregression, (Franke
et al., 2012).

Finite sample properties of the proposed tests are explored in a Monte Carlo simulation
study in Hudecová (2013b). An application to the US recession data from Figure 1.1 is
provided therein as well.

2.3 Dynamic probit model

The model (2.1) can be generalized in various ways. One possibility is to allow for exoge-
nous covariates.

Let {Yt} be a binary time series of interest and let {xt} be a k × 1 vector process of
explanatory variables such that xt includes the constant term for all t. Define the σ -field
Ft = σ {Ys,xs+1, s ≤ t} and assume that the conditional distribution of Yt given Ft−1 is binary
with the success probability πt which depends on xt and p previous values of the series
Yt−1, . . . ,Yt−p via the model

(2.12) g(πt) =
p∑
j=1

γjYt−j +β>xt ,

where g is a suitable link function. If g = Φ−1 is the quantile function of the standard
normal distribution, then the model is referred to as the binary dynamic response model,
(Kauppi and Saikkonen, 2008; de Jong and Woutersen, 2011). The estimation of the model
parameters θ = (γ1, . . . ,γp,β

>)> can be conducted via the maximum conditional likelihood
(ML) method, see Kedem and Fokianos (2002) or de Jong and Woutersen (2011), similarly
as in the simple model (2.1).

For testing a single change, we introduce the model

(2.13) g(πt) =


∑p
j=1γjYt−j +β>xt , t = 1, . . . ,m∑p
j=1γ

∗
jYt−j +β∗>xt , t =m+ 1, . . . ,n,

where θ = (γ1, . . . ,γp,β
>) , θ∗ = (γ∗1, . . . ,γ

∗
p,β
∗>). The test statistics from (2.8)–(2.10) can be
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easily adapted to the current setup. For instance, we can define

Wn = max
1≤k≤n

√
n

k(n− k)
|
∑k
t=1Yt − π̂t |√

1
n

∑n
t=1 π̂t(1− π̂t)

,

where π̂t is computed from the ML estimator θ̂ under the null hypothesis of no change.
Hudecová (2013a) considered the probit model with g = Φ−1 and proved (along the similar
lines as in Hudecová (2013b)) that under some standard regularity conditions the asymp-
totic distribution of Wn is the same as in Theorem 2.1.



Chapter 3
Count time series

Time series of counts enjoy numerous applications in such diverse fields as business, eco-
nomics, epidemiology, and traffic analysis. Typically, such data consist of numbers of
occurrences of an event over a given time interval, or of counts of objects or individuals.

As already mentioned in Chapter 1, there exist different models which could be consid-
ered for a count time series (Davis et al., 2015; McKenzie, 2003). There is an obvious need
for a tool which allows one to assess distributional assumptions imposed by the assumed
model, i.e., for a goodness-of-fit (GOF) test. The standard approach in constructing GOF
tests is to estimate the underlying distribution function or characteristic function and then
to construct versions of the Kolmogorov–Smirnov or Cramér–von Mises statistics. How-
ever, for count data, the usage of the distribution function is not very convenient due to
its non-continuous (piecewise constant) nature, so the GOF tests are typically constructed
from different distributional characteristics. Various GOF tests have been suggested in the
literature for count time series, (Neumann, 2011; Fokianos and Neumann, 2013; Aleksan-
drov and Weiss, 2020; Schweer and Weiss, 2014; Weiss et al., 2019; Weiss and Schweer,
2015; Weiss, 2018b).

The time stability of a count time series model has been questioned in the literature
as well, which led to various change-point procedures, (e.g., Fokianos and Fried, 2010;
Szabó, 2011; Franke et al., 2012; Weiss and Testik, 2009a; Weiss, 2011; Weiss and Testik,
2012, 2015, 2011; Kang and Lee, 2009, 2014; Kirch and Tadjuidje Kamgaing, 2015), or
see Lee and Kim (2021) for a recent overview. These articles mostly address the standard
problem of parameter change. Relatively popular methods for change–point detection are
based on the CUSUM principle (Weiss and Testik, 2009a; Franke et al., 2012; Lee and Kim,
2021), but Wald–type detectors for non–linear INARCH models have also been developed
(Doukhan and Kengne, 2015), while likelihood–score criteria applicable to general time
series including INARCH models are suggested in Kirch and Tadjuidje Kamgaing (2015).

In the following, a count distribution refers to a discrete distribution on N0 = N∪ {0}
and a count variable is a random variable with such distribution. A count time series is a
time series {Yt} such that each Yt has a count distribution. Furthermore, by a stationary
time series we mean strictly stationary series.

The structural tests presented in this chapter are based on the probability generating
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function, because it is a useful tool for count distributions. Its empirical counterpart has
proved to be convenient in various statistical problems, see Nakamura and Pérez-Abreu
(1993) for an overview. This concept is introduced in Section 3.1. The considered time
series models are briefly revisited in Section 3.2. Section 3.3 deals with the goodness-of-fit
tests, while the sequential detection of a change point is studied in Section 3.4.

This chapter is based on results from Hudecová et al. (2015) and Hudecová et al. (2017).

3.1 Probability generating function

If Y is a count random variable then its probability generating function (PGF) is defined
as

gY (u) = E[uY ] =
∞∑
k=0

ukP(Y = k), u ∈ [0,1].

Note that we define gY (u) for u ∈ [0,1], because the power series on the right hand side
always converges for |u| ≤ 1. However, for many distributions it is possible to define gY on
an interval (−R,R) for some R ∈ [1,∞].

The function gY uniquely determines the distribution of Y , see (Johnson et al., 2005,
Section 1.2.11). Hence, a model for Y can be always specified via the PGF. In the following
we use the fact that the PGF of a binomial distribution Bi(n,p) is (1−p+pu)n and the PGF
of a Poisson distribution with mean λ is eλ(u−1). Furthermore, if X and Y are independent,
then the PGF of Z = X +Y is

gZ(u) = gX(u) · gY (u),

see (Johnson et al., 2005, Section 1.2.11) for further properties.

If {Yt} is an ergodic sequence of stationary variables with marginal PGF gY (u) = EuYt ,
then the empirical PGF defined as

(3.1) ĝT (u) =
1
T

T∑
t=1

uYt

is a consistent estimator of gY (u) as T →∞, (Rémillard and Theodorescu, 2000). A com-
parison of the empirical PGF ĝT (u) and its theoretical counterpart specified under the
assumed model has been successively used in various goodness-of-fit problems, see Bar-
inghaus and Henze (1992) and Nakamura and Pérez-Abreu (1993) for reviews on earlier
applications, and see Rémillard and Theodorescu (2000), Meintanis and Bassiakos (2005),
Meintanis and Nikitin (2008), Novoa-Muñoz and Jiménez-Gamero (2014), and Novoa-
Muñoz and Jiménez-Gamero (2016), among others, for more recent use.

3.2 Count time series models revisited

Recall that Ft = σ {Ys, s ≤ t} is the information σ -field available at time t. We will revisit
INGARCH and INARMA models in Sections 3.2.1 and 3.2.2, respectively.
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3.2.1 INARCH and INGARCH models

A nonlinear INGARCH(p,q) model is defined as

(3.2) Yt |Ft−1 ∼ F(λt), λt = r(Yt−1, . . . ,Yt−p,λt−1, . . . ,λt−q,η),

where F(λ) is some count distribution with mean λ, and the function r : [0,∞)p+q ×Θ be-
longs to some specific parametric family of functions R = {r(·,θ) : θ ∈ Θ ⊂ R

k} for some
k ≥ 1. The model where F is Poisson and R is a family of linear functions was considered
by Ferland et al. (2006). The model with non-linear r was considered by Fokianos and
Tjøstheim (2009), Fokianos and Tjøstheim (2012), Fokianos (2012). Although the Pois-
son assumption is by far the most popular specification, different choices for F have been
considered as well, see Zhu (2011) and Christou and Fokianos (2014) for a model with
conditional negative binomial distribution.

It has been shown that if p = q = 1 and r is linear such that r(x,θ) = θ1 + θ2x1 + θ3x2,
and if θi ≥ 0, i = 1,2,3, and θ2 +θ3 < 1 and F belongs to the single-parameter exponential
family of distributions (that includes the Poisson distribution as a special case), then there
exists a strictly stationary and ergodic solution of (3.2), see Davis and Liu (2016). For the
Poisson distribution, Ferland et al. (2006) prove that all the moments of the process are
finite under the same condition. For an overview of the conditions for strict stationarity
and ergodicity regarding other choices of F see, e.g., (Ahmad and Francq, 2016, Section 3).

If q = 0 then the model has a purely autoregressive structure and is abbreviated as
INARCH(p). We further restrict ourselves to models of order p = 1 with the conditional
distribution F being Poisson, that is

(3.3) Yt |Ft−1 ∼ Po(λt), λt = r(Yt−1,θ).

If r(y,θ) is assumed to be Lipschitz-continuous in y for all θ with the Lipschitz constant
always strictly smaller than 1, it may be shown that there exists a stationary ergodic solu-
tion which is β-mixing with exponential rate, (Neumann, 2011). The simplest case of (3.3)
is the linear Poisson autoregression of the first order, where r is linear and

(3.4) Yt |Ft−1 ∼ Po(λt), λt = θ1 +Yt−1θ2

with θ = (θ1,θ2)>. It follows from the previously mentioned properties of the more general
model that if θ1 > 0, θ2 ∈ [0,1), then the sequence {Yt} is strictly stationary, ergodic, with
all moments finite.

The model parameters of (3.2) can be estimated by the conditional maximum likeli-
hood (ML) method, see Fokianos (2015) and further references therein, or using the Pois-
son quasi-maximum likelihood, (Ahmad and Francq, 2016).

3.2.2 INAR and INARMA models

A different class of models consists of integer autoregressive moving average (INARMA)
models, which mimic the structure of the classical ARMA models, but replace the multi-
plication sign by the Steutel and van Harn’s thinning operator ◦ defined in (1.5). Let {εt}
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be a sequence of iid count random variables with distribution Gε with a finite variance,
and let αi ,βj ∈ (0,1) for i = 1, . . . ,p and j = 1, . . . , q. The INARMA(p,q) model is defined as

(3.5) Yt =
p∑
i=1

αi ◦Yt−i + εt +
q∑
j=1

βj ◦ εt−j ,

where the Bernoulli variables involved in all the thinning operations are mutually inde-
pendent and independent of {εt}. Model (3.5) with p > 1 and q = 0 was introduced and
studied by Du and Li (1991) and since then, many authors have considered various ex-
tensions and modifications of model (3.5), see Scotto et al. (2015) for a comprehensive
review.

If p = 1 and q = 0 then the model (3.5) corresponds to the INAR(1) model studied in
McKenzie (1985); Al-Osh and Alzaid (1987); Alzaid and Al-Osh (1988), taking the follow-
ing form

(3.6) Yt = α ◦Yt−1 + εt =
Yt−1∑
i=1

Ut,i + εt .

For α ∈ (0,1) there exists a strictly stationary solution to (3.6) and the law of the innova-
tions {εt} uniquely determines the marginal distribution of Yt as well as the conditional
distribution Yt |Ft−1, which is equal to the convolution of binomial Bi(Yt−1,α) and Gε. In
particular, if {εt} are iid Poisson then each Yt has Poisson distribution as well, and this spe-
cial case has been considered in many applications. In fact, the property that the marginal
distribution of the observations is from the same family as the distribution of innovations
εt characterizes the Poisson law in the context of INAR models, (Al-Osh and Alzaid, 1987).
However, some other distributional assumptions have been studied and recommended,
(Weiss and Testik, 2009b; Pavlopoulos and Karlis, 2008; Barczy et al., 2010).

The parameters of an INAR(p) model can be estimated by the conditional least squares
method or using the conditional maximum likelihood, see (Weiss, 2018a, Chapter 2.2).

3.2.3 Important identities for INAR and INARCH models

Our test statistic for goodness-of-fit testing and change point detection will make use of
the properties of the marginal PGF of Yt following from the model structure.

Assume that {Yt} follows an INAR(1) model (3.6) with parameter α ∈ (0,1). Since the
conditional distribution of α ◦ Y given Y is binomial, we can compute the marginal PGF
of Yt as

gYt (u) =E
[
uYt

]
= E

[
E(uYt |Yt−1)

]
= E

[
E(uα◦Yt−1+εt |Yt−1)

]
=E

[
(1 +α(u − 1))Yt−1gε(u)

]
= gε(u)gYt−1

(
1 +α(u − 1)

)
,

where we used the independence of εt and Yt−1 and denoted as gε the PGF of εt. If {Yt} is
strictly stationary, then we can drop the time index t and write gY = gYt = gYt−1

, which gives
the relation

(3.7) gY (u) = gε(u)gY
(
1 +α(u − 1)

)
for all u ∈ [0,1].
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A similar equality can be derived also for {Yt} following a Poisson INARCH(1) model
in (3.3). Under the stationarity assumption, we get

(3.8) gY (u) = E
[
uYt

]
= E

[
E(uYt |Yt−1)

]
= E

[
eλt(u−1)

]
= E

[
er(Yt−1,θ)(u−1)

]
.

For the linear Poisson INARCH(1) in (3.4), we can further write

gY (u) = E
[
e(θ1+θ2Yt−1)(u−1)

]
= eθ1(u−1)E

[
eθ2(u−1)Yt−1

]
(3.9)

= eθ1(u−1)gY
(
eθ2(u−1)

)
.

3.3 Goodness-of-fit tests based on the probability genera-
ting function

We propose to base the GOF test for INARCH and INAR models on a test statistic that is
derived as a weighted L2 distance of two estimators of the marginal PGF, one being fully
nonparametric, while the second one is derived under a specified model structure and
makes use of identities (3.7) and (3.8) from Section 3.1.

3.3.1 Test statistic

Let Y1, . . . ,YT be given data which come from a stationary series {Yt}. Below we formulate
the null hypothesis for the models (3.4) and (3.6) from Section 3.2 and propose a suitable
test statistic.

Let us start with the INAR(1) model specified by (3.6). Let GΘ = {gε(·;η); η ∈ Θ} be
some specified family of PGFs of a discrete distribution depending on a finite dimensional
parameter η ∈Θ, where Θ ⊂R is an open subset. One wishes to test the null hypothesis

HINAR0 : {Yt} follows model (3.6) for some α ∈ (0,1) and some PGF gε ∈ GΘ ,

against a general alternative thatHINAR0 does not hold. Note that for simplicity we restrict
ourselves to the situation where the parameter η is univariate, but the procedure can be
very easily adapted to a vectorial parameter η, if the assumptions about smoothness of gε
with respect to η stated in assumption (A.3) in the next section are modified accordingly.

Similarly, we formulate a null hypothesis which states that the data come from a linear
Poisson INARCH(1) model

HPAR0 : {Yt} follows model (3.4) for some θ ∈ A,

where A = {(θ1,θ2)> : θ1 > 0, θ2 ∈ (0,1)}, against a general alternative.

We propose a goodness-of-fit test statistic which is based on a comparison of two esti-
mators of the marginal PGF of Yt. The first one is the empirical PGF defined in (3.1) which
is a fully non–parametric estimate of gY , valid for a broad class of stationary processes.
The second estimator g̃T (u) is semiparametric derived from relation (3.7) for INAR and
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from (3.9) for the linear Poisson INARCH, so it is valid only under the null hypothesis.
The two estimators are then compared in the test statistic

(3.10) ST = T
∫ 1

0

(
ĝT (u)− g̃T (u)

)2
w(u)du,

where w : (0,1)→ [0,∞) is a nonnegative weight function.

It remains to provide the formula for the semiparametric estimator g̃T (u). Under
HINAR0 , let gε(·;η) be the PGF of εt and let α̂ and η̂ be suitable estimators of α and η

respectively constructed from Y1, . . . ,YT under HINAR0 (where we for simplicity suppress
the index T ). Then it follows from (3.7) that the estimator g̃T can be defined as

(3.11) g̃T (u) = gε(u; η̂)ĝT
(
1 + α̂(u − 1)

)
, u ∈ [0,1].

Analogously, for model (3.4), a natural semiparametric estimate of the marginal PGF
follows from (3.9). Let θ̂1 and θ̂2 be suitable estimators of θ1 and θ2, respectively. Define

g̃T (u) = eθ̂1(u−1)ĝT (eθ̂2(u−1)).

Even though the test statistic in (3.10) is expressed in terms of a definite integral, its
computation can be simplified, see Hudecová et al. (2015) for more details. The next
sections provide the limit behavior of the test statistic ST for the sample size T →∞ for
INAR(1) and INARCH(1).

Remark 3.1. The proposed procedure can be straightforwardly generalized to non-linear or
non-Poisson INARCH models and to models of higher orders, see Hudecová et al. (2015).
A generalization to multivariate count time series models is considered in Hudecová et al.
(2021). A goodness-of-fit test for an INGARCH model with exogenous covariates is treated
in Hudecová et al. (2024), where the PGF is combined with the characterization from
Bierens (1982).

3.3.2 Asymptotic results and a bootstrap test for INAR

If not stated explicitly, all convergences and OP and op notions are meant for T →∞.

Recall that under HINAR0 the PGF of εt is gε(u) ∈ GΘ , i.e., gε(·;η) is specified up to a
parameter η ∈Θ, with Θ being an open set in R. Consider the following assumptions:

(A.1) Let {Yt} be the stationary solution to (3.6) with the true parameter α0 and let {εt} be
a sequence of iid count random variables with a finite variance and PGF gε.

(A.2) Let gε ∈ GΘ and gε = gε(·;η0), η0 ∈Θ, where Θ is an open subset of R.

(A.3) The first partial derivative of gε(u;η) with respect to η exists for all u ∈ [0,1] and there
exist constants 0 < Dj < ∞, j = 1,2,3, and a measurable function v : [0,1]→ (0,∞)
such that∣∣∣∣∣∂gε∂η (u;η)−

∂gε
∂η

(u;η0)
∣∣∣∣∣ ≤D1|η − η0|v(u) for all u ∈ [0,1], |η − η0| ≤D2,

and ∣∣∣∣∣∂gε(u;η)
∂η

∣∣∣∣∣ ≤D3v(u), for all u ∈ [0,1], |η − η0| ≤D2.
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(A.4) The weight functionw : (0,1)→ [0,∞) satisfies 0 <
∫ 1

0 w(u)du <∞ and
∫ 1

0 w(u)v2(u)du <
∞, where v is from (A.3).

(A.5) Let ϑ̂ = (α̂, η̂)> be an estimator of the true value ϑ0 = (α0,η0)> satisfying

√
T (ϑ̂ −ϑ0) =

1
√
T

T∑
t=1+q

`(Yt−q;ϑ0) + oP (1),

for some fixed q ≥ 1, where Yt−q = (Yt , ...,Yt−q)>, and ` = (`1, `2)> is such that `j(Yt−q;ϑ0), j =
1,2, are martingale difference sequences with finite variances.

The assumption (A.1) states that HINAR0 holds. The assumption (A.3) requires some
smoothness of the PGF gε. It is easy to verify that all the requirements are fulfilled for
the baseline Poisson distribution, where gε(u;η) = eη(u−1). The assumption (A.5) requires
a “reasonable” estimator of the model parameters. Note that the conditional least squares
estimator satisfies (A.5).

Theorem 3.1. Let assumptions (A.1)–(A.5) be satisfied. Then

ST
D→

∫ 1

0
Z2(u)w(u)du,

where
{
Z(u); u ∈ [0,1]

}
is a zero-mean Gaussian process with the covariance structure

EZ(u1)Z(u2) = E
[
u
Yq+1

1 −
(
1 +α0(u1 − 1)

)Yq
gε(u1;η0) + h1(u1;α0,η0)`1(Y1;α0,η0)

+ h2(u1;α0,η0)`2(Y1;α0,η0)
]

×
[
u
Yq+1

2 −
(
1 +α0(u2 − 1)

)Yq
gε(u2;η0) + h1(u2;α0,η0)`1(Y1;α0,η0)

+ h2(u2;α0,η0)`2(Y1;α0,η0)
]
,

where u1,u2 ∈ [0,1], and

h1(u;α,η) =
∂gY (1 +α(u − 1))

∂α
gε(u;η), h2(u;α,η) = gY (1 +α(u − 1))

∂gε(u;η)
∂η

.

Theorem 3.1 expresses the limiting distribution of ST as a distribution of an integral
of a Gaussian process with some specified covariance structure. This means that the lim-
iting distribution is equal to an infinite weighted sum of independent χ2

1 variables, where
the weights depend on the unknown parameters in a non-trivial way. Hence, there is no
explicit form for the limiting distribution function and, in addition, this distribution func-
tion depends on unknown quantities including the true value of the parameter ϑ. Conse-
quently, the result from Theorem 3.1 is not directly applicable for the purpose of approx-
imating critical values and actually performing the test. Nevertheless, when a consistent
estimator of the covariance structure is available, we can use it to obtain an approximation
of the limiting distribution.

Alternatively, some resampling methods can be applied in order to carry out the test
procedure and to compute the critical values. In the current setup it is quite natural to
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use the parametric bootstrap as a resampling scheme because it reflects all aspects of the
underlying model, and has been put on a firm theoretical basis both with iid data, (Genest
and Rémillard, 2008), as well as with data involving dependence, (Leucht and Neumann,
2013). The procedure follows straightforwardly as described in Algorithm 1.

Algorithm 1 Parametric bootstrap for GOF for HINAR0 .
Input: Data Y1, . . . ,YT .

1: compute the estimator ϑ̂ = (α̂, η̂)> and the test statistic ST
2: for b = 1 to B do
3: generate ε∗b1 , . . . , ε

∗b
T independently from a distribution with PGF gε(u; η̂)

4: generate sequentially pseudo–observations Y ∗b1 , . . . ,Y
∗b
T , as Y ∗b1 = ε∗b1 and

5: for t = 2 to T do
6: generate iid variables U ∗t,i , i = 1, . . . ,Y ∗bt−1 from a binary distribution B(α̂)
7: compute

Y ∗bt =
Y ∗bt−1∑
i=1

U ∗t,i + ε∗bt

8: end for
9: fit the model (3.6) for data Y ∗bt , t = 1, . . . ,T , to obtain the estimate ϑ̂∗b

10: compute the test statistic S∗bT
11: end for
12: compute the p-value as

p =
1

B+ 1

B∑
b=1

I[S∗bT ≥ ST ]

Output: p-value of significance of HINAR0

Consider now the behavior of the test statistic under alternatives, where the PGF of εt
is not correctly specified, that is gε < GΘ . Assume that

(A.6) Let (α̂, η̂)> be an estimator such that

(3.12) (α̂, η̂)>
P→ (α0,ηA)>

for α0 ∈ (0,1) and for some ηA ∈Θ.

Theorem 3.2. Let (A.1), (A.4) and (A.6) be satisfied and let gε(u;η) be continuous in η for all
u ∈ [0,1]. Then

(3.13)
ST
T

P→
∫ 1

0

[
gY (1 +α0(u − 1))(gε(u)− gε(u;ηA))

]2
w(u)du.

The right–hand side of (3.13) is positive unless the true innovation PGF gε coincides
with the PGF gε(·;ηA) postulated under the null hypothesis HINAR0 . This and the unique-
ness of the PGF implies the consistency of the test which rejects the null hypothesis for
large values of the test statistic ST under fixed alternatives. However, we should point out
that despite the fact that the formulation of the alternative adopted here focuses exclu-
sively on the innovation PGF, the construction of the test statistic is based not only on the



3.3. GOODNESS-OF-FIT TESTS BASED ON THE PROBABILITY GENERATING FUNCTION 29

specification of the PGF but on the entire INAR model. Indeed, Monte Carlo simulations
conducted in Hudecová et al. (2015) reveal that the test detects other departures from the
null hypothesis as well.

3.3.3 Asymptotic results and a bootstrap test for INARCH model

In order to test the null hypothesis HPAR0 of a linear Poisson INARCH(1) model in (3.4),
consider the following assumptions:

(B.1) Let {Yt} be the stationary solution to (3.4) with the true parameter θ0 = (θ10,θ20)> ∈
A, where A = {(θ1,θ2)> : θ1 > 0, θ2 ∈ (0,1)}.

(B.2) Let (θ̂1, θ̂2)> be an estimator of (θ1,θ2)> satisfying

(3.14)
√
T (θ̂j −θj0) =

1
√
T

T∑
t=q+1

`j(Yt−q;θ10,θ20) + oP (1), j = 1,2,

where `j(Yt−q;θ10,θ20), j = 1,2, for fixed q ≥ 1, are martingale difference sequences
with finite variances.

(B.3) Assume that the weight function w ≥ 0 satisfies
∫ 1

0 w(u)du <∞.

Theorem 3.3. Let (B.1)–(B.3) hold. Then

ST
D→

∫ 1

0
V2(u)w(u)du,

where
{
V (u); u ∈ [0,1]

}
is a zero-mean Gaussian process with the covariance structure

EV (u1)V (u2) = E
[
u
Yq+1

1 − exp
{
(θ10 +θ20Yq)(u1 − 1)

}
+ r1(u1;θ10,θ20)`1(Y1;θ10,θ20)

+ r2(u1;θ10,θ20)`2(Y1;θ10,θ20)
]

×
[
u
Yq+1

2 − exp
{
(θ10 +θ20Yq)(u2 − 1)

}
+ r1(u2;θ10,θ20)`1(Y1;θ10,θ20)

+ r2(u2;θ10,θ20)`2(Y1;θ10,θ20)
]
,

where u1,u2 ∈ [0,1], and

r1(u;θ1,θ2) =E
[
exp

{
(θ1 +θ2Yq)(u − 1)

}
(u − 1)

]
,

r2(u;θ1,θ2) =E
[
Yq exp

{
(θ1 +θ2Yq)(u − 1)

}
(u − 1)

]
.

Similarly as for the INAR case, we recommend to evaluate the significance of ST using
a parametric bootstrap test, which proceeds here naturally, as described in Algorithm 2.
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Algorithm 2 Parametric bootstrap for GOF for HPAR0 .
Input: Data Y1, . . . ,YT .

1: compute the estimator θ̂ = (θ̂1, θ̂2)> and the test statistic ST
2: for b = 1 to B do
3: generate sequentially pseudo–observations Y ∗b1 , . . . ,Y

∗b
T as Y ∗b1 = Y1 and

4: for t = 2 to T do
5: generate Y ∗bt from a Poisson distribution with mean

θ̂1 + θ̂2Y
∗b
t−1

6: end for
7: fit the model (3.4) for data Y ∗bt , t = 1, . . . ,T , to obtain the estimate θ̂

∗b

8: compute the test statistic S∗bT
9: end for

10: compute the p-value as

p =
1

B+ 1

B∑
b=1

I[S∗bT ≥ ST ]

Output: p-value of significance of HPAR0

3.4 Testing for a change

The objective of this section is to construct a test statistic for a sequential detection, in-
troduced in Section 1.4, of structural breaks in INAR and Poisson INARCH time series.
We again employ PGF as our main tool in the change–detector statistics. Our motivation
stems from earlier results obtained for classical continuous–type data based on the char-
acteristic function. In particular, Hušková and Meintanis (2006) and Hlávka et al. (2016)
compare classical approaches for change–point detection, such as the empirical likelihood,
Kolmogorov–Smirnov, Cramér–von Mises and CUSUM methods, to corresponding meth-
ods based on the empirical characteristic function, and report favorable results for the
latter methods for iid as well as time series data.

Within the count time series models from Section 3.2, we can either consider a para-
metric change or a more general nonparametric change in the model. In the parametric
approach, we often assume a specific parametric form of the underlying distribution and
test for a single abrupt change in the model parameters. More generally, within the non-
parametric framework, we can test for a change in the whole, possibly unspecified, distri-
bution.

In the following, GY stands for the cumulative distribution function (cdf) of a count
random variable Y and gY is its probability generating function (PGF).

We illustrate the situation on the INAR(1) model: Assume that {Yt} is generated by the
INAR(1) model (3.6) with a sequence {εt} with a finite variance such that εt has cdf Gε,t,
and that the variables Ut,i follow the Bernoulli distribution B(αt).
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(i) We can consider the null hypothesis

(3.15) H0 : αt = α0, Gε,t = G(0)
ε , ∀t,

against the alternative

H1 : αt = α0, Gε,t = G(0)
ε , t ≤ T + t0; αt = α0, Gε,t = G(1)

ε , t > T + t0,

for some unknown (α0,G
(0)
ε ) , (α0,G

(1)
ε ), and an unknown change point t0.

(ii) Within the parametric framework, we assume that the PGF of εt belongs to a given
parametric family GΘ = {g(·;η) : η ∈ Θ}, where Θ ⊂ R is an open set so that gεt (u) =
g(u,ηt). The null hypothesis of no change

H0 : (αt ,ηt) = (α0,η0), 1 ≤ t ≤ T ,

is tested against the alternative

H1 : (αt ,ηt) = (α0,η0), 1 ≤ t ≤ T + t0, (αt ,ηt) = (α0,η0), t > T + t0,

for some unknown (α0,η0) , (α0,η0) and an unknown change point t0.

It is clear that (ii) is a special case of (i). Here, we focus on the more general type of
changes in (i), for both the INAR and INARCH models. Note that parametric changes in
the same setup were considered in Hudecová et al. (2015) and Hudecová et al. (2016).

We consider the sequential (online) detection with a monitoring period mT for some
m > 0, see Section 1.4. We need to construct a test statistic ∆̂T ,t that would be sensitive to
violations of a specifiedH0. The null hypothesis will be then rejected if the detector statis-
ticDT ,t,γ defined in (1.12) exceeds the threshold cα,m computed such that the resulting test
keeps the prescribed level α asymptotically, i.e., (1.15) holds.

3.4.1 Change point statistics for INAR

Let {Yt} be generated by the INAR(1) model in (3.6) withUt,i following the Bernoulli distri-
bution B(α) (no change) and with a sequence {εt} of independent count random variables
with a finite variance and cdfs Gε,t. Consider

(3.16) HINAR0 : Gε,t = G(0)
ε , ∀t,

against the alternative

HINAR1 : Gε,t = G(0)
ε , t ≤ T + t0; Gε,t = G(1)

ε , t > T + t0,

for some unknown innovation distributions G(0)
ε , G

(1)
ε and an unknown change point

t0. Within this setup we concentrate on changes in Gε,t but it will also be seen that the
suggested test is sensitive even to a change due to a time–varying Bernoulli parameter αt
of the variables Ut,i . Moreover, we will prove consistency of our test statistic under a more
general alternative (see the formulation in (C.4) later).
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Recall that under HINAR0 we can assume that {Yt} is stationary, and let gε,0 and gY ,0 be
the PGF of εt and Yt, respectively. It follows from (3.7) that

(3.17) gε,0(u) =
gY ,0(u)

gY ,0(1 +α(u − 1))
, u ∈ [0,1].

Let α̂ = α̂T (we will again suppress the subscript T for brevity) be an estimator of the
Bernoulli parameter α constructed from the training data {Yt , t = 1, . . . ,T } without im-
posing any specific structure on gε,0 (e.g., α̂ is a moment estimator). Then, based on the
training data, the estimator of gε,0(u) is given by

(3.18) ĝε,T (u) =
ĝY ,T (u)

ĝY ,T (1 + α̂(u − 1))
,

where ĝY ,T (u) is the empirical PDF defined in (3.1). An analogous estimator computed
from data YT+1, . . . ,YT+t is given by

(3.19) ĝε,T ,T+t(u) =
ĝY ,T ,T+t(u)

ĝY ,T ,T+t(1 + α̂(u − 1))

where

ĝY ,T ,T+t(u) =
1
t

T+t∑
τ=T+1

uYτ .

Under HINAR0 , the difference

ĝε,T ,T+t(u)− ĝε,T (u)

should be small for all u ∈ [0,1], while under HINAR1 it is expected to be large at some u.
See that

|̂gε,T (u)− ĝε,T ,T+t(u)| =
|̂gY ,T (ûα)ĝY ,T ,T+t(u)− ĝY ,T (u)ĝY ,T ,T+t(ûα)|

ĝY ,T (ûα)ĝY ,T ,T+t(ûα)

≥ |̂gY ,T (ûα)ĝY ,T ,T+t(u)− ĝY ,T (u)ĝY ,T ,T+t(ûα)|,

where

(3.20) ûα = 1 + α̂(u − 1).

Hence, we propose a test statistic defined by the weighted integral

(3.21) ∆̂T ,t =
∫ 1

0
δ̂2
T ,t(u)w(u)du,

where w : (0,1)→ (0,∞) denotes a nonnegative weight function and

(3.22) δ̂T ,t(u) =
t

T 1/2

[
ĝY ,T (ûα)ĝY ,T ,T+t(u)− ĝY ,T (u)ĝY ,T ,T+t (ûα)

]
.

If δ̂T ,t(u) is large, then also |̂gε,T (u)− ĝε,T ,T+t(u)| is large, which happens if there is a change
in the model. Hence, large values of ∆̂T ,t indicate a violation of HINAR0 .



3.4. TESTING FOR A CHANGE 33

3.4.2 Change point statistics for INARCH

Consider a nonlinear INARCH(1) model from (3.2), where we assume that

(3.23) Yt |Ft−1 ∼ FY ,t = Ft(λt), λt = rt(Yt−1,θ),

where θ ∈ A for A a compact subset of R
d , d ∈ N. The null hypothesis of a Poisson

INARCH(1) without a change point is stated as

(3.24) HPAR0 : FY ,t = F(0)(λt), λt = r0(Yt−1,θ0), ∀t,

where r0 is known up to finitely many parameters and F(0)(λ) denotes the Poisson distri-
bution with parameter λ. The null hypothesis HPAR0 will be tested against the alternative

HPAR1 : FY ,t =

F(0)(λt), λt = r0(Yt−1,θ0), t ≤ T + t0;

F(1)(λt), λt = r1(Ft−1) t > T + t0,

where F(1) is an unspecified count distribution such that F(1) , F(0), and the change point
t0 is unknown.

The alternativeHPAR1 covers as particular cases, a change in the parameter, say from θ0

to θ0 (both considered unknown in our setting), change in the regression function, from a
fixed known r0(·, ·) to an arbitrary regression function r0(·, ·), as well as a structural change
according to which the conditional law FY ,t changes from a Poisson to a non–Poisson spec-
ification.

Construction of the detector test statistic for HPAR0 is based on the relationship (3.8).
Recall that under HPAR0 it holds that

gY (u) = Eer0(Yt−1,θ0)(u−1).

Similarly as in Section 3.3.1, we can construct a semi-parametric estimator of gY and com-
pare it with the fully nonparametric empirical PGF. Assume that {Yt} is a stationary and
ergodic solution of HPAR0 . If θ0 was known, then the following four estimators would be
consistent for gY (u) as T ,t→∞:

(E1)
1
T

T∑
j=1

uYj , (E2)
1
T

T∑
j=2

er0(Yj−1,θ0)(u−1),

(E3)
1
t

T+t∑
j=T+1

uYj , (E4)
1
t

T+t∑
j=T+1

er0(Yj−1,θ0)(u−1).

Under the alternative, only the first three estimators (E1)–(E3) are consistent. Therefore,
our test statistic is based on the comparison of the difference between the nonparametric
and semiparametric estimators in the training data and in the monitoring sample. Let
θ̂ = θ̂T be an estimator of θ0 constructed from the training data. Define

δ̂T ,t(u; θ̂T ) =
t
√
T

1
t

T+t∑
j=T+1

(
uYj − exp{r0(Yj−1, θ̂)(u − 1)}

)
(3.25)

− t
√
T

1
T

T∑
j=2

(
uYj − exp{r0(Yj−1, θ̂)(u − 1)}

)
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and

(3.26) ∆̂T ,t =
∫ 1

0
δ̂2
T ,t(u; θ̂)w(u)du,

where w : (0,∞]→ (0,∞) is a nonnegative weight function. Large values of ∆̂T ,t indicate
violations of HPAR0 .

3.4.3 Asymptotics and a bootstrap test

In view of (1.15), we have to study the limit behavior of

(3.27) MT ,γ := max
1≤t≤mT

1

q2
γ (t/T )

∫ 1

0
δ̂2
T ,t(u)w(u)du,

where δ̂2
T ,t(u) is defined in (3.22) for the INAR model and in (3.25) for the Poisson INARCH

model. The limit behavior is considered always for T →∞ and m fixed.

Consider first the INAR model. For the behavior under the null hypothesis HINAR0
from (3.16), we state the following assumptions:

(C.1) Let {Yt} be the stationary solution to (3.6) with {εt} iid random variables with a finite
variance.

(C.2) Let α̂ be an estimator of parameter α based on training data Y1, . . . ,YT satisfying

(3.28)
√
T (α̂ −α) =OP (1).

(C.3) The weight function satisfies w ≥ 0 and 0 <
∫ 1

0 w(u)du <∞.

Theorem 3.4. Let (C.1)–(C.3) hold and let MT ,γ be defined as in (3.27) with δ̂T ,t(u) being
defined by (3.22) and qγ (·), γ ∈ [0,1/2) in (1.13). Then

(3.29) MT ,γ
D→ sup

0<s<m/(m+1)

1
s2γ

∫ 1

0
V 2(s,u) [E(1 +α(u − 1))Y1]2w(u)du,

where
{
V (s, t); s ∈ (0,m/(m+1)), u ∈ (0,1)

}
is a zero-mean Gaussian process with the covariance

structure
E
(
V (s1,u1),V (s2,u2)

)
= min(s1, s2)σ (u1,u2)

with
σ (u1,u2) = E

[(
uY2

1 −E(uY2
1 |Y1)

)(
uY2

2 −E(uY2
2 |Y1)

)]
,

where E(uY2 |Y1) is the conditional PGF of Y2 given Y1.

Unfortunately, there is no explicit form for the asymptotic distribution in (3.29) and its
quantiles cannot be computed analytically. However. if σ̂ (u1,u2) is a consistent estimator
of σ (u1,u2), then it is possible to simulate the corresponding Gaussian process and com-
pute the random variable on the right hand side of (3.29). Hence, an approximation for
the desired critical value cα,m can be computed numerically using a Monte Carlo method.
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To the best of our knowledge, however, this approach has never been realized in the cur-
rent context as it is very computationally demanding and the quality of the approximation
depends strongly on the properties of σ̂ (u1,u2). On the other hand, it is far more straight-
forward to approximate the asymptotic null distribution of MT ,γ by a proper version of
bootstrap.

Since it is not possible to use a parameteric bootstrap underHINAR0 (because G(0)
ε is not

specified), we propose the following resampling procedure, whose validity is justified in
Theorem 3.5. The procedure is motivated by the following expression for δ̂T ,t(u) in (3.21).
See that it follows from (3.22) that

δ̂T ,t(u) =
1
T 3/2

( T∑
j=1

û
Yj
α

T+t∑
s=T+1

uYs −
T∑
j=1

uYj
T+t∑
s=T+1

ûYsα

)
,

where ûα is defined in (3.20). Denote

(3.30) BT ,t(u) = ûYtα , t = 1, . . . ,T (m+ 1),

and

(3.31) AT ,t(u) = uYt − ûYt−1
α ĝε,T (u), t = 2, . . . ,T (m+ 1).

Then
AT ,t(u) = uYt − ĝε,T (u)BT ,t−1(u).

Set

(3.32) δ̃T ,t(u) =
1

T
√
T

 T+t∑
s=T+1

AT ,s(u)
T∑
j=1

BT ,j(u)−
T∑
j=2

AT ,j(u)
T+t∑
s=T+1

BT ,s(u)

 .
Lemma 3.1. Under the assumptions of Theorem 3.4, the limiting distribution of MT ,γ is the
same as the limiting distribution of M̃T ,γ which is defined by (3.27) with δ̂T ,t replaced with
δ̃T ,t(u).

The idea of our resampling method is to generate iid pairs of consecutive observations
(Yt−1,Yt) and to use formulas (3.30)–(3.32) for the computation of the bootstrap versions
of the test statistic, as summarized in Algorithm 3. Theorem 3.5 justifies the proposed
method.

Theorem 3.5. Let M̃∗b, b = 1, . . . ,B, be computed as in Algorithm 3. Under the assumptions of
Theorem 3.4, it holds that

P (M̃∗bT ,γ ≤ x|Y1, . . . ,YT )− P (MT ,γ ≤ x)
P→ 0

for all x ∈R as T →∞.

The assertion implies that the proposed bootstrap based on historical observations
provides an asymptotically correct approximation for the distribution of the studied test
statistic under the null hypothesis and, therefore, provides the desired approximation for
critical values.

We also establish the limit behavior of the proposed procedure under the following
alternatives:
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Algorithm 3 Bootstrap procedure for a change point detection in INAR model.

Input: Training data Y1, . . . ,YT , observations {Yk}mTk=T+1. Tuning parameter γ ∈ (0,1/2].
1: compute α̂ and ĝε,T (u) from (3.18)
2: compute M̃T ,γ

3: for b = 1 to B do
4: generate iid bootstrap pairs (Y ∗bt ,Y

∗b
t−1), t = 2, . . . ,T (m+ 1), as a random sample from

pairs (Yt ,Yt−1), t = 2, . . . ,T
5: compute A∗bT ,t(u), B∗bT ,t(u) and δ̃∗bT ,t(u) from (3.31), (3.30), and (3.32), respectively, for
t = 1, . . . ,T (m+ 1)

6: calculate the bootstrap test statistic M̃∗bT ,γ
7: end for
8: estimate the critical value as the corresponding empirical quantile of M̃∗1T ,γ , . . . , M̃

∗B
T ,γ

Output: critical value for the test for HINAR0 from (3.16)

(C.4) Assume that there exists 0 ≤ ν0 < m such that {Yt}t≤T+t0 is a stationary solution of
(3.6) for t0 = bT ν0c and {YT+t0+t}t≥1 =D {Y 0

t }, where {Y 0
t } is a stationary ergodic se-

quence with var(Y 0
t ) <∞.

This type of general alternative was considered by Kirch and Tadjuidje Kamgaing
(2015), and it covers, as a particular case, model INAR(1) with a change in the distribution
of εt and/or in the parameter α.

Theorem 3.6. Let (C.2)–(C.4) hold and ∆̂T ,t be defined by (3.21) and qγ (·), γ ∈ [0,1/2) is from
(1.13). Then for any ν0 < s ≤m, and as T →∞,

(3.33)
1
T
∆̂T ,bT sc

P→
(s − ν0

s

)2 ∫ 1

0

(
gY ,0(uα)g0

Y (u)− gY ,0(u)g0
Y (uα)

)2
w(u)du,

where gY ,0(u) and g0
Y (u) denote the PGF of Yt for t ≤ T + t0, and t > T + t0, respectively, and

uα = 1 +α(u − 1).

The assertion implies consistency of the test which rejects for large values of MT ,γ and
also the validity of (1.16) for a large group of fixed alternatives where the right hand side
of (3.33) is nonzero. For instance, the procedure is sensitive to a change in parameter α,
or/and in the distribution of εt.

Let us now turn to the INARCH model in (3.23) and testing HPAR0 . For the behavior
under HPAR0 we pose the following conditions:

(D.1) Let {Yt} be the stationary solution of model (3.23) under HPAR0 .

(D.2) Let r0(y,θ) in (3.24) be Lipschitz-continuous in y for all θ ∈ A with the Lipschitz
constant always strictly smaller than 1.

(D.3) Let θ̂ be an estimator of the parameter θ based on training data Y1, . . . ,YT satisfying
T ‖θ̂ −θ‖2 =OP (1) as T →∞, where ‖ · ‖ denotes the Euclidean vector norm.



3.4. TESTING FOR A CHANGE 37

Theorem 3.7. Let (D.1)–(D.3) and (C.3) hold and let MT ,γ be defined as in (3.27) with δ̂T ,t(u)
in (3.25) and qγ (·) in (1.13) for γ ∈ [0,1/2). Then

MT ,γ
D→ sup

0<s<m/(m+1)

1
s2γ

∫ 1

0
Ṽ 2(s,u)w(u)du,

where
{
Ṽ (s, t); s ∈ (0,m/(m+1)), u ∈ (0,1)

}
is a zero-mean Gaussian process with the covariance

structure
E
(
Ṽ (s1,u1), Ṽ (s2,u2)

)
= min(s1, s2)σ̃ (u1,u2)

with
σ̃ (u1,u2) = E

[(
uY2

1 − E(uY2
1 |Y1)

)(
uY2

2 − E(uY2
2 |Y1)

)]
.

The limit null distribution again depends on various unknown quantities, so one pos-
sibility for computation of cα,m is to approximate the limit distribution by estimating the
covariance kernel of the corresponding Gaussian limit process. However, we again recom-
mend a bootstrap procedure which consistently estimates the asymptotic null distribution
and which is easy to implement and less computationally intensive.

In the case ofHPAR0 , the distribution of observations under the null hypothesis is known
up to finitely many parameters, so it is straightforward to apply the parametric bootstrap
resampling scheme as it was suggested by Fokianos and Fried (2010) and further investi-
gated by Fokianos and Neumann (2013). The procedure is summarized in Algorithm 4.
Under appropriate conditions, it may be shown that the conclusions of Theorem 3.5 also
hold for the current setting.

Algorithm 4 Parametric bootstrap for a change detection in a Poisson INARCH model.

Input: Training data Y1, . . . ,YT , observations {Yk}Tmk=T+1. Tuning parameter γ ∈ (0,1/2].
1: calculate the estimator θ̂ and the test statistic MT ,γ

2: for b = 1 to B do
3: generate sequentially pseudo–observations Y ∗b1 , . . . ,Y

∗b
T (m+1), as Y ∗b1 = Y1 and

4: for t = 2 to T (m+ 1) do
5: generate Y ∗bt from a Poisson distribution with mean r0(Y ∗bt−1, θ̂)
6: end for
7: calculate the value of the bootstrap test statistic M∗bT ,γ
8: end for
9: estimate the critical value as the corresponding empirical quantile of M∗1T ,γ , . . . ,M

∗B
T ,γ .

Output: critical value for the test for HPAR0 from (3.24).

Finally, we consider the limit behavior of MT ,γ under the following alternatives:

(D.4) Assume that there exists 0 ≤ ν0 < m such that

{Yt}t≤T+t0 is a stationary solution of (3.23) without a change for t0 = bT ν0c and
{YT+t0+t}t≥0 =D {Y 0

t }, where {Y 0
t } is a stationary ergodic sequence with var(Y 0

t ) <∞.

Theorem 3.8. Let (D.2)–(D.4) and (C3) hold and let ∆̂T ,t be defined by (3.26). Then

(3.34)
1
T
∆̂T ,bT sc

P→
(s − ν0

s

)2 ∫ 1

0

(
E
[
uY

0
2 − exp{r0(Y 0

1 ,θ)(u − 1)}
])2
w(u)du,
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for any ν0 < s ≤m, as T →∞.

The assertion implies consistency of the respective test and also (1.16) for a large group
of fixed alternatives where the right hand side of (3.34) is nonzero.



Chapter 4
Multivariate time series modeled via
copulas

Copulas provide a powerful tool for modeling multivariate distributions (Nelsen, 2006;
Joe, 2014; Embrechts, 2009). The key idea behind copula models is to separate the model-
ing of marginal distributions from the modeling of dependence structure via the relation
(1.7). Copula-based models have been considered for both uncopulasivariate and multi-
variate time series processes, see Patton (2009), Patton (2012) and Fan and Patton (2014)
for some overviews. In this chapter, we focus on multivariate series with continuous obser-
vations and structural form (1.8). This approach has been successfully applied in recent
years in risk management and in modeling the dependence among different economic and
financial series, see Fan and Patton (2014).

Section 4.1 introduces the considered time series copula models that allow for the
presence of external covariates, and describes basic approaches to the estimation of the
individual components of the model. The estimation itself is considered in more detail n
Section 4.2. For the copula function, both nonparametric and parametric approaches are
considered. Section 4.3 summarizes some asymptotical results, which are essential for the
construction of the goodness-of-fit test in Section 4.4. Section 4.5 contains some additional
results on the maximum likelihood estimation of the copula parameter.

This chapter is based on results from Neumeyer et al. (2019) and Omelka et al. (2020).
We refer to Nelsen (2006) for basic notation regarding copulas.

4.1 Copula time series models with exogenous covariates

Let {Y t} be a k-dimensional time series of interest such that Y t = (Y1t , . . . ,Ykt)> which is
complemented with q-dimensional vector series {Zt} of exogenous covariates, Zt = (Z1t , . . . ,Zqt)>.
Let Ft−1 be a σ -field of the past information generated by the past observations of both se-
ries, i.e., Ft−1 = σ {Y k ,Zk , k ≤ t − 1}. Assume that the first two conditional moments of Y t
given Ft−1 are

E[Yjt |Ft−1] =mj(X t), var [Yjt |Ft−1] = σ2
j (X t), t ∈Z, j = 1, . . . , k,

39
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whereX t is a d-dimensional Ft−1 measurable random vector including possibly past values
of the proces {Y t} as well as past values of {Zt}, and the mean functions mj : Rd → R as
well as the volatility functions σj : Rd →R

+ are unknown for all j = 1, . . . , k.

The aim is to model the conditional distribution of Y t given Ft−1 using an AR-ARCH
type model

(4.1) Yjt =mj(X t) + σj(X t)εji , i = 1, . . . ,n, j = 1, . . . , k,

where the innovations {εt} are assumed to be independent and identically distributed (iid)
random vectors such that εt = (ε1t , . . . , εkt)> satisfies

Eεjt = 0, varεjt = 1, j = 1, . . . , k,

and εt is independent of the past and present covariates Xk , k ≤ t for all t. The model can
be rewritten in a vector form as

Y t =m(X t) +Σ(X t)εt ,

where m(x) =
(
m1(x), . . . ,mk(x)

)>
and Σ(x) = diag

{
σ1(x), . . . ,σk(x)

}
.

In what follows, we assume that εt has an absolutely continuous distribution on R
d

with a joint cdf Fε . Due to Sklar’s theorem there exists a unique copula C : [0,1]d → [0,1]
such that

(4.2) Fε(x) = P(ε1t ≤ x1, . . . , εkt ≤ xk) = C
(
F1ε(x1), . . . ,Fkε(xk)

)
,

for all x = (x1, . . . ,xk)> ∈ Rk , where Fjε denotes the marginal cumulative distribution func-
tion (cdf) of εjt, j = 1, . . . , k. It then follows from (4.1) that

P(Y1t ≤ y1, . . . ,Ykt ≤ yk |X t = x) = P(ε1t ≤ z1, . . . , εkt ≤ zk) = C(F1ε(z1), . . . ,Fkε(zk)),

where

zj =
yj −mj(x)

σj(x)
, j = 1, . . . , k.

The copula C reflects the conditional dependence structure of the k individual time series
after removing influences of the conditional means and variances.

The joint conditional distribution of Y t given X t is completely specified by the follow-
ing three components:

(i) the individual conditional mean and volatility functions mj and σj , j = 1, . . . , k,

(ii) the marginal distributions of the innovations Fjε, j = 1, . . . , k, and

(iii) the copula function.

The estimation of (i)–(iii) is typically conducted in three sequential steps either fully
parametrically, or semiparametrically, or purely nonparametrically.

A fully parametric approach uses a parametric model for all threee components (i)–(iii).
In that case, a natural estimation method is the maximum likelihood (ML), (Patton, 2006,
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2012). However, such fully parametric approach is typically too restrictive in practice, so
its use is rare.

The most common modeling approach is semiparametric, when the marginal condi-
tional moments in (i) and the copula function in (iii) are modeled parametrically, while the
marginals of the residuals in (ii) are estimated nonparametrically, usually using the empir-
ical cumulative distribution function (ecdf) of the estimated residuals from the conditional
models. Typical approach to (i) is to use ARMA-GARCH methodology. Such framework
is referred to as Semiparametric COpula-based Multivariate DYnamic (SCOMDY), intro-
duced in paper Chen and Fan (2006). Since its publication SCOMDY models have became
very popular in particular in the econometric (time-series) literature, see, e.g., overviews
in Trivedi et al. (2007); Patton (2012); Manner and Reznikova (2012); Rémillard (2017) or
a recent generalization Nasri and Rémillard (2019).

A fully nonparametric approach then imposes no structures on any of the components
(i)–(ii) and uses purely nonparametric methods for their estimation (Choroś et al., 2010).

We will treat the conditional mean functions mj and volatility functions σj in step (i)
nonparametrically. The estimation of the marginal cdfs in (ii) is conducted nonparamet-
rically as well, whereas we take two different approaches to estimating the copula C in
step (iii), namely a nonparametric approach, leading to a fully nonparametric estimation
of the whole model, and a parametric approach, leading to a semiparametric estimation
of the model. The comparison of the two estimators of the copula C will be used for a
construction of a goodness-of-fit test for a specified parametric copula family.

Note that models (4.1) with nonparametric means mj and volatilities σj are referred to
as multivariate nonparametric CHARN (conditional heteroscedastic autoregressive non-
linear) models (Härdle et al., 1998), and they have been studied by various authors, see
Fan and Yao (2005); Gao (2007) for overviews.

As the innovations are not observable, both copula estimators will be based on es-
timated residuals. We will show that the asymptotic distribution is not affected by the
necessary pre-estimation of mj and σj in (i). This remarkable result is intrinsic for copula
estimation and it was already observed in (semi)parametric estimation of copula.

4.2 Model estimation

For the ease of presentation, we will focus on the case of two time series, i.e., k = 2. How-
ever, all results can be straightforwardly extended to general k ≥ 2. The model (4.1) re-
duces to

(4.3) Y1t =m1(X t) + σ1(X t)ε1t , Y2t =m2(X t) + σ2(X t)ε2t .

Assume that the observed data
(
Y >t ,X

>
t

)>
, t = 1, . . . ,n, come from a stationary stochastic

process
{
(Y >t ,X

>
t )>

}
t∈Z

so that (4.3) is satisfied for t = 1, . . . ,n. It follows from (4.2) that the
copula function C is uniquely determined as

(4.4) C(u1,u2) = Fε
(
F−1

1ε (u1),F−1
2ε (u2)

)
, (u1,u2) ∈ [0,1]2.
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Since the innovations εt are unobserved, the inference about the copula functionC is based
on the estimated residuals ε̂t = (ε̂1t , ε̂2t)> with

(4.5) ε̂jt =
Yjt − m̂j(X t)
σ̂j(X t)

, t = 1, . . . ,n, j = 1,2,

where m̂j and σ̂j are suitable estimates of the unknown functions mj and σj .

In what follows we will use the local polynomial estimators of order P , see (Fan and
Gijbels, 1996, Chapter 2.3) or Masry (1996). For a given x = (x1, . . . ,xd)>, m̂j(x) is defined
as β̂0, the component of β̂ with multi-index 0 = (0, . . . ,0), where β̂ is the solution to the
minimization problem

(4.6) min
β=(βi)i∈I

n∑
t=1

[
Yjt −

∑
i∈I
βiψi,hn

(
X t − x

)]2
Khn(X t − x),

where I = I(d,P ) denotes the set of multi-indices i = (i1, . . . , id) with i1 + · · ·+ id ≤ P and

ψi,hn(x) =
d∏
k=1

( xk
h

(k)
n

)ik 1
ik!
,

and

Khn(X t − x) =
d∏
k=1

1
h

(k)
n

k
(
Xtk−xk
h

(k)
n

)
,

with k being a kernel function and hn =
(
h

(1)
n , . . . ,h

(d)
n

)
the smoothing parameter, see (Fan

and Gijbels, 1996, Chapter 2.2) for more details on these notations.

The conditional variance σ2
j (x) is estimated as

σ̂2
j (x) = ŝj(x)− m̂2

j (x),

where ŝj(x) is obtained in the same way as m̂j(x) but with Yjt replaced with Y 2
jt.

4.2.1 Nonparametric copula estimation

A natural nonparametric estimator of the copula function C is obtained if the true cdfs
in (4.4) are replaced with suitable estimators. Since the true innovations εjt are not ob-
served, these estimators have to be constructed from the estimated residuals. We propose
to use slightly modified empirical cdfs.

Let {cn}∞n=1 be a sequence of positive real numbers such that cn → ∞ as n → ∞, and
define Jn = [−cn, cn]d and a weight function

wn(x) = 1{x ∈ Jn}, x ∈Rd .

Furthermore, set

wnt = wn(X t), t = 1, . . . ,n, and Wn =
n∑
t=1

wnt .
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Define

(4.7) F̂ε̂(y1, y2) =
1
Wn

n∑
t=1

wnt 1
{
ε̂1t ≤ y1, ε̂2t ≤ y2

}
,

and

F̂jε̂(y) =
1
Wn

n∑
t=1

wnt 1
{
ε̂jt ≤ y

}
, j = 1,2.

Then F̂ε̂ and F̂jε̂ are nonparametric estimates of the joint distribution function Fε and the
marginal cdfs Fjε, j = 1,2, respectively. It is visible that these estimators behave asymptoti-
cally as the classical empirical cdfs computed from the estimated residuals. The weighting
takes care of the observations with large values of the covariate vector X t, where the esti-
mates m̂j(X t) and σ̂j(X t) are less reliable and so are the estimated residuals.

Finally, the resulting nonparametric estimator of C is

(4.8) C̃n(u1,u2) = F̂ε̂
(
F̂−1

1ε̂ (u1), F̂−1
2ε̂ (u2)

)
, (u1,u2)> ∈ (0,1)2.

4.2.2 Semiparametric copula estimation

Assume now that the copula function C belongs to a parametric family

(4.9) C =
{
C(u;θ) : θ ∈Θ

}
,

where θ = (θ1, . . . ,θp)> is an unknown finite dimensional parameter and Θ ⊂R
p. As noted

in Section 4.1, a semiparametric estimation of the parameter θ is popular within the cop-
ula setup, see Tsukahara (2005) for an iid setup, and Chen and Fan (2006) for SCOMDY
models.

We consider estimation of θ based on the method of moments (particularly on the in-
version of Kendall’s tau) and an M-estimation method, which involves the pseudo-maximum
likelihood as a special case.

Method-of-Moments (inversion of Kendall’s tau). Consider for simplicity that p = 1,
i.e., the parameter θ is one-dimensional. The estimator θ̂(ik)

n of θ based on the inversion of
Kendall’s tau is defined as

θ̂
(ik)
n = τ−1(τ̂n),

where

τ(θ) = −1 + 4
"

[0,1]2
C(u1,u2;θ)dC(u1,u2;θ)

is the theoretical Kendall’s tau and τ̂n is an (empirical) estimate of Kendall’s tau computed
from the estimated residuals ε̂t, see (Remillard, 2013, Chapter 8.5.3). Note that, in our
setting, the Kendall’s tau would be computed from the estimated residuals (ε̂1t , ε̂2t) for
which wnt > 0.
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M-estimation. Denote as

(4.10) U>t =
(
U1t ,U2t

)
=

(
F1ε(ε1t),F2ε(ε2t)

)
.

and let

(4.11) Ũ>t =
(
Ũ1t , Ũ2t

)
= Wn
Wn+1

(
F̂1ε̂

(
ε̂1t

)
, F̂2ε̂

(
ε̂2t

))
be an observable counterpart of the unobserved random vector Ut. Note that the multiplier
Wn
Wn+1 is introduced in order to have both of the coordinates of the vector Ũt bounded away
from zero and one.

The M-estimator of the parameter θ is defined as

θ̂n = argmint∈Θ

n∑
t=1

wnt ρ
(
Ũt;t

)
where ρ(u;θ) is a given loss function. The estimator is usually computed as a solution to
the estimating equations

(4.12)
n∑
t=1

wntφ
(
Ũt; θ̂n

)
= 0,

where φ(u;θ) = ∂ρ(u;θ)/∂θ.

The class of M-estimators includes, among others, the pseudo-maximum likelihood esti-

mators θ̂
(pl)
n , for which

ρ(u;θ) = − logc(u;θ),

with c(·) being the copula density function, and so

θ̂
(pl)
n = argmaxt∈Θ

n∑
t=1

wnt logc(Ũt;t).

4.3 Asymptotics

We first describe the asymptotic behavior of the nonparametric estimator C̃n in Section 4.3.1.
The asymptotics for the semiparametric estimation is then considered in Section 4.3.2.

Recall that it is assumed that X t is d-dimensional for some d ≥ 1. In this part we
assume that

(β) The process (X t ,Y t)t∈Z is strictly stationary and absolutely regular (β-mixing) with
the mixing coefficient βn that satisfies βn =O(n−b) with b > d + 3.

4.3.1 Asymptotics for the nonparametric copula estimator

The behavior of the nonparametric estimator C̃n will be compared to the “oracle” estimator
C

(or)
n that would be computed from the unobserved innovations, i.e.

(4.13) C
(or)
n (u1,u2) = F̂ε

(
F̂−1

1ε (u1), F̂−1
2ε (u2)

)
,



4.3. ASYMPTOTICS 45

where

F̂ε(z1, z2) =
1
n

n∑
t=1

1
{
ε1t ≤ z1, ε2t ≤ z2

}
is the classical empirical estimator of Fε based on the true unobserved innovations, and
F̂jε (j = 1,2) are the corresponding marginal empirical cdfs.

For the formulation of the asymptotic properties of C̃n from (4.8), we need to impose
several technical regularity assumptions. An exact formulation of the assumptions, de-
noted as (Fε), (FX ), (Bw), (M), (k), (Jn) and (mσ ), can be found in Neumeyer et al. (2019)
which is attached to this thesis. A detailed discussion on these assumptions and some
sufficient conditions for their validity is provided therein.

Theorem 4.1. Suppose that assumptions (β), (Fε), (FX ), (Bw), (M), (k), (Jn) and (mσ ) are
satisfied. Then for n→∞

sup
u∈[0,1]2

√
n
∣∣∣C̃n(u)−C(or)

n (u)
∣∣∣ P→ 0.

The following Corollary follows immediately from Theorem 4.1 and the weak conver-
gence of

√
n
[
C

(or)
n −C

]
(see, e.g., Proposition 3.1 of Segers, 2012).

Corollary 4.1. Under the assumptions of Theorem 4.1 the process

C̃n =
√
n
[
C̃n −C

]
converges weakly in the space of bounded functions `∞([0,1]2) to a centered Gaussian process
GC , which can be written as

GC(u1,u2) = BC(u1,u2)−C(1)(u1,u2)BC(u1,1)−C(2)(u1,u2)BC(1,u2) ,

where BC is a Brownian bridge on [0,1]2 with covariance function

E
[
BC(u1,u2)BC(u′1,u

′
2)
]

= C(u1 ∧u′1,u2 ∧u′2)−C(u1,u2)C(u′1,u
′
2),

where x∧ y = min{x,y} and C(j) is the j-th firth order partial derivative of C, j = 1,2.

4.3.2 Asymptotics for the semiparametric estimators

Section 4.2.2 defines semiparametric estimators of the copula parameter, specifically the
Kendall’s tau estimator θ̂(ik)

n of a univariate parameter θ and an M-estimator θ̂n of a gen-

eral p-dimensional parameter θ, with the pseudo-maximum likelihood estimator θ̂
(pl)
n be-

ing an important special case.

The next claim describes asymptotics for θ̂(ik)
n . The assertion follows immediately from

Theorem 4.1 and Hadamard differentiability of Kendall’s tau proved in Veraverbeke et al.
(2011, Lemma 1).

Corollary 4.2. Let the assumptions of Theorem 4.1 hold and let C belong to the parametric
family (4.9). If τ ′(θ) , 0 then θ̂(ik)

n satisfies

√
n
(
θ̂

(ik)
n −θ

) D→N
(
0, σ2

τ
[τ ′(θ)]2

)
,
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where
σ2
τ = var

{
8C(U11,U21;θ)− 4U11 − 4U21

}
,

and
(
U11,U21

)>
is defined in (4.10).

In order to describe asymptotics of an M-estimator θ̂n, we first define its oracle counter-

part computed from the true innovations. Let θ̂
(or)
n be the consistent root of the estimating

equations

(4.14)
n∑
t=1

φ
(
Ût; θ̂

(or)
n

)
= 0,

where

(4.15) Û>t =
(
Û1t , Û2t

)
= n
n+1

(
F̂1ε(ε1t), F̂2ε(ε2t)

)
are the standard pseudo-observations calculated from the unobserved innovations and
their marginal empirical distribution functions F̂1ε(y) and F̂2ε(y).

We formulate general assumptions under which there exists a consistent root θ̂n of

the estimating equations (4.12) that is asymptotically equivalent to θ̂
(or)
n . Since the spe-

cial case of pseudo-maximum likelihood estimation is discussed in more detail within a
slightly modified setup in Section 4.5, we provide the conditions explicitly here, see also
Remark 4.1 below.

Let θ stand for the true value of the parameter. Consider the following assumptions:

(Id) θ is a unique minimizer of the function r(t) = Eρ(U1t ,U2t;t) and θ is an inner point
of Θ.

(φ) There exists an open neighbourhood V (θ) of θ such that for each l1, l2 ∈ {1, . . . ,p},
the functions φl1(u1,u2;t) = ∂ρ(u1,u2;t)

∂tl1
and φl1,l2(u1,u2;t) = ∂ρ(u1,u2;t)

∂tl1∂tl2
are uniformly

continuous in (u1,u2) uniformly in t ∈ V (θ) and of uniformly bounded Hardy-Kraus
variation (see, e.g., Berghaus et al., 2017).

(φ(j)) There exists V (θ) and a function h(u1,u2) such that for each t ∈ V (θ)

max
j=1,2

max
l=1,...,p

∣∣∣φ(j)
l (u1,u2;t)

∣∣∣ ≤ h(u1,u2), where φ(j)
l (u1,u2;t) = ∂φl (u1,u2;t)

∂uj

and Eh(U11,U21) <∞.

(Γ ) Each element of the (matrix) function Γ (t) = E ∂φ(U1,U2;t)
∂t> is a continuous function on

V (θ) and the matrix Γ = Γ (θ) is positive definite.

Theorem 4.2. Suppose that the assumptions of Theorem 4.1 are satisfied and that also (Id), (φ),
(φ(j)), and (Γ ) hold. Then with probability going to one as n→∞ there exists a consistent root
θ̂n of the estimating equations (4.12), which satisfies

(4.16)
√
n
(
θ̂n −θ

)
D→N

(
0,Γ −1ΣΓ −1

)
,
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where

Σ = var

φ(
U11,U21;θ

)
+

" [
1{U11 ≤ v1} − v1

]
∂φ(v1,v2;θ)

∂v1
dC(v1,v2;θ)

+
" [

1{U21 ≤ v2} − v2

]
∂φ(v1,v2;θ)

∂v2
dC(v1,v2;θ)

.
Note that the asymptotic distribution of the estimator θ̂n coincides with the distribu-

tion given in Section 4 of Genest et al. (1995) of the consistent root θ̂
(or)
n of the estimating

equations (4.14). Therefore, using the residuals instead of the true innovations has asymp-
totically negligible effect on the (first-order) asymptotic properties. In fact, it can be even

shown that both θ̂n and θ̂
(or)
n have the same asymptotic representations and thus

√
n
(
θ̂n − θ̂

(or)
n

)
= oP (1).

Remark 4.1. Unfortunately, the assumptions of Theorem 4.2 exclude some useful models,
e.g, the pseudo-maximum likelihood estimator in the Clayton family of copulas, for which
the function φ(u;θ), viewed as a function of u, is unbounded. This problem is further
discussed in Section 4.5.

4.4 Goodness-of-fit testing

The semiparametric copula estimation from Section 4.2.2 requires a proper choice of the
copula family C from (4.9). If the parametric family is not selected appropriately then the
inference based on the semiparametric estimator can lead to incorrect conclusions. On the
other hand, the nonparametric estimator is valid under general regularity assumptions.
A comparison of the fully nonparametric estimator C̃n with the semiparametric estimator
C(·; θ̂n) can be used for model verification and goodness-of-fit testing.

Let C0 = {Cθ ,θ ∈ Θ} be a given specified parametric family of copulas. The null hy-
pothesis of interest can be formulated as

(4.17) H0 : C ∈ C0

against a general alternative H1 : C < C0. Various goodness-of-fit tests have been pro-
posed for this problem in the iid setting (see, e.g., Genest et al., 2009; Kojadinovic and
Holmes, 2009, and further references therein). The test statistic is typically constructed
as a distance between two estimators of the copula function, a nonparametric one and a
parametric one, leading to, for instance, a Kolmogorov-Smirnov test statistic or a Cramér
von Mises test statistic, cf. (1.10) and (1.11).

Recall that we have shown that the asymptotic distribution of C̃n(u) is the same as
the asymptotic distribution of C̃(or)

n (u), and the same holds for the estimator θ̂n and its

oracle counterpart θ̂
(or)
n , where both estimators are either constructed using the method

of moments or via the M-estimation. This allows us to use the results for iid data for the
evaluation of (4.17). In particular, we propose to use the Cramér-von Mises statistic

(4.18) Sn =
∫

[0,1]2

[
C̃n(u)−C(u; θ̂n)

]2
dC̃n(u),
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and reject the null hypothesis H0 if

Sn > cα ,

where the critical value cα is determined using a parametric bootstrap so that PH0
(Sn >

cα)→ α as n→∞ for given α ∈ (0,1). The bootstrap proceeds as in the iid setup. It simply
generates iid observations from the copula function C(u1,u2; θ̂n), and the test statistic is
recalculated from these observations as if we directly observed the innovations. The pro-
cedure is summarized in Algorithm 5. It assumes that the tuning parameters for mean and
volatility estimation (kernel k, bandwidth hn), and the sequence {cn}∞n=1 are given.

Note that, instead of generating n observations, we recommend to generate only Wn

observations, because the copula is estimated, in fact, only from Wn observations and this
should be reflected by the resampling procedure.

Algorithm 5 Parametric bootstrap for copula GOF.
Input: Data Y 1, . . . ,Y n and X1, . . . ,Xn.

1: compute the estimators m̂j , σ̂j and the estimated residuals ε̂jt, j = 1,2, t = 1, . . . ,n
2: compute the nonparametric estimator C̃n
3: compute the estimator θ̂n under H0 and the test statistic Sn
4: for b = 1 to B do
5: generate U∗bt = (U ∗bt1 ,U

∗b
t2 )> for t = 1, . . . ,Wn from distribution C(u1,u2; θ̂n)

6: compute the estimator θ̂∗bn , C̃∗bn and the test statistic S∗bn from (4.18) from U∗bt
7: end for
8: cmpute the critical value cα as the corresponding empirical quantile of S∗bn , b = 1, . . . ,B,

or calculate directly the p-value as

p =
1

B+ 1

B∑
b=1

I[S∗bn ≥ Sn]

Output: p-value of significance of H0 from (4.17)

Remark 4.2. A similar comparison of the nonparametric estimator C̃n(u) with the inde-
pendence copula C(u) = u1u2 provides a test for conditional independence of the two time
series {Y1t} and {Y2t}.

4.5 More on pseudo-maximum likelihood estimation

It is noted in Remark 4.1 that the assumptions of Theorem 4.2 are not fulfilled for the
pseudo-maximum likelihood estimator in some important copula families where the func-
tion φ(u;θ) is unbounded in u. Hence, this section deals with an estimation in a simpler
purely regression model and focuses on the formulation of appropriate regularity condi-
tions that ensure validity of the claim formulated in Theorem 4.2. This Section is based on
results from Omelka et al. (2020).
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4.5.1 Considered setup

Assume now that the sequence {Y t} is formed by independent k-dimensional random vec-
tors and the d-dimensional vectors X t in (4.1) are formed by purely exogenous covariates
so that (X t ,Y t), t = 1, . . . ,n, can be assumed as independent and identically distributed (iid)
pairs. Here, we focus on the situation when the margins follow parametric location-scale
models

(4.19) Yjt =mj(X t;αj ) + σj(X t;αj )εjt , j = 1, . . . , k,

where mj(x;αj ) and σj(x;αj ) are known functions depending only on an unknown (finite-
dimensional) parameter αj , j = 1, . . . , k, and εt = (ε1t , . . . , εkt)> is independent of X t and
satisfies the assumptions specified below (4.1). Namely, {εt} are iid with components hav-
ing zero mean and unit variance such that the cumulative distribution function of εt is
specified in (4.2). We further assume that the copula C belongs to a family of copulas

C =
{
Cθ ,θ ∈Θ

}
where Θ ⊂ R

p. Our task is to estimate the true value of the copula parameter θ based on
the observations X t ,Y t, t = 1, . . . ,n.

Since the errors ε1, . . . ,εn are not observed, the estimation is based on estimated resid-
uals ε̂t = (ε̂1t , . . . , ε̂kt)>, t = 1, . . . ,n, where

ε̂jt =
Yjt −mj(X t; α̂j )
σj(X t; α̂j )

, t = 1, . . . ,n, j = 1, . . . , k,

where α̂j is a suitable estimate of αj .

The maximum pseudo-likelihood estimator of θ based on the residuals is defined as

θ̂n = argmaxt∈Θ

n∑
t=1

logc
(
Ût;t

)
,

where c(·;t) is the density of the copula Ct ∈ C, and

(4.20) Ût =
(
Û1t , . . . , Ûkt

)>
= n
n+1

(
F̂1ε̂(ε̂1t), . . . , F̂kε̂(ε̂kt)

)>
.

As it is common in the maximum likelihood theory, we consider the estimator θ̂n to be an
appropriately chosen root of the estimating equations

(4.21)
n∑
t=1

ψ(Ût; θ̂n) = 0, where ψ(u;t) =
∂ logc

(
u;t

)
∂t

.

Analogously, the oracle maximum pseudo-likelihood estimator θ̃n is based on the true (but
unobserved) errors εjt and it is defined by the estimating equation (4.21) with Ût replaced
by the true pseudo-observations

(4.22) Ũt =
(
Ũ1t , . . . , Ũkt

)>
= n
n+1

(
F̂1ε(ε1t), . . . , F̂kε(εkt)

)>
,



50 CHAPTER 4. MULTIVARIATE TIME SERIES MODELED VIA COPULAS

where F̂jε is the marginal empirical distribution function of the (unobserved) errors, i.e.,

F̂jε(y) =
1
n

n∑
t=1

1{εjt ≤ y}, j = 1, . . . , k.

Even in this simplified setup, the derivation of the asymptotic normality of θ̂n was sur-
prisingly more technically involved than expected. The main reason is that the adaptation
of the existing results is not at all straightforward as either the crucial steps in the proofs
are, probably due to the broad scope of the presented results, missing (Chan et al., 2009)
or because the presented assumptions prevent the major technical difficulties at the cost
of avoiding common copula families, see, e.g., assumptions (C.2) and (C.3) of Kim et al.
(2007) and the corresponding assumptions in Kim et al. (2008), or the assumption about
the quadratic integrability in Theorem 2 in Nasri and Rémillard (2019). Therefore, the
main result, formulated in Section 4.5.2, was derived with our own approach.

4.5.2 Asymptotics

The following two theorems state that, under specified regularity conditions, the estimator
θ̂n based on the residuals has the same asymptotic distribution as the unattainable oracle
estimator θ̃n. Thus when fitting the copula C one can (under the stated assumptions)
ignore the fact that the true innovations were replaced with the estimated residuals.

First of all, we need to assume that the density of the error term εj is “well-behaving”
on the border of its support.

(C.1). For each j ∈ {1, . . . , k} the density function fjε of εj is continuous on the support of εj
and there exists β ∈ [0, 1

2 ) such that

(4.23) sup
u∈(0,1)

fjε
(
F−1
jε (u)

)(
1 + |F−1

jε (u)|
)

uβ(1−u)β
<∞

and

sup
u∈(0,1/2)

fjε
(
F−1
jε (2u)

)
fjε

(
F−1
jε (u)

) <∞ and sup
u∈(1/2,1)

fjε
(
F−1
jε (1− 2u)

)
fjε

(
F−1
jε (1−u)

) <∞.

Furthermore, for some u1, u2 in (0,1), the function fjε
(
F−1
jε (u)

)
is non-decreasing on (0,u1)

and non-increasing on (u2,1).

Note that assumption (C.1) with β = 0 allows also for distributions with bounded dis-
continuous densities (e.g., exponential and uniform).

Remaining assumptions (C.2)–(C.7) are formulated in Section 4.5.4. Roughly speak-
ing, assumption (C.2) states that the parametric models in (4.19) can be estimated at the
standard

√
n-rate and that the functions mj , σj are sufficiently smooth. Assumption (C.3)

is a standard identification condition, while (C.4) requires smoothness of the function
log[c(u,θ)] in θ. Assumptions (C.5) and (C.6) are related to the behavior of the function
ψ(u,t) and its derivative with respect to t. Finally, (C.7) is a standard assumption on the
Fisher information matrix.
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Theorem 4.3. Let (C.1) with β > 0 and (C.2)-(C.7) hold. Then, as n→ ∞, with probability
going to one there exists a consistent root θ̂n of the estimating equations (4.21) such that

(4.24)
√
n
(
θ̂n −θ

) D→N (0,Σ),

where
Σ = I−1(θ)var

(
ψ̃
(
U,θ)

)
I−1(θ),

where I(θ) is defined in (C.7) and ψ̃(u,θ) =
(
ψ̃1(u,θ), . . . , ψ̃p(u,θ)

)>
, where

(4.25) ψ̃k(u,θ) = ψk(u;θ) +
k∑
j=1

∫
[0,1]k

[
1{uj ≤ vj} − vj

]
ψ

(j)
k (v;θ)dC(v,θ), k = 1, . . . ,p,

and ψ(j)
k (u,θ) = ∂ψk(u,θ)/∂uj , j = 1, . . . , k.

The next theorem claims that if the assumptions (C.5) and (C.6) are replaced with a
stronger assumption (C.8), which requires the derivatives of ψk with respect to θ to be
bounded, then (4.24) stays valid also if the marginals satisfy (C.1) with β = 0. Thus, for
instance, if one (rightly) assumes that C is a Frank copula then the marginal distributions
of the errors are allowed to be also uniform or exponential.

Theorem 4.4. Let (C.1)-(C.4), (C.7), (C.8) hold. Then the statement of Theorem 4.3 holds.

A detailed discussion on the imposed regularity conditions is included in Omelka et al.
(2020). Although the assumptions that guarantee (4.24) are mild, they are not satisfied for
some combinations of commonly used copula functions and marginal densities of the er-
rors. Roughly speaking, there exists an interplay between assumed the copula family and
the assumptions on the marginal distributions of the errors. Under the stated assumptions
an unbounded copula density has to be compensated with marginal densities that are well-
behaved not only in the supports of the corresponding distributions, but also at the border
points of the supports, as formulated in assumption (C.1). Nevertheless, this assumption
is considerably milder than, for instance, assumption A2 of Chan et al. (2009). Moreover,
our assumptions allow the marginal densities to be even discontinuous at the border of
the supports when combined with a copula with “a well-behaving density” (e.g., a Frank
copula). Hence, our results complement the pioneering work of Chen and Fan (2006) with
rigorous mathematical proofs and with weakening the necessary assumptions.

4.5.3 Practical results

The article Omelka et al. (2020) contains a simulation study that illustrates the theoretical
conclusions and explores how the maximum pseudo-likelihood estimator behaves if the
posed regularity assumptions are violated. The results reveal that, in agreement with the
theoretical results, the maximum pseudo-likelihood estimator outperforms the moment
estimator based on the inversion of Kendall’s tau in situations for which our regularity
assumptions are satisfied. On the other hand, the performance of the maximum pseudo-
likelihood estimator may deteriorate significantly if the regularity assumptions are not
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met. The problems are generally worse for larger values of Kendall’s tau (a stronger de-
pendence). One should be particularly careful when fitting the Clayton copula or the
Gumbel copula to data with non-regular margins (as exponential or uniform) combined
with a strong dependence structure.

For such situations, we recommend to use a modified ML estimator, inspired by the es-
timator from Fermanian and Lopez (2018), computed as the maximum pseudo-likelihood
estimator solely from Ût which lie in [δn,1− δn]2, where δn = Dn−1/λ. The choice D = 1/4
and λ = 1.9 is explored in Omelka et al. (2020) and the simulations indicate that this esti-
mator performs better for Clayton or Gumbel copula with non-regular marginals. There-
fore, it presents an interesting alternative to the “standard” pseudo maximum-likelihood
estimator.

It is also interesting that even though the density of the Gaussian copula is unbounded,
the PML estimator performs better than the moment estimator even when combined with
non-regular marginals. This raises a question whether a milder assumption than (C.1)
would be sufficient for the Gaussian copula.

4.5.4 Appendix: Regularity conditions for asymptotics of the pseudo-
maximum likelihood estimator

This sections contains formulation of the regularity assumptions (C.2) –(C.8).

Regularity assumptions onmj and σj . Let SX ⊂R
d be the support of X t.

(C.2). For each j ∈ {1, . . . , k} let the following conditions hold:

• α̂j is a
√
n-consistent estimate of the parameter αj ,

• functions mj(x;a) and σj(x;a) are differentiable with respect to a and the derivatives
are denoted as m′j(x;a) and σ ′j (x;a),

• there exists a neighborhood U (αj ) of the true value of the parameter αj such that

inf
x∈SX ,a∈U (αj )

σj(x;a) > 0

and there exists a function Mj : SX →R such that for each x ∈ SX

sup
a∈U (αj )

∥∥∥m′j (x;a)
σj (x;a)

∥∥∥ ≤Mj(x), sup
a∈U (αj )

∥∥∥ s′j (x;a)
σj (x;a)

∥∥∥ ≤Mj(x),

and E
[
Mj(X)

]r
<∞ for some r ≥ 2,

• for each K > 0 the derivatives m′j(x;a) and σ ′j (x;a), viewed as functions of a, are
continuous at αj uniformly in x ∈ {x̃ ∈ SX : ‖x̃‖ ≤ K}.

Regularity assumptions on the copula family C. To formulate the main regularity as-
sumptions about the copula family, we introduce the following set of functions.
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Definition (Class of J - and J̃ β1,β2-functions). A function ϕ : (0,1)k → R is called a J -
function if ϕ is continuous on (0,1)k and there exist η ∈ [0,1) and a finite constant M1 such
that for all u ∈ (0,1)k

|ϕ(u1, . . . ,uk)| ≤
k∑
j=1

M1[
min{uj ,1−uj}

]η .
Let β1 ∈ [0,1/2) and β2 ≥ 0 be fixed. We say that a function ϕ : (0,1)k → R is a J̃ β1,β2-

function if it is continuous on (0,1)k and there exists a finite constant M2 such that for all
u ∈ (0,1)d

|ϕ(u1, . . . ,ud)| ≤
k∑
j=1

M2[
min{uj ,1−uj}

]β1
,

and
∣∣∣ϕ(j)(u1, . . . ,ud)

∣∣∣ uβ2
j (1−uj )β2 is a J -function for all j ∈ {1, . . . , k}, where

ϕ(j)(u1, . . . ,uk) =
∂ϕ(u1, . . . ,uk)

∂uj
.

Recall that Θ ⊂ R
p, θ is the true value of the parameter, and c(·;t) is a density cor-

responding to the copula function Ct. Denote as ψk(u;t) the kth element of the vector
function

ψ(u;t) = ∂ log{c(u;t)}/∂t.

(C.3). c(u;t1) = c(u;t2) for almost all u ∈ (0,1)d only if t1 = t2.

(C.4). The function log{c(u;t)} is continuously differentiable with respect to t for all u ∈
(0,1)d .

(C.5). For each k ∈ {1, . . . ,p}, ψk(·;θ) is a J̃ β1,β2-function, where β >max{β1 + 1
r−1 ,β2}, for β

from (C.1) and r from (C.2).

(C.6). The function ψ(u;t) is assumed to be continuously differentiable with respect to t
for all u ∈ (0,1)k . Further there exist an open neighborhood U ⊂ Θ of θ and a dominating
J -function h(u) such that ∂ψ(u;t)/∂t> is continuous in (0,1)k ×U and

max
k,`∈{1,...,p}

sup
t∈U

∣∣∣∂ψk(u;t)
∂t`

∣∣∣ ≤ h(u).

(C.7). The p × p (Fisher information) matrix I(θ) = −E
{
∂ψ(U;t)/∂t>

∣∣∣
t=θ

}
, where

U =
(
U1, . . . ,Ud

)>
=

(
F1ε(ε1), . . . ,Fdε(εd)

)>
,

is finite and nonsingular.

(C.8). The function ψ(u;t) is bounded and continuously differentiable with respect to t
for all u ∈ (0,1)k . Further there exists an open neighborhood U of θ such that ∂ψ(u;t)/∂t>

is continuous in (0,1)k ×U and

max
k,`∈{1,...,p}

sup
t∈U

sup
u∈(0,1)k

∣∣∣∂ψk(u;t)
∂t`

∣∣∣ <∞ and max
j∈{1,...,d}

max
k∈{1,...,p}

sup
u∈(0,1)k

∣∣∣∂ψk(u;θ)
∂uj

∣∣∣ <∞.
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Choroś, B., Ibragimov, R., and Permiakova, E. (2010). Copula estimation. In Copula Theory
and Its Applications: Proceedings of the Workshop Held in Warsaw, 25-26 September 2009,
pages 77–91, Berlin. Springer.

Christou, V. and Fokianos, K. (2014). Quasi-likelihood inference for negative binomial
time series models. J. Time Series Anal., 35(1):55–78.

Chu, C.-S. J., Stinchcombe, M., and White, H. (1996). Monitoring structural change. Econo-
metrica, 64:1045–1065.
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Horváth, L. (1989). The limit distributions of likelihood ratio and cumulative sum tests
for a change in a binomial probability. J. Multivariate Anal., 31(1):148–159.
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Hudecová, Š., Hušková, M., and Meintanis, S. (2021). Goodness-of-fit tests for bivariate
time series of counts. Econometrics, 9(1):10.
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