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Notations and conventions
Throughout the thesis we work in relativistic units ℏ = c = 1. In relativistic units
the relation between the charge of the electron e and the fine structure constant
is e2/4π = α. Energy levels and transitions between them are presented in Hz or
in eV.
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γµ Dirac gamma matrices
α⃗, β Dirac matrices
σi Pauli matrices
α fine structure constant
gµν metric tensor
eAµ electromagnetic four-potential
Πµ = pµ − eAµ physical four-momentum
Ĥ Hamilton operator
ψ wave function
E energy
EF Fermi splitting
r⃗a position of electron a
r⃗ab relative position of electrons a and b
g g-factor of particle
κe anomalous magnetic moment of elec-

tron
−e charge of the electron
Ze charge of the nucleus
m electron mass
M nuclear mass
s⃗ spin of the electron
I⃗ nuclear spin
L⃗ angular momentum operator
S⃗ operator of the total spin for electrons
n principal quantum number
l angular momentum quantum number
j total angular momentum quantum

number
{a, b} anticommutator of operators a and b
[a, b] commutator of operators a and b
QED quantum electrodynamics
NRQED nonrelativistic QED
HF Hartree-Fock
hfs hyperfine splitting
muonium bound state of antimuon and electron
positronium bound state of positron and electron
protonium bound state of proton and antiproton
muonic hydrogen (µH) bound state of proton and muon
muonic deuterium (µD) bound state of 2H nucleus and muon
p̄ α bound state of helium nucleus and an-

tiproton
helion nucleus of 3He atom
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1. Introduction
In this habilitation thesis I summarize and present the main results of the research
conducted in the years 2014-2024 following the completion of my PhD. My focus
has been on performing highly accurate calculations in the simplest bound-state
systems, such as hydrogen or helium. In these simple systems, the usual challenges
associated with quantum mechanical calculations are less severe, allowing us to
uncover intricate details of the subatomic world. Atomic physics has come a long
way since its pioneering days, marked by the exciting confirmation of quantum
electrodynamics (QED) through explanations of phenomena like the anomalous
magnetic moment of the electron or the Lamb shift in hydrogen. Presently, with
the combination of highly precise theoretical calculations and increasingly more
accurate experimental data, atomic physics not only serves as a convincing testing
ground for QED but also facilitates the precise determination of fundamental
constants, and even the nuclear structure properties like the charge radius of the
proton.

In general, to enhance our understanding of nature, we can pursue different
avenues. One approach involves advancing to higher energies in particle collid-
ers, but this encounters technological, economic, and also political limitations.
Another strategy is to delve into the exploration of unknown phenomena, such
as dark matter. Alternatively, we can enhance the precision of both theory and
experiment wherever feasible. The advantage of the third approach is its consider-
ably lower cost by several orders of magnitude compared to particle accelerators
and dark matter searches. This avenue represents a complementary and inde-
pendent method of searching for new physics since it investigates a completely
different scale of energies than particle colliders. The specific motivation for con-
ducting very accurate theoretical calculations lies in several aspects. Firstly, it
allows us to test theoretical models and explore the limits of effects that extend
beyond them. The comparison between theoretical predictions and experimental
data can provide insights into the magnitude of non-renormalizable terms in the
QED Lagrangian, and any disparity between theory and experiment could signal
the presence of new physics. Secondly, accurate theoretical calculations enable us
to determine the nuclear properties of atoms. For example, the hyperfine splitting
of energy levels is significantly influenced by the internal structure of the nucleus.
Assuming the correctness of theoretical calculations, we can extract values of
nuclear parameters from experiments. This could serve to test Quantum Chro-
modynamics (QCD) and approximate methods of its solution, or to provide us
with information about the nuclear structure that is not possible to obtain from
QCD. Thirdly, as a byproduct we obtain values of fundamental constants which
always have to be inserted into the theoretical predictions. For all these purposes
we have to perform the calculations as accurately as possible. To achieve this,
we have to take into account various effects of small magnitude, which are often
omitted in calculations, either because they are too complicated to evaluate or
because the overall precision used in the calculation does not require including
terms beyond the nonrelativistic Hamiltonian H = T + V . In this thesis, the
evaluation of several such effects is presented, and we show that by including
them, we reach unparalleled precision of determination of atomic energy levels.
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One of the most prominent tests of fundamental physics in atomic systems
is derived from the magnetic moment of the electron bound in the hydrogenlike
carbon ion. The relative precision of the experiment of 3×10−11 [1] is matched by
the complementary accuracy of ab initio theoretical calculations based on QED
[2]. Experiment and theory are in excellent agreement; their comparison is limited
by the uncertainty of the electron mass, as taken from the best electron-trap
measurement. In practice, one reverses the problem and determines the electron
mass from the bound-electron g-factor, gaining an improvement in accuracy by
two orders of magnitude. Another prominent atomic test is determination of
the proton charge radius from ordinary (H) and muonic (µH) hydrogen. The
lepton universality in the Standard Model states that the coupling constants of
the electron and muon are equal, so one must use the same physical laws and
constants to predict the energy levels in H and µH. What came out in practice,
however, was a surprise. The proton root-mean-square charge radius, treated
as an unknown parameter and extracted from the comparison of theory and
experiment, turned out to be significantly different for the electronic and muonic
spectra (what become known as the proton radius puzzle). As a final example of
testing QED we mention determination of the Zemach radius (see definition in
Eq. (3.16)) from the hyperfine structure of lithium isotopes 6Li and 7Li. From the
comparison of theory and experiment it was determined that the Zemach radius
of 6Li is approximately by 40 % smaller than that of 7Li. This was consistently
obtained both from Li atom and Li+ ion using several independent measurements.
On the other hand, the results obtained for 6Li from simple models of the nuclear
charge and magnetization distribution disagree with this determination by more
than 6σ.

To fully appreciate the extensive testing of QED, it is noteworthy to consider
the precision achieved in state-of-the-art theoretical calculations for light atoms.
For instance, the hyperfine splitting of the 2S state in hydrogen was calculated
with the relative precision of 2 × 10−9, reaching sub-Hertz accuracy [3]. On the
other hand, the experiment recently reached similar accuracy with relative preci-
sion of 5 × 10−9 [4], and is in perfect agreement with theoretical prediction. For
2S − 1S transition in hydrogen the theoretical accuracy is even better, reaching
9 × 10−13, while the experimental accuracy is 4 × 10−15 [5, 6]. For helium, the ac-
curacy of theoretical calculations has been significantly improved in recent years,
reaching relative accuracy of 2 × 10−10 [7] for 2S − 2P transition, in very good
agreement with experiment [8] which has the accuracy of 5×10−12. For helium hy-
perfine splitting, the theory has achieved a relative accuracy of 6 × 10−9, whereas
the experiment has accuracy of 2 × 10−9 [9, 10]. In all these cases the agreement
of theory with experiment is excellent. However, there are also instances of sig-
nificant disagreement of theory and experimental data. For example, theory for
hyperfine splitting in µD is in 5σ tension with experiment [11]. Another case of
discrepancy are ionization energies of the 23S and 23P states in helium, where
the disagreement is 6.5σ and 10σ, respectively [12]. Thus, even though QED is
the most accurately tested physical theory, there are still some discrepancies that
need to be resolved.

The basic estimation of atomic energy levels is derived by solving nonrela-
tivistic Schrödinger equation

Ĥψ = Eψ . (1.1)
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For many purposes this is both sufficient approximation and also challenging
enough calculation, especially when many-electron atoms and molecules are at
play. With approaches like Hartree-Fock (HF) and post-Hartree-Fock methods
we are able to tackle the problem of solving the equation (1.1) when no analytical
solution is known. However, from a numerical point of view, such calculations
are demanding and high-performance computing is needed for their execution.

On the other hand, one- and two-electron systems like hydrogen or helium
atoms are much less demanding for numerical evaluation. In particular, nonrela-
tivistic equation for hydrogen is analytically solvable, and for helium it is solvable
numerically with arbitrary precision. This allows us to extend the calculations
of energy levels beyond the simple nonrelativistic approximation and incorpo-
rate relativistic and QED effects. For the hydrogen atom, the fully relativistic
determination of energy levels is achieved by solving the Dirac equation(︂

γµ Πµ −m
)︂
ψ(x) = 0 , (1.2)

and the relativistic corrections are approximately by a factor α2 smaller than the
leading, nonrelativistic result, where α is the fine structure constant [14],

α−1 = 137.035 999 084(21) . (1.3)

Due to smallness of the fine structure constant the few-electron atoms are
loosely bound nonrelativistic systems and the relativistic effects might be treated
as perturbations. This can be easily demonstrated by direct calculation of the
average velocity of electron in hydrogenlike atom using nonrelativistic wave func-
tions [15],

⟨n|v⃗ 2|n⟩ = ⟨n| p⃗
2

m2 |n⟩ = (Zα)2

n2 , (1.4)

where Z is the charge of the nucleus and n is principal quantum number. Thus,
as long as Z is small, the nonrelativistic approximation is appropriate. With
relativistic effects taken into account, the degeneracy of the nonrelativistic result
is partialy removed, as the energies now depend on both the principal quantum
number n and the total angular momentum number j.

While the Dirac equation provides theoretical predictions of energy levels that
agree better with experiments, it is not the final step in calculations for several
reasons. First, the Dirac equation predicts the electron g-factor to be exactly
equal to g = 2, while experimental observations indicate a slightly larger value
due to the anomalous magnetic moment. Second, although the Dirac equation
removes some degeneracy, certain energy levels remain degenerate. Notably, it
cannot explain the splitting of the 2S1/2 and 2P1/2 states in hydrogen, known
as the the Lamb shift [16]. And third, Dirac equation (1.2) describes correctly
electron bound by infinitely heavy nucleus but completely omits the motion of
the nucleus. It is possible to include leading order recoil effects of the order m/M
[17] where m is the mass of the electron and M is nuclear mass, but the more
general result for arbitrary mass dependence is not known.

These issues are resolved by taking into account the quantum electrodynamics.
In QED, the interaction between charged particles is described as the exchange
of photons and depicted using so-called Feynman diagrams. In addition to in-
terparticle interaction, QED predicts also self-interaction of the charged particle
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with itself, wherein it emits and later absorbs back the virtual photon. Such an
effect, known as the self-energy [18, 19, 20], might appear exotic at first glance.
However, it has important consequences, as it shifts the energy levels of bound
electron in atom by

δE = e2
∫︂ d4k

i (2π)4 k2

⟨︃
γµ 1
γ · (Π − k) −m

γµ
⟩︃
. (1.5)

This correction to energy, along with the vacuum polarization [15], constitutes a
dominant part of the contributions responsible for splitting of the 2S1/2 and 2P1/2
states in hydrogen, consequently explaining the Lamb shift. Feynman diagrams
that include internal loops with virtual particles, such as these, are termed radia-
tive corrections. Conversely, diagrams involving photon exchange between two
particles without internal loops represent the (nonradiative) recoil contributions.
These are important for solving the third issue and accounting for the mass de-
pendence of the nucleus. Of course, it is also possible to combine both types of
contributions, which leads to the radiative recoil corrections.

The anomalous magnetic moment of electron can be explained by yet another
QED contribution. The leading correction to g/2−1 is equal to α/2π [21], and its
agreement with experiment has proven to be a significant milestone in the accep-
tance of QED. It is noteworthy that Julian Schwinger, one of the founding fathers
of QED, has this result engraved on his tombstone. Including the corrected value
of the g-factor into the theoretical formulas for atomic spectra further enhances
the agreement with experimental observations.

In our calculations, we employ the approach of the so-called Nonrelativistic
quantum electrodynamics (NRQED) [22, 23, 24], which is detailed in the follow-
ing Chapter. The NRQED method systematically incorporates all nonrelativistic,
relativistic, and QED effects, treating the nucleus and electrons on equal footing.
This allows us to derive formulas that are applicable for arbitrary electron-to-
nucleus mass ratios. Typically, it is sufficient to consider only the first few orders
of the mass ratio expansion. Within the NRQED framework we may also account
for the influence of the nuclear structure effects on atomic spectra. Given the cur-
rent experimental and theoretical precision, nuclear effects are non-negligible and
must be included in our calculations [15]. This, however, provides an opportunity
to gain insights into the internal structure of the nucleus. Additionally, compar-
ing results from scattering experiments with those from various atomic spectra
measurements allows us to test the consistency of the theory [25]. Any potential
discrepancies observed could be indicative of new physics.

This thesis is organised as follows. In Chapter 2, we provide a brief intro-
duction to the NRQED approach, establishing the explicit form of the expansion
of energy levels in powers of the fine structure constant α. Chapter 3 presents
the results of our calculations for two-body systems. We explore systems with
constituent particles of arbitrary masses, whether pointlike or hadronic, and with
spinless or spin-1/2 particles, limiting our study to angular momenta l ≥ 1. Our
objective is to derive a general formula applicable to highly excited states of
various systems, including exotic atoms like muonic hydrogen, positronium, or
protonium. In the latter part of Chapter 3, we delve into the study of hyper-
fine structure in hydrogenlike ions. Comparisons between our calculations and
experimental measurements allow us to extract contributions to atomic energy
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levels arising from nuclear structure effects. Furthermore, by subtracting the cor-
responding elastic contribution obtained from electron scattering, we determine
the nuclear polarizability effect in hydrogenlike 3He+.

Chapter 4 is dedicated to study of heliumlike ions. Firstly, we present the
results of our calculation of the higher-order recoil correction to energy levels of
helium triplet and singlet states. With the inclusion of this correction, we achieve
highly accurate predictions for the 3He−4He isotope shift of transitions 23S−21S
and 23S − 23P . This can be compared with the experimental data and it allows
us to extract the value of the nuclear charge radii difference between these two
isotopes of helium. It turns out that the values obtained from different transitions
and experiments are in disagreement with each other.

In the subsequent part of Chapter 4, we present our results for the calculation
of the α7 correction to energy levels for helium triplet states. This contribution
poses a very challenging calculation but holds significant importance. With the
inclusion of this correction, the accuracy of the theory in helium is brought to
approximately the same level as in hydrogen. Furthermore, such accuracy allows
us to investigate the charge radius of helium with a precision of 10−3, which is
relevant in the context of the discrepancy in determining the proton charge radius
from ordinary and muonic hydrogen.

In the final part of Chapter 4, we study the hyperfine splitting for heliumlike
ions. To achieve this, we calculated the corresponding α7 contribution to hyper-
fine splitting of the 23S state in 3He and 6,7Li+. In the case of heliumlike lithium,
we utilized the outcome of our calculation along with experimental data to extract
information about the nuclear structure. The results we obtained are in agree-
ment with the literature, albeit with higher precision. In the case of 3He atom,
we used the comparison of our calculation and the experimental measurement for
testing QED, obtaining excellent agreement between theory and experiment. Our
theoretical prediction of helium hyperfine structure presents the most accurate
theoretical result for non-hydrogenic systems so far.

Finally, Appendix A presents the summary of all the relevant papers in which
I am the author or co-author. In Appendix B selected works are included.
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2. Theory of energy levels in
light atoms

2.1 Nonrelativistic quantum electrodynamics
NRQED is a method first put forward by Caswell and Lepage in [22] and later
developed in various works [23, 26, 27, 28]. It is an effective field theory in
which nonrelativistic and relativistic momenta scales are treated separately. The
initial step involves constructing the NRQED Lagrangian. Subsequently, using
Feynman rules and perturbation theory, one can build effective Hamiltonians for
interactions. One approach to achieve this is by ensuring that NRQED predictions
align with those of QED to the desired order of accuracy in powers of α [22].
Through matching tree diagrams between NRQED and QED, one can determine
the corresponding coupling constants in the Lagrangian. This ensures proper
consideration of all low-momentum contributions in NRQED. In our approach,
we instead derive the NRQED Lagrangian by means of Fouldy-Wouthyusen (FW)
transformation of the Dirac Hamiltonian in external electromagnetic field [23], as
will be demonstrated below.

QED contributions that involve relativistic momenta in loops are absorbed as
renormalizations of the coupling constants for local interactions in NRQED [22].
Given that the wavelengths associated with relativistic momenta are significantly
shorter than those with nonrelativistic momenta, the effects due to relativistic
loop momenta can be expressed as local interactions. Determining these coupling
constants is done through scattering amplitudes in QED.

To illustrate the NRQED method we will first consider ordinary QED theory,
starting with Dirac Hamiltonian in the presence of external electromagnetic field,

H = α⃗ · π⃗ + β m+ eA0 = γ0
[︂
γ⃗ · (p⃗− eA⃗) + γ0 eA0 +m

]︂
, (2.1)

where π⃗ = p⃗ − e A⃗. From this Hamiltonian it is possible to obtain many body
Lagrangian density by

L =
∑︂

a

ψ∗
a (i∂t −H)ψa + LEM =

∑︂
a

ψā

(︂
γµ (pµ − eAµ) −m

)︂
ψa + LEM , (2.2)

where LEM is a Lagrangian of the electromagnetic field, and ψā = ψ∗
a γ0. It

follows from this expression that the conserved electromagnetic four-current of
the particle a is

jµ
a = e ψāγ

µ ψa . (2.3)
Now we utilize the formalism of Feynman rules for constructing the QED theory
and evaluating individual contributions given by Feynman diagrams. The inter-
action between charged particles is established through the exchange of photons.
For the interaction vertex given by the four-current (2.3) we get the rule

jµ
a → ie γµ . (2.4)
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Now, for instance, the previously mentioned self-energy contribution is given by
the expression

δE = e2
∫︂ d4k

i (2π)4
gµν

k2

⟨︃
ψ
⃓⃓⃓
γ0γµ eik⃗·r⃗ 1

(E −H − k0) e
−ik⃗·r⃗ γ0γν

⃓⃓⃓
ψ
⟩︃
, (2.5)

which we rewrote into slightly different form and assumed that the state in the
consideration is stationary. It is evident that the rule for interaction vertex, de-
rived from the electromagnetic current, could already be extracted from the Dirac
Hamiltonian (2.1) as the term coupled to the four-potential Aµ. The expression
in Eq. (2.5) represents the exact QED expression for the one-loop self-energy to
all orders in Zα.

Now we turn to the derivation of the low-momentum part of NRQED, defer-
ring the treatment of relativistic momenta for later. The main idea is to carry
out the nonrelativistic expansion directly for the Dirac Hamiltonian before con-
structing the NRQED Lagrangian density, electromagnetic current, and the rules
for vertices. Instead of the expression (2.3), we obtain a nonrelativistic expansion
for the current, which is then employed with Feynman rules. Since the current
is now in the form of a series, numerous individual Feynman diagrams need to
be considered. For example, exchange of two photons between particles in full
QED is given by two diagrams, one ordinary and one with crossed photon lines.
In NRQED, this transforms into various other diagrams, each involving the ex-
change of two photons with different expressions at the interaction vertices. Each
such a diagram contributes to a different order in α. It is crucial to note that
every Feynman diagram in NRQED contributes only to single order in α. This
systematic approach allows for the comprehensive collection of all relevant dia-
grams, ensuring a complete contribution that agrees with QED at every order in
α. The expressions for individual NRQED contributions are also much simpler
to evaluate compared to those in full QED.

Detailed derivation of NRQED Lagrangian is presented in [23] or in our work
[29]. The key concept involves utilizing the FW transformation of the Dirac
Hamiltonian to decouple the upper and lower components of the Dirac wave
function up to a specified order in the 1/m expansion, leading to a nonrelativistic
expansion of the Hamiltonian H. The result of the transformation is the FW
Hamiltonian HFW defined as

HFW = ei S (H − i ∂t) e−i S , (2.6)

where S is unitary operator. The choice of the unitary transformation operator
S, and consequently the resulting FW Hamiltonian, is not unique. We use the
operator S defined as

S = − i

2m

[︃
β α⃗ · π⃗ − 1

3m2 β (α⃗ · π⃗)3 + β

5m4 (α⃗ · π⃗)5 + i e

2m α⃗ · E⃗ − β e

4m2 α⃗ · ∂tE⃗

+ i e

24m3 [α⃗ · π⃗, [α⃗ · π⃗, α⃗ · E⃗]] − i e

3m3

(︃
(α⃗ · π⃗)2 α⃗ · E⃗ + α⃗ · E⃗ (α⃗ · π⃗)2

)︃]︃
.

(2.7)

This choice allows us to eliminate undesired higher-order terms that are odd in
matrix α⃗ (or, equivalently, in matrix γj) and that mix the upper and lower com-
ponents of the wave function. Because the operator S is not unique, the FW
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Hamiltonian HFW we obtain might be different from the one obtained through
the standard textbook approach. This difference might be expressed by a trans-
formation involving some additional even operator. However, all variants of the
FW Hamiltonian are equivalent at the level of matrix elements, ensuring they
lead to the same physical results.

It might be advantageous to perform further unitary transformations to sim-
plify the FW Hamiltonian HF W and transform it into a form that si more suitable
for a particular calculation. Examples of such further transformation are given
by operators

S ′ = − e

16m3 {σ⃗ · π⃗, σ⃗ · E⃗} , (2.8)

which removes the time derivative of electric field, or

S ′′ = e

8m2 σ
ij {Ai , πj} , (2.9)

which removes the perpendicular part of the electric field E⃗⊥ = −∂tA⃗. Here, the
spin operator σij is defined as

σij = 1
2 i [σ

i, σj] . (2.10)

The FW Hamiltonian that we finally obtain is thus

HFW = eA0 + π2

2m − e

4mσijBij − π4

8m3 + e

16m3

(︂
σijBij π⃗2 + π⃗2 σijBij

)︂
− e

8m2

(︂
∇⃗ · E∥⃗ + σij{Ei

∥, π
j}
)︂

+ e2

8m3 E⃗
2

− e2

16m3B
ijBij − e2

4m2σ
ijAiEj

+ ie

16m3 [σij{Ai, πj}, π2] − e2

8m3A
i ∇jBij + p6

16m5 + . . . , (2.11)

where dots stand for omitted higher order terms. The magnetic field tensor is
Bij = ∂i Ai − ∂j Ai, longitudal part of the electric field is E⃗∥ = −∇⃗A0, and
∇i ≡ ∇i = ∂/∂xi. This FW Hamiltonian is particulary suitable for derivation of
the α7 correction to energy levels in heliumlike atom [29]. For other cases it may
be advantageous to utilize the Hamiltonian in slightly different forms by applying
additional transformations.

Having obtained the FW Hamiltonian, we proceed to construct the many-
body Lagrangian density in a similar manner as in full QED, using the first
equality in Eq. (2.2) with H = HF W . Subsequently, we construct the current
operator and rules for interaction vertices. Employing the Feynman formalism,
we derive expressions for diagrams corresponding to the exchange of photons
between particles, each proportional to a specific power of the fine structure
constant α. This process enables the systematic calculation of contributions to
various orders in α within the framework of NRQED.

In the treatment of radiative corrections, for example in our work [30], it
is advantagous to incorporate dominant part of the radiative corrections from
the outset. This is achieved by modifying the Dirac Hamiltonian to include
electromagnetic form factors F1 and F2:

H = α⃗ ·
[︃
p⃗− e F1(∇⃗

2) A⃗
]︃

+ β m+ e F1(∇⃗
2)A0

+ F2(∇⃗
2) e

2m

(︄
i γ⃗ · E⃗ − β

2 Σij Bij

)︄
, (2.12)
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instead of using the Hamiltonian (2.1). Here, Σij = i
2 [γi, γj]. This Hamiltonian

(2.12) is used as the starting point for the analysis, and the subsequent procedures
would follow a similar line as before.

Before proceeding with the evaluation of individual NRQED contributions
to energy levels, let us discuss the high-momentum part of NRQED. This part
arises from the exchange of virtual photons with relativistic momenta k ≈ m,
which consequently impart large momentum also to interacting charged particles
in virtual states. Having large momenta means that their wavelengths are very
short and the overlap of the wavefunctions of interacting particles is essentialy
only when they are in contact. As a result, this contribution is given by a local
Dirac-δ-like interaction.

Splitting of QED into contributions from different momentum scales intro-
duces singularities into the theory that need to be addressed. To handle these
singularities properly, a regulator has to be included in the calculations. The
choice of a specific regularization method is arbitrary, but dimensional regular-
ization has been found to be particularly suitable. The relativistic momentum
contribution serves as a renormalization of the coupling constants for local in-
teractions, removing the singularities from the calculation and ensuring that the
theory remains mathematically well-defined.

The high-momentum contribution can be obtained from the scattering ampli-
tude for the exchange of two and more photons between particles in full QED.
The advantage of dimensional regularization is that, when separating different
momentum scales, one does not split the integration over photon momentum
into several integration regions. The integration is always performed over whole
range of photon momenta k, and the separation is done by rescaling the inte-
gration variable k. For instance, if we are interested in the region k ≈ αm,
we rescale all photon momenta in the expression for the scattering amplitude
as k⃗ → α k⃗, k0 → α k0. The momenta of incoming and outgoing fermions are
always rescaled as p⃗ → α p⃗. After this rescaling, the integrand of the scattering
amplitude is expanded up to a particular order in α, and integration is performed
over all possible photon momenta

∫︁
dkD/(2π)D. To obtain the high-momentum

contribution, we rescale only fermion momenta p⃗ → α p⃗ since photon momen-
tum is of the order k ≈ m. Following the expansion in α and integration, we
get the desired high-momentum contribution. This procedure is demonstrated
in our paper [29] where the high-energy part of order α7 was derived from the
scattering amplitude for the exchange of two photons between electrons. Using
the scattering amplitude from full QED, it is also possible to check the NRQED
contribution from the region of k ≈ mα, as was demonstrated in that paper. It
serves as an important check of the consistency of NRQED method.

2.2 Higher-order effective Hamiltonian
With the help of perturbation theory, we proceed to calculate the Green functions.
We consider the equal-time retarded Green function G, which in the stationary
case is G = G(t − t′), where t and t′ are the common time of the out and the
in electrons, correspondingly. The Fourier transform over the time variable t− t′
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yields the propagator in the energy-coordinate representation,

G(E) = 1
E −H0 − Σ(E) ,

where H0 is the Schrödinger-Coulomb Hamiltonian of an N -electron atom,

H0 =
∑︂

a

p2
a

2ma

+ V, H0|ϕ⟩ = E0|ϕ⟩ . (2.13)

H0 may either include the nucleus as a dynamic particle or it is assumed that the
nucleus is a static source of the Coulomb field. The operator Σ(E) incorporates
various relativistic and QED corrections like the photon exchange correction, the
electron and photon self-energy etc.,

G(E) = 1
E −H0

+ 1
E −H0

Σ(E) 1
E −H0

+ 1
E −H0

Σ(E) 1
E −H0

Σ(E) 1
E −H0

+ . . . . (2.14)

The energy level of a bound state can be interpreted as a pole of G(E) as a func-
tion of E. We now consider the matrix element of G between the nonrelativistic
wave function ϕ that corresponds to this level. This correspondence is always
present because relativistic and QED effects are considered small perturbations
to the system. The matrix element is

⟨ϕ|G(E)|ϕ⟩ = 1
E − E0

+ 1
(E − E0)2 ⟨ϕ|Σ(E)|ϕ⟩

+ 1
(E − E0)2 ⟨ϕ|Σ(E) 1

E −H0
Σ(E)|ϕ⟩ + . . .

= 1
E − E0 − σ(E) , (2.15)

where
σ(E) = ⟨ϕ|Σ(E)|ϕ⟩ + ⟨ϕ|Σ(E) 1

(E −H0)′ Σ(E)|ϕ⟩ + . . . . (2.16)

Here, the prime in (E − H0)′ means that we are excluding the reference state
from the resolvent. The resulting bound-state energy E (i.e. the position of the
pole) is

E = E0 + σ(E0) + σ(E0)
∂σ(E0)
∂E0

+ . . . . (2.17)

In most cases the explicit dependence of Σ on the reference state (through E0) can
be eliminated by means of various commutation identities. The only exception is
the so-called Bethe logarithm and higher-order corrections to it. If we consider
these terms separately then the operator Σ gives an effective Hamiltonian

H = H0 + Σ ≡ H0 +H(4) +H(5) +H(6) +H(7) + . . . (2.18)

from which the corrections to energy levels are calculated. The calculation of
terms H(j) follows from Feynman rules for Lagrangian L, and each term is of the
order αj with H0 ≡ H(2). Derivation of the effective Hamiltonians H(j) is the
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central issue of NRQED method. While the derivation of the leading order con-
tributions is rather simple, the higher-order contributions require collection and
evaluation of significant amount of diagrams. NRQED necessarily involves more
interactions than QED, but the advantage lies in the simplicity of their evalua-
tion. The NRQED method allows for the systematic inclusion of all relativistic
and QED effects order by order.

It is advantageous to use the photon propagator in the Coulomb gauge, as it
allows us to conveniently arrange individual contributions by the order of α to
which they contribute. The photon propagator Gµν(k) in the Coulomb gauge is
given by:

Gµν(k) =

⎧⎪⎪⎨⎪⎪⎩
− 1

k⃗
2 , µ = ν = 0,
−1

k2
0−k⃗

2+iϵ

(︄
δij − kikj

k⃗
2

)︄
, µ = i, ν = j .

(2.19)

We consider separately the contributions due to Coulomb G00 and transverse Gij

photon exchange, as they contribute at different order of α. It follows from the
Feynman formalism that the typical one-photon exchange contribution between
electrons a and b (or similarly between electron and nucleus) is

⟨ϕ|Σ(E0)|ϕ⟩ = e2
∫︂ d4k

(2π)4 i
Gµν(k)

⟨︄
ϕ

⃓⃓⃓⃓
⃓jµ

a (k)eik⃗·r⃗a
1

E0 −H0 − k0 + iϵ
jν

b (−k)e−ik⃗·r⃗b

+ jµ
b (k)eik⃗·r⃗b

1
E0 −H0 − k0 + iϵ

jν
a(−k)e−ik⃗·r⃗a

⃓⃓⃓⃓
⃓ϕ
⟩︄
, (2.20)

where ϕ is an eigenstate of H0, and jµ
a (k) is NRQED electromagnetic current

operator of the particle a, whose exact form is obtained from the NRQED La-
grangian density derived from FW Hamiltonian (2.11). The current operator
is derived similarly to full QED, as the coefficient multiplying the polarization
vector ϵµ in the annihilation part of the electromagnetic potential Aµ,

Aµ(r⃗, t) ∼ ϵµ
λ e

ik⃗·r⃗−ik0t âλ + H.c. (2.21)

Since the FW Hamiltonian in Eq. (2.11) and, consequently, also the Lagrangian
are in the form of nonrelativistic expansion, the same also holds for the current
operator jµ

a (k). The first terms of the expansion of j0 component from Eq. (2.11)
(i.e. terms involving coupling to A0) are

j0(k⃗) = 1 + i

4m2 σ
ij ki pj − 1

8m2 k⃗
2

+ . . . , (2.22)

and for the j⃗ component (i.e. terms involving coupling to A⃗) are

ji(k⃗) = pi

m
+ i

2m σij kj + . . . . (2.23)

Inserting different terms of these expansions into interaction vertex will lead to
contributions of different order in α. Some contributions of a particular order in α
can be calculated in the so-called nonretardation approximation. In such a case,
one sets k0 = 0 in the photon propagator Gµν(k) and in j(k) since these terms
would lead to corrections of a higher order in α. Thus, the only dependence on
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k0 is, in this case, left in the fermion propagator. To resolve it, symmetrization
k0 ↔ −k0 is used in order to make the integral finite. The integral is then

1
2

∫︂ dk0

2 π i

[︄
1

E0 −H0 − k0 + iϵ
+ 1
E0 −H0 + k0 + iϵ

]︄
= −1

2 . (2.24)

Thus, the one-photon exchange contribution in nonretardation approximation is
then

⟨ϕ|Σ(E0)|ϕ⟩ = − e2
∫︂ d3k

(2π)3Gµν(k0 = 0, k⃗)⟨ϕ|jµ
a (k⃗)eik⃗·(r⃗a−r⃗b) jµ

b (−k⃗)|ϕ⟩ . (2.25)

Two comments are in place now. Firstly, in the integration with respect to k0

we assumed that H0 − E0 is positive, which holds when ϕ is the ground state.
For excited states, the integration contour is deformed in such a way that all the
poles from the electron propagator lie on one side, so it is not strictly speaking
the Feynman contour. The result for k0 integration for excited states is the same
however, leading to Eq. (2.25). Secondly, it is possible to generalize the expression
in Eq. (2.20) to D = d + 1 dimensions instead of D = 4. This is convenient
when deriving higher-order effective Hamiltonians H(j) for j ≥ 5 which contain
singular parts that need to be regularized. In dimensional regularization, all the
expressions are transformed from d = 3 spatial dimensions into d-dimensional
form. After canceling all the singularities, the final expression is transformed
back into d = 3, and numerical evaluation is then performed.

It is easy to see that the leading order contribution from G00 in Eq. (2.25) is
the Coulomb interaction. However, this is already part of the Hamiltonian H0
and thus we have to exclude it from the nonrelativistic expansion. The next-
order terms coming from j0 and j⃗ lead to the so-called Breit-Pauli Hamiltonian
H(4) and represent the leading relativistic corrections. In Hamiltonian H(5), the
leading QED corrections start to contribute. For that, one has to include also the
two-photon exchange between particles, and retardation correction to one-photon
exchange. In our works [25, 29, 30, 31, 32, 33, 34, 35, 36] we derived higher-order
QED contributions of order α6 and α7 which will be presented in the following
Chapters.

2.3 Perturbation expansion of energy levels
Once the NRQED effective Hamiltonians are acquired, the energy levels can be
expressed as a power series in powers of the fine structure constant α,

E = E(2) + E(4) + E(5) + E(6) + E(7) + . . . , (2.26)

where E0 ≡ E(2) and E(j) is of the order αj. Every term in the expansion (2.26)
is obtained as an expectation value of the corresponding effective Hamiltonian
with the nonrelativistic wave function ϕ, which is the eigenfunction of the non-
relativistic Hamiltonian H0 with energy E0. The leading relativistic correction is
the expectation value of the Breit-Pauli Hamiltonian,

E(4) = ⟨ϕ|H(4)|ϕ⟩ . (2.27)
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The next-order contribution is a sum of the expectation value of the effective
Hamiltonian H(5) and the low-energy contribution E

(5)
L ,

E(5) = ⟨ϕ|H(5)|ϕ⟩ + E
(5)
L , (2.28)

where E(5)
L is given by the Bethe logarithm [15],

E
(5)
L = − 2α

3 πma mb

⟨ϕ|P⃗ (H0 − E0) ln
[︄
H0 − E0

α2 µ

]︄
P⃗ |ϕ⟩ , (2.29)

where ma and mb are masses of particles a and b, µ is the reduced mass, and
P⃗ = ∑︁

p⃗i. The series in Eq. (2.26) is not analytical in α, and starting from E(5),
the individual contributions may include powers of lnα.

Higher-order QED correction E(6) is again sum of two parts, namely

E(6) = ⟨ϕ|H(6)|ϕ⟩ + ⟨ϕ|H(4) 1
(E0 −H0)′ H

(4)|ϕ⟩ . (2.30)

Both terms in the latter equation separately contain singularities. In order to
get finite contribution to the energy level, the singularities have to be isolated by
a means of regularization. When the singular parts of both terms are combined
together, they algebraically cancel each other, and the resulting expression is
finite.

Finally, the contribution E(7) can be written as

E(7) = ⟨ϕ|H(7)|ϕ⟩ + 2 ⟨ϕ|H(4) 1
(E0 −H0)′ H

(5)|ϕ⟩ + E
(7)
L , (2.31)

where E(7)
L presents relativistic corrections to Bethe logarithm.

It is possible to perform one more perturbation expansion of every term E(i),
namely, one may expand it in powers of the electron to nucleus mass ratio,

E(i) = E(i,0) + m

M
E(i,1) +

(︄
m

M

)︄2

E(i,2) + . . . . (2.32)

The leading order corresponds to the nonrecoil approximation when the nucleus is
infinitely heavy, and the following terms correspond to recoil corrections. In our
papers [25, 29, 30, 31, 32, 34] we calculated the energy levels of helium atom up to
the third order recoil correction E(2,3), the second order recoil correction E(4,2),
the leading order recoil corrections E(5,1) and E(6,1), and nonrecoil correction
E(7,0). For two-body systems such as hydrogenlike atoms or positronium atom,
we obtained general result for states with total angular momentum l > 0 that is
valid for arbitrary mass ratio of the constituent particles up to the order α6 [36].

In the following Chapters we will present the results of our calculations for
two-body systems (and in particular for hydrogenlike atoms), and for heliumlike
atoms.
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3. Hydrogenlike atoms
For two-body systems such as hydrogen, muonic hydrogen, muonium, or positro-
nium, theoretical calculations provide the most accurate QED predictions [15].
The hydrogen atom, being the simplest atomic system, represents an ideal testing
ground for the boundaries of validity of QED. One of the important tests is com-
parison of the Lamb shift in ordinary hydrogen and in muonic hydrogen, where
the electron is replaced by the muon. In both of these systems the comparison
of theory with experimental data can be used for determination of the proton
charge radius. Proton is not a pointlike particle but has internal structure and
finite charge radius, which manifests in the leading order as a correction to the
Coulomb potential of the nucleus. This, in turn, results in a shift of atomic energy
levels, which depends on the value of the proton charge radius. This shift, and
therefore also the value of the charge radius, can be determined from the differ-
ence between theoretical prediction for a pointlike nucleus and experimental data
for transitions between different levels. Interestingly, results from ordinary and
muonic hydrogen significantly disagreed with each other, which became known
in the literature as the proton charge radius puzzle [38, 39, 40], and attracted
interest of physics community since such a discrepancy might have been a signal
of new physics. Subsequent measurements have brought the two results closer
into agreement by adjusting the hydrogenic result towards the muonic hydrogen
value [41, 42]. The comparison of theory and experiment for hydrogen also allows
for the determination of the Rydberg constant. The uncertainty of the Rydberg
constant is currently given by the theory of hydrogen Lamb shift and makes it
one of the most accurately determined fundamental constants.

3.1 Effective Hamiltonian of two-body system
Here, we will present our results for the effective NRQED Hamiltonians and
corrections to energy levels up to the order α6 for two-body systems with arbitrary
masses of the constituents [36]. These results are valid for both spinless and spin-
1/2 particles, with the restriction on angular momenta l ≥ 1.

The nonrelativistic Hamiltonian H0 for two particles with charges e1, e2, and
masses m1, m2, in the center of mass frame (p⃗ = p⃗1 = −p⃗2), is

H0 = p⃗ 2

2µ + e1 e2

4 π
1
r
, (3.1)

where µ = m1m2/(m1 +m2) is the reduced mass, and r = |r⃗| = |r⃗1 − r⃗2|. Setting
e1 = −e, e2 = Z e, the nonrelativistic energy E(2) in the state with principal
quantum number n is

E(2) = E0 = −(Z α)2 µ

2n2 . (3.2)

All the higher order corrections to energy are calculated using the expectation
values with eigenfunctions of H0.
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3.1.1 Leading relativistic and QED corrections
The next-order contribution represents the leading relativistic corrections, which
are of the order α4. It can be obtained from the Feynman diagram with single
transverse Gij(k) or Coulomb G00(k) photon exchange, and is given by the Breit-
Pauli Hamiltonian [36, 43]

H(4) = − p⃗ 4

8m3
1

− p⃗ 4

8m3
2

+ e1 e2

4 π

{︄
1

2m1 m2
pi

(︄
δij

r
+ ri rj

r3

)︄
pj + g1 g2

4m1 m2

[︄
si

1 s
j
2

r3

×
(︄
δij − 3 r

i rj

r2

)︄
− 8π

3 s⃗1 · s⃗2 δ
3(r⃗)

]︄
− r⃗ × p⃗

2 r3 ·
[︄

g1

m1 m2
s⃗1 + g2

m1 m2
s⃗2

+ (g2 − 1)
m2

2
s⃗2 + (g1 − 1)

m2
1

s⃗1

]︄}︄
− e1e2

6
(︂⟨︂
r2

E

⟩︂
1

+
⟨︂
r2

E

⟩︂
2

)︂
δ3(r⃗) . (3.3)

Here, r⃗ = r⃗1 − r⃗2, s⃗a is the spin of particle a, ga is the g-factor related with
magnetic moment anomaly by ga = 2 (1 + κa), and ⟨r2

E⟩a is the square of the
charge radius. For a spinless particle it is ⟨r2

E⟩ = g = 0. The Hamiltonian (3.3)
does not encompass contributions due to potential annihilation effects, as would
be present in positronium, nor does it consider strong interaction effects inherent
in hadronic particles.

From the Hamiltonian in Eq. (3.3) one obtains E(4) by calculating the expec-
tation value with the nonrelativistic eigenfunction of H0. The result for a state
with the principal quantum number n and the angular momentum l is

E(4) =µ3(Zα)4
{︄

1
8n4

(︄
3
µ2 − 1

m1 m2

)︄
− 1
µ2(2l + 1)n3 + 2 δl0

3n3

(︂⟨︂
r2

E

⟩︂
1

+
⟨︂
r2

E

⟩︂
2

)︂
+ δl0

m1 m2 n3 + 2
l(l + 1)(2l + 1)n3

[︄
⟨L⃗ · s⃗1⟩

(︄
1 + 2κ1

2m2
1

+ 1 + κ1

m1m2

)︄

+ ⟨L⃗ · s⃗2⟩
(︄

1 + 2κ2

2m2
2

+ 1 + κ2

m1m2

)︄
− 6(1 + κ1)(1 + κ2)
m1m2 (2 l − 1)(2 l + 3)⟨si

1s
j
2(LiLj)(2)⟩

]︄

+ 8 δl0

3m1m2 n3 (1 + κ1)(1 + κ2) ⟨s⃗1 · s⃗2⟩
}︄
. (3.4)

In the last equation we have introduced a symmetric traceless tensor (LiLj)(2),
which is defined as

(LiLj)(2) = 1
2
(︂
LiLj + LjLi) − δij

3 L⃗
2
. (3.5)

Expression (3.4) is valid for arbitrary spin of both particles, pointlike or with
finite size.

For the next-order contribution we restrict the investigation only to non-S-
states. This enables us to omit local δ-like terms which contribute only for the
states with l = 0. QED effects for l > 0 are partially accounted for in the g-
factor, which is present in the Breit-Pauli Hamiltonian H(4). Additional QED
corrections are represented as E(5), and for l > 0 they have the well known form
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[45]

E(5) = − 7
3π

(Zα)5µ3

m1m2

1
l(l + 1)(2l + 1)n3

− 4
3π

(︄
1
m1

+ Z

m2

)︄2
α(Zα)4µ3

n3 ln[k0(n, l)] , (3.6)

where ln[k0(n, l)] is the Bethe logarithm

ln[k0(n, l)] ≡ n3

2µ3(Zα)4

⟨︄
ϕ

⃓⃓⃓⃓
⃓p⃗ (H0 − E0) ln

[︄
2(H0 − E0)
µ(Zα)2

]︄
p⃗

⃓⃓⃓⃓
⃓ϕ
⟩︄
. (3.7)

Bethe logarithm needs to be evaluated numerically, depends on the energy of the
reference state, and its values for various states have been tabulated.

3.1.2 Higher-order QED correction
Now we turn to the QED contribution of the order α6, given by Eq. (2.30). For
the case of two pointlike spin-1/2 particles with angular momentum l = 0 and
arbitrary masses the calculation was performed in [46]. Here, we present our
results for states with angular momentum l ≥ 1. For these states, there is a
notable simplification in the calculations. The singularities present in both terms
of Eq. (2.30) are solely proportional to a local δ-like interaction, which is nonzero
only for S states. Consequently, by confining ourselves to states with higher
angular momentum, we can eliminate all problematic terms and circumvent the
need for any form of regularization. The general results valid for arbitrary masses
and for both pointlike and hadronic particles can be used for excited states of
exotic atoms, such as antiproton bound to helium nucleus. For highly excited
states of these atoms the contact interaction, e.g. from strong force, is negligi-
ble. If corresponding measurements are available, this presents an opportunity
for the precise determination of fundamental constants or tests of the existence
of unknown long-range interactions, similarly to precision tests performed with
antiprotonic helium [47, 48, 49], but much more accurate.

In our calculation we neglected (electronic) vacuum polarization, which can be
included separately. The significance of this contribution depends on particular
n, l, and constituent masses. In our work [36] we derived the complete effective
operator H(6) for spinless or spin-1/2 particles for states with l > 1, and in [37]
we extended the calculation also to states with l = 1. The expression for the
operator H(6) is lengthy and can be expressed as a sum of several terms,

H(6) =
∑︂

i=0...9
δHi , (3.8)

where the individual contributions come from various Feynman diagrams corre-
sponding to the exchange of Coulomb or transverse photons between particles,
and are presented in [36, 37].

For the second-order term in Eq. (2.30), we use the Breit Hamiltonian from
Eq. (3.3) with the contact terms omitted. Evaluating the expectation values
using hydrogenic wave functions and combining the second-order contribution
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with the expectation value of H(6), we obtain the complete result for E(6). It can
be expressed in the form

E(6) = (Zα)6
[︄
A+B ⟨L⃗ · s⃗1⟩ + C ⟨L⃗ · s⃗2⟩ +D ⟨s⃗1 · s⃗2⟩ + F ⟨(LiLj)(2)si

1s
j
2⟩
]︄
,

(3.9)

where the individual coefficients A,B,C,D, F are presented in [36, 37]. The
general formulas for arbitrary masses are quite complicated, but the special cases
yield more compact results. For instance, in the case of infinitely heavy nucleus,
the result for E(6) reduces to the well-known result from the Dirac equation if the
orbiting particle has spin-1/2 [36]. In the case of a spinless orbiting particle, the
result concurs with the one derived from the Klein-Gordon equation. The first-
order recoil correction again agrees with the one in the literature for spin-1/2
particle, while for a spinless particle, the recoil correction has not been calculated
previously.

The energy (3.9) can also be checked against the known result for positronium
atom by setting m1 = m2, Z = 1, κ1 = κ2 = 0, and both particles are consid-
ered pointlike. Our result aligns with a prior calculation in Ref. [50] for l > 1.
However, we have found that there is a mistake in all the previous calculations
in the literature for l = 1 state [37]. In particular, there is a discrepancy for
orthopositronium j = 0 state, arising from an incorrect calculation of contact
terms. In our work [37], we provide a corrected theoretical result for positronium
that rectifies this mistake. It is important to note that the numerical impact of
this correction is negligible and does not significantly affect the comparison with
experimental data, which is inherently less accurate.

In our publication [37], we employed the general formulas to derive the fine
structure of 2P states in light muonic atoms, specifically focusing on the case of
muonic helium ions. Previous QED calculations for the 2P fine structure of µHe
ions were conducted in Refs. [51, 52], neglecting higher-order terms in the muon-
to-nucleus mass ratio. Our calculation incorporates the complete dependence on
the mass ratio, and the resulting expression for µ3He+ is

Efs(our work) = 144.785(3) meV , (3.10)
Efs(theo) = 144.785(5) meV [51] , (3.11)
Efs(exp) = 144.763(114) meV [53] , (3.12)

and for µ4He+ it is

Efs(our work) = 146.182(3) meV , (3.13)
Efs(theo) = 146.181(5) meV [52] , (3.14)
Efs(exp) = 146.047(96) meV [54] , (3.15)

The result in Eq. (3.9) is the most general formula for two-body systems with
l ≥ 1. Its utility extends beyond conventional systems like hydrogenlike ions;
it can also be applied to more exotic atoms such as pionic helium, hydrogenlike
helium, or muonic and antiprotonic atoms. This highlights that precise measure-
ments of energy levels can serve not only for determining fundamental constants
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but also for probing unknown interactions in a range not accessible in normal
atoms, namely, from 1 up to 100 MeV. Although there are no definite plans to
study rotational states of, for example, protonium or p̄ α, the availability of a
high-precision theoretical result is crucial for planning the corresponding mea-
surements.

As a final note let us remark that for hydrogenlike atoms we presented the
summary of contributions to the Lamb shift in our review paper [5].

3.2 Hyperfine structure of hydrogenlike ions
The interaction between the magnetic moment of the nucleus and that of the
electron results in the splitting of atomic energy levels, a phenomenon known
as hyperfine splitting (hfs). Measurements of the hfs in atoms have achieved
exceptional accuracy, with the ground state of hydrogen experimentally known
up to 12 digits [55, 56]. This makes hfs an excellent candidate for high precision
tests of bound-state QED, and for searches of physics beyond the Standard Model
of fundamental interactions [57].

The hfs in atoms and ions is determined not only by the value of nuclear
magnetic moment but also by the distribution of the charge and the magnetic
moment over the nucleus, as well as the nuclear vector polarizability. At the
present time, these effects cannot be accurately calculated and thus present the
main source of uncertainty in theoretical calculations.

The nuclear structure effects are usually divided into the elastic and inelastic
parts. The elastic part is expressed in terms of charge and magnetic form factors,
whereas the dominant inelastic effect is nuclear polarizability. It is well known
that the dominant hfs nuclear effect is of the elastic kind, and is proportional to
the so-called Zemach radius [58],

rZ =
∫︂
d3r1

∫︂
d3r2 ρE(r⃗1) ρM(r⃗2) |r⃗1 − r⃗2| , (3.16)

which is the convolution of electric and magnetic form factors ρE and ρM .
The nuclear polarizability is largely unknown due to the complexity of its

theoretical description. The effect is most pronounced for muonic deuterium hfs
where it is supposed to be as large as the elastic effect. However, theoretical
predictions are in conflict with experiment [11, 59]. For electronic atoms, the
nuclear polarizability is less significant than for muonic atoms but nevertheless
still not completely negligible. Even for hydrogen the inelastic effects were shown
to yield about 5% of the elastic effect contribution [60].

In the absence of theoretical calculations, we determine the nuclear polariz-
ability from experimental hfs splitting [61]. We use the fact that all relativistic
and QED effects for point nucleus can be calculated with high accuracy, and that
the elastic form factors of the nucleus can be extracted from scattering experi-
ments. Instead of Zemach radius from Eq. (3.16), we introduce effective Zemach
radius ˜︁rZ , which incorporates inelastic nuclear contributions and can be accu-
rately determined from high-precision experiments for hfs splitting. On the other
hand, the standard elastic Zemach radius rZ was determined from the electron-
scattering data by Sick [62]. The difference ˜︁rZ − rZ then gives us the result
for nuclear polarizability correction, which we are otherwise unable to obtain by
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direct calculation. From the comparison of the nucleur structure obtained for
different isotopes or ions, we may test the consistency of our calculations and
experimental measurements.

The leading hfs splitting of 1S state in hydrogenlike atom is given by the
so-called Fermi splitting,

EF = 8
3(Zα)4 µ3

mM
(1 + κ) , (3.17)

where Z and M are the nuclear charge number and the mass, respectively, µ is
the reduced mass of the atom, and κ = (g−2)/2 is the nuclear magnetic moment
anomaly, with the natural nuclear g-factor defined as

µ⃗M = Z e

2M g I⃗ . (3.18)

Here, µ⃗M and I⃗ are the magnetic moment and the spin of the nucleus, respectively.
The complete hfs splitting can be conveniently expressed as

Ehfs = EF (1 + δ) , (3.19)

where δ represents the correction to the Fermi splitting due to relativistic, QED,
and nuclear effects. Within the approach of the NRQED, δ is represented as an
expansion in terms of the fine-structure constant α,

δ = κe + δ(2) + δ(3) + δ(4) + δ(1)
nuc + δ(1)

rec + δ(2)
nuc + δ(2)

rec , (3.20)

where κe is the magnetic moment anomaly of the free electron, κe = α/(2π) +
O(α2), and δ(i), δ(i)

nuc, and δ(i)
rec are the QED, nuclear, and recoil corrections of order

αi, respectively. The overview of individual parts of the δ coefficient in Eq. (3.20)
is presented in our work [61]. The advantage of this representation is that the δ
coefficients in different atomic states are strongly correlated. Therefore, one can
employ an experimental hfs value measured for one state in order to obtain an
improved theoretical prediction for another state.

The inelastic contribution emerges already in the term δ(1)
nuc, which is a sum

of the elastic contribution proportional to the Zemach radius rZ , and the nuclear
polarizability contribution. We now define the effective Zemach radius as

δ(1)
nuc = − 2Z αµ ˜︁rZ , (3.21)

thus formally encompassing both elastic and inelastic parts. In our work [61]
we determined δ(1)

nuc for hydrogenlike ion 3He+ by taking the difference of the
experimental hfs value from Ref. [63] and the theoretical prediction without δ(1)

nuc.
Our result for the effective Zemach radius is

˜︁rZ = 2.600(8) fm , (3.22)

which is in agreement with but more accurate than the previous determination

˜︁rZ = 2.608(24) fm [63] . (3.23)

The difference of the effective Zemach radius and the elastic Zemach radius ob-
tained in Ref. [62] from the electron-scattering data yields ˜︁rZ −rZ = 0.072(18) fm.
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We interpret this difference as the contribution of the nuclear polarizability. The
nuclear polarizability effect in 3He+ is thus surprisinly small, only about 3% of
the elastic effect. This is smaller than in the hydrogen where the inelastic hfs
contribution is about 5% [60]. This is unexpected since helion, being a composite
nucleus, is relatively weekly bound system as compared to proton. This can be
illustrated by comparing the proton mean excitation energy of 400 MeV (i.e. the
average energy needed to excite the proton from its ground state within an atomic
nucleus) with the proton separation energy for helion nucleus, which is 5 MeV.
The nuclear polarizability is expected to be roughly proportional to the inverse
of these energies. Indeed, for the Lamb shift the corresponding energy shifts are
−0.109(12) kHz and −55(5.5) kHz, for hydrogen and 3He+, respectively. How-
ever, for the hfs the expected relation between hydrogen and He+ fails entirely.
At the present time we do not have any explanation why for helion the inelastic
hfs nuclear contribution is smaller than for proton.

As previously mentioned, we can use the nuclear structure effects determined
for 3He+ ion to enhance the theoretical prediction of hfs in 3He atom. With high
accuracy, the nuclear structure contribution expressed using δ coefficients is the
same for both 3He+ and 3He. Thus, by using the value extracted from 3He+, we
eliminate the dominant uncertainty in 3He hfs. In Chapter 4, we will demonstrate
that this approach leads to a significant improvement of the theoretical result. On
the other hand, using the nuclear structure contribution extracted from heliumlike
Li+ we obtain theoretical prediction for hydrogenlike Li2+. Specifically, we utilize
the results for nuclear structure extracted from Li+ measurements to determine
the hyperfine structure of Li2+ isotopes using the known hydrogenic theory for a
pointlike nucleus [35],

Ehfs(6Li2+) = 8.479 190 (21) GHz , (3.24)
Ehfs(7Li2+) = 29.855 013 (86) GHz . (3.25)

Details about evaluation of the nuclear structure of heliumlike Li+ are presented in
the next Chapter. So far, there is no experimental data for Li2+. It is remarkable
that the uncertainty of our prediction for the Li2+ hfs comes exclusively from the
uncertainty of the Li+ hfs measurement.

24



4. Heliumlike atoms
Heliumlike atoms represent the simplest few-electron systems. Unlike hydrogenic
systems, heliumlike atoms lack analytical solutions for nonrelativistic wave func-
tions, necessitating the use of numerical methods to determine energy levels.
However, by variational optimization of the wave function, we can obtain the
expectation values of required operators with arbitrary precision [64]. The ac-
curacy of theoretical predictions for energy levels is, in principle, restricted only
by the order of the NRQED Hamiltonians considered. This means that not only
hydrogenlike but also heliumlike atoms can be used for tests of QED. For in-
stance, the high-precision experimental data can be used for setting contraints
on spin-dependent forces between electrons that go beyond the Standard Model
of fundamental interactions [65]. Another application is the determination of
the nuclear charge radius and the comparison with results from muonic atoms
and electron scattering. This becomes significant in the context of the proton
radius puzzle in hydrogen. The first step towards such a comparison is the re-
cent muonic helium experiment [66], which determined the charge radius of the
helium-4 nucleus with a 0.05% precision. However, to extract the value of the
charge radius with sufficient accuracy, theoretical calculations within the NRQED
framework need to include corrections to energy up to the order α7, i.e. up to the
contribution in Eq. (2.31). For helium, it is also necessary to include the finite
nuclear mass through the series (2.32), i.e. include recoil corrections proportional
to powers of electron to nucleus mass ratio m/M .

As with hydrogenlike atoms, we present the contribution to energy levels and
hyperfine splitting for heliumlike atoms. In our works [31, 32] we calculated the
recoil correction to energy levels of the order α6 m/M for singlet and triplet states
of helium. With these results, we can determine the nuclear charge radii differ-
ences between two isotopes of helium [25]. To obtain the absolute value of the
helium charge radius, we calculated the nonrecoil contribution of the order α7

in series of papers [7, 29, 30, 34] for helium triplet states. While our results are
in perfect agreement with experimental data for 23S − 23P transition, the ion-
ization energies of individual states significantly disagree with experiment. This
discrepancy has been confirmed in recent experimental measurements [12, 13].
The source of this tension between theory and experiment is currently unknown.
However, the agreement of our theoretical predictions with experimental results
for the 23S − 23P transition extends to heliumlike ions as well [67, 68].

For hyperfine splitting in 3He atoms, we conducted the calculation up to the
order α7 [9]. Utilizing the results for nuclear structure obtained from hydrogenlike
3He+, we achieved theoretical predictions that are in perfect agreement with ex-
perimental data. Additionally, we extended the calculation to 6,7Li+ to determine
nuclear structure effects and test the consistency of hyperfine structure results
between 6,7Li+ ion and 6,7Li atom [35]. We confirmed that the nuclear structure
obtained from the comparison of theory and experiment in these systems is in
very good agreement.
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4.1 Numerical calculations for two-electron sys-
tems

In two-electron systems, we are unable to solve the Schrödinger equation analyt-
ically. Therefore, we resort to numerical methods to obtain the nonrelativistic
wave function and energy. To do so, we follow the approach of Korobov [64] and
expand the spatial part of the helium wave function in a basis set of exponential
functions of the form

ϕi(r1, r2, r12) = e−αir1−βir2−δir12 ± (r1 ↔ r2) , (4.1)

and
ϕ⃗i(r1, r2, r12) = r⃗1 e

−αir1−βir2−δir12 ± (r1 ↔ r2) , (4.2)
for the S and P states, respectively. Nonlinear parameters αi, βi and δi are
obtained in the process of the basis optimization. The advantage of this basis set
lies in its ability to provide a closed-form expression for the master integral

1
16π2

∫︂
d3r1

∫︂
d3r2

e−αr1−βr2−δr12

r1 r2 r12
= 1

(α + β)(β + γ)(γ + α) , (4.3)

and the results converge rapidly with an increase in the size of the basis set. For
example, considering the ground state of helium, we obtain the nonrelativistic
energy

E0(1S) = −2.903 724 377 , (4.4)
by employing 300 basis functions. In the case of a basis set comprising 1500
functions, we would attain the 17-digit accuracy for the nonrelativistic energy
E0, which is sufficient for the current experimental accuracy.

For relativistic and QED corrections, the expectation values of the first-order
operators ⟨H(j)⟩ are simplified by applying various operator identities and the
Schrödinger equation. This simplification leads to a combination of expectation
values of basic irreducible operators Qi,

Q1 = 4πδ3(r1) , (4.5)
Q2 = 4πδ3(r12) , (4.6)
Q3 = 4πδ3(r1)/r2 , (4.7)
. . .

where the full list of Qi operators with i = 1 . . . 64 is presented in [7]. Review of
methods for numerical calculations with exponential basis is summarized in our
paper [74], along with the details for numerical evaluation of the second-order
contributions and the Bethe logarithm.

4.2 Energy levels
The nonrelativistic energy for helium atom was calculated in various works, see
e.g. [64]. Derivation of the leading relativistic and QED effects for helium is
presented e.g. in [24, 69]. The higher-order QED corrections of order α6 were
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calculated for helium singlet and triplet states in [24, 70]. The Breit Hamiltonian
H(4) which enters the α6 contribution through the second-order term (i.e. the
second term in Eq. (2.30)) needs to be used in dimensionally-regularized form
[30],

H(4) = − π α

m2 δ
d(r) +

∑︂
a=1,2

{︄
− p4

a

8m3 + π Zα

2m2 δ
d(ra)

}︄
− α

2m2 p
i
1

[︄
δij

r
+ ri rj

r3

]︄
ϵ

pj
2

− π α

dm2 σ
ij
1 σ

ij
2 δ

d(r) +
∑︂

a=1,2

1
4m2 σ

ij
a

(︂
∇i

aV
)︂
pj

a + 1
4m2 σ

ik
1 σjk

2

×
(︄

∇i ∇j − δij

d
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)︄ [︃

α

r

]︃
ϵ
− 1

2m2

(︄
σij

1 ∇i
[︃
α

r

]︃
ϵ
pj

2 − σij
2 ∇i

[︃
α

r

]︃
ϵ
pj

1

)︄
,

(4.8)

where d = 3 − 2ϵ is the dimension of the space, and [x]ϵ stands for the notation
for d-dimensional form of the operator x. For instance, Coulomb potential in
d-dimensional form is given by

V (r) =
∫︂ ddk

(2π)d

4π
k2 e

ik⃗·r⃗ = πϵ−1/2 Γ(1/2 − ϵ) r2ϵ−1 ≡
[︄

1
r

]︄
ϵ

. (4.9)

The effective Hamiltonian H(6) is also expressed in d-dimensional form. When
both contributions in Eq. (2.30) are combined, all the singular parts cancel each
other. Consequently, the nonrecoil contribution E(6,0), for which the mass M of
the nucleus is infinitely heavy, is finite.

In papers [71, 72], we calculated energy levels and fine structure splitting for
nD states of helium with n = 3 . . . 6, utilizing the existing theory and incor-
porating the nonrecoil contribution E(6,0). We found out that the nonradiative
contribution of the order α6, which had been previously omitted for D states,
is more significant and of opposite sign than the radiative contribution. This
leads to 10σ difference from previous theoretical results [73]. This was a surpris-
ing result since, typically, radiative corrections are much more significant than
nonradiative contributions. In our work [33] we extended the calculation of the
nonrecoil contribution E(6,0) to arbitrary light atoms with N electrons.

Finally, for S and P states, it is necessary to include also the recoil correction
E(6,1) and nonrecoil correction E(7,0) to obtain a sufficiently accurate theoretical
prediction and extract the value of the nuclear charge radius from the comparison
with experiment. In the following we will present the results of our derivation of
these corrections.

4.2.1 Contribution of the order α6m/M

The leading recoil correction E(6,1) is smaller by a factor of m/M compared to
the contribution E(6,0) and, in general, can be expressed as

E(6,1) = δM⟨ϕ|H(4) 1
(E0 −H0)′ H

(4)|ϕ⟩ + δM⟨H(6)⟩ + 2 ⟨ϕ|H(4)
M

1
(E0 −H0)′ H

(4)|ϕ⟩

+ ⟨H(6)
M ⟩ . (4.10)
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Here, δM⟨x⟩ represents the perturbation of the expectation value of the opera-
tor x by the nuclear kinetic energy P⃗ 2

/2M in the wave function, nonrelativistic
Hamiltonian and nonrelativistic energy. Furthermore, H(4)

M and H
(6)
M are addi-

tional recoil operators of the order α4 and α6, originating from the interaction
between the nucleus and electrons. Their explicit form for singlet and triplet
states of helium is presented in our papers [31, 32].

The second-order contributions in Eq. (4.10) contain divergencies coming from
the summation over the intermediate states. They arise when operators on the
left and on the right of the resolvent 1/(E0 −H0)′ are sufficiently singular, so that
their first-order matrix elements are finite but the second-order matrix elements
diverge. Example of such a operator is the Dirac δ-function. The divergences
become more tractable if one moves them to first-order matrix elements. This
can be done by expressing the corresponding operator as an anticommutator of
Hamiltonian H0 with a function of Coulomb potentials, plus some more regular
operator. In particular, we write the Breit Hamiltonian as

H(4) = {H0 − E0, Q} +H
(4)
R , (4.11)

where H(4)
R is regular operator whose second-order matrix element is finite, and

Q = α

[︄
Z

r1
+ Z

r2

]︄
ϵ

+ β

[︄
1
r

]︄
ϵ

, (4.12)

where α, β are some coefficients. The corresponding second-order expression with
H(4) is thus rewritten as

⟨ϕ|H(4) 1
(E0 −H0)′ H

(4)|ϕ⟩ = ⟨ϕ|H(4)
R

1
(E0 −H0)′ H

(4)
R |ϕ⟩ + ⟨Q (H0 − E0)Q⟩

+ 2 ⟨H(4)⟩ ⟨Q⟩ − ⟨{H(4), Q}⟩ . (4.13)

The singularities, which are proportional to ϵ−1, are thus transferred to the first-
order terms, where they can be algebraically canceled out by other first-order
contributions. Similar treatment is used also for the third term in Eq. (4.10).
After this is done, we set d = 3 in the final formulas.

We present results for the so-called centroid energies, which are defined as the
average over all fine and hyperfine energy sublevels,

E(22S+1L) =
∑︁

J,F (2F + 1)E(22S+1LJ,F )
(2 I + 1) (2S + 1) (2L+ 1) , (4.14)

where 2S+1L denotes the state with the angular momentum L and the spin S.
The results for the α6 leading recoil correction E(6,1) for singlet and triplet states
of 4He derived in our works [31, 32] are

E(6,1)(11S) = − 347.79 kHz , (4.15)
E(6,1)(21S) = − 21.56 kHz , (4.16)
E(6,1)(21P ) = − 2.82 kHz , (4.17)
E(6,1)(23S) = − 29.91 kHz , (4.18)
E(6,1)(23P ) = − 1.11 kHz . (4.19)
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We also calculated higher-order recoil corrections E(2,2), E(2,3), and E(4,2) for
both singlet and triplet states, as their inclusion is necessary in our level of
precision [31, 32]. With these corrections taken into account, it is possible to
obtain theoretical prediction for the 3He-4He isotope shift of transitions 23S−23P
and 23S−21S, for which accurate experimental data exists. This, in turn, enables
us to extract the value of nuclear charge radii difference δr2 ≡ r2(3He) − r2(4He)
from the comparison with experiment, as the difference of theoretical calculation
and experimental data is [25]

δE = C δr2 , (4.20)

with C being the coefficient which is calculated from theory. For isotope shift,
the next order correction to energy, i.e. the correction E(7,0), is the same for both
isotopes and thus canceled out. Only the recoil correction E(7,1) would contribute.
The theory is then sufficient to obtain the nuclear charge radii difference with
uncertainty 1% or better. The results obtained by comparing our calculation
with various experiments are

δr2(23S − 21S)[75] = 1.027 (11) fm2 (4.21)
δr2(23S − 23P )[76] = 1.069 (3) fm2 , (4.22)
δr2(23S − 23P )[77] = 1.061 (3) fm2 . (4.23)

Surprisingly, contradictory results have been obtained between the determination
of radii difference using the results from 23S−23P transition and from 23S−21S
transition. Obviously, the nuclear charge radius has to be the same, provided
that no new physics is involved. Numerically dominating part of theoretical
calculations was checked against independent calculations of Drake and coworkers
[73], and the difference in calculations cannot explain the 4σ discrepancy between
the results for δr2. The unexplained discrepancy thus calls for the verification of
the experimental results. Recently, there was a new measurement of the 23S−21S
transition in 3He [78]. This changes the result for δr2 obtained from this transition
to δr2 = 1.0757(15) fm2 which is still in 2σ-4σ disagreement with the results from
23S − 23P transition. Moreover, it is also in 3.6σ disagreement with the result
obtained in muonic helium ions, which is δr2 = 1.0636(6)exp(30)theo fm2 [79].

4.2.2 Contribution of the order α7

Contribution to the energy levels of the order α7 is given by Eq. (2.31). We
performed the calculation in the nonrecoil approximation and restricted ourselves
only to triplet states. For triplet states, the wave function vanishes at the point
r1 = r2, which means that a great deal of singular terms proportional to contact
interaction δ3(r12) do not contribute. This results in a significant simplification of
the calculation. Nevertheless, the complete evaluation of the α7 contribution was
significant undertaking, and we had to split the project into several parts, which
were calculated separately in a series of papers over the course of three years for
helium and another two years for heliumlike ions. The calculation consists of
three parts: i) relativistic corrections to the Bethe logarithm (3.7), ii) radiative
corrections, and iii) nonradiative corrections coming from the photon exchange
between electrons.
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The first part comes from the relativistic corrections to the Bethe logarithm.
The leading-order Bethe logarithm of the order α5 for helium is

E
(5)
L = e2

m2

∫︂
k<Λ

d3k

(2 π)3 2 k

(︄
δij − ki kj

k2

)︄ ⟨︃
P i 1

E0 −H0 − k
P j
⟩︃
, (4.24)

where P⃗ = p⃗1 + p⃗2. Dependence on the high-momentum cutoff Λ is removed when
one combines E(5)

L with the corresponding high-momentum contributions.
Calculation of the relativistic corrections of the order α7 to Eq. (4.24) was

presented in our paper [34]. It can be splitted into three parts:

E
(7)
L = EL1 + EL2 + EL3 . (4.25)

Here, EL1 represents the contribution resulting from the perturbation of the wave
function, nonrelativistic energy, and nonrelativistic Hamiltonian in the expression
(4.24) by the Breit Hamiltonian H(4). Furthermore, EL2 is induced by the rela-
tivistic correction to the current operator P⃗ , and the third part, EL3, is the re-
tardation correction beyond the dipole approximation. From an analytical point
of view, the derivation of E(7)

L is simple. The main difficulty lies in the numerical
evaluation of individual parts in Eq. (4.25). For the perturbation of the Bethe
logarithm by Breit Hamiltonian, we again use regularization (4.11), and we sub-
tract the large-k asymptotics of integrands [34]. Apart from helium (Z = 2), we
have derived the results for relativistic Bethe logarithms for heliumlike ions up to
Z = 12 [80]. Moreover, the extrapolation of our results for large Z is in excellent
agreement with the analytical values obtained from the hydrogen theory.

The second part of the E(7) contribution to helium energy stems from radiative
corrections and is examined in our paper [30]. These corrections arise from the
self-energy and the vacuum polarization. It is a sum of the first-order and the
second-order contributions,

E
(7)
rad = ⟨H(7)

rad⟩ + 2
⟨︂
H(4) 1

(E0 −H0)′ H
(5)
rad

⟩︂
, (4.26)

where H(j)
rad is radiative part of the effective Hamiltonian of the order αj. To par-

tially incorporate the radiative corrections, we include the electromagnetic form
factors into HF W , as indicated in Eq. (2.12). This modification affects the interac-
tions between electrons through the anomalous magnetic moment and the slopes
of the form factors F ′

1(0) and F ′
2(0). The remaining parts come from the integra-

tion over the photon momenta k > Λ in the low-energy region (the relativistic
corrections to Eq. (4.24)), the middle-energy region where both the radiative and
exchanged photons are of the order mα, and the remaining contributions from the
high-energy region not accounted for by the form factors. To encompass all these
terms, a considerable number of various Feynman diagrams must be considered
[30].

In our calculation we employed further simplification by exploiting the fact
that for hydrogenlike atoms the correction E(7) is known. Therefore, in our calcu-
lation, we neglected some of the local terms, namely those that are proportional
to Z3 δ3(ra), a = 1, 2. These terms can be reintroduced in the final step of the
calculation by adjusting the hydrogenic limit of our formulas to match the known
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results for hydrogen from the literature. The advantage of this approach is that
it enables us to omit large amount of singular contributions and avoid explicit
calculation of some of the high-energy contributions. However, electron-electron
singularities that remain still need to be addressed using dimensional regulariza-
tion formalism. The final formula is finite, however, and may be again expressed
using Qi operators, as was presented in Ref. [30]. It was explicitly verified that
both the singularities proportional to 1/ϵ and the dependence on the photon
momentum cutoff Λ cancel out in the results.

The last part of the E(7) contribution comes from the nonradiative photon
exchange between particles, which we derived in Ref. [29]. It is of the form

E
(7)
exch =

⟨︂
H

(7)
exch

⟩︂
+ 2

⟨︂
H(4) 1

(E0 −H0)′ H
(5)
exch

⟩︂
, (4.27)

where H(j)
exch is an effective Hamiltonian of the order j coming from the nonradia-

tive photon exchange. Once again, various energy scales and Feynman diagrams
contribute to the final result. In this part, a direct comparison with hydrogenic
results is not feasible. The only simplification arises from the fact that, for triplet
states, the local interaction proportional to the electron-electron Dirac delta func-
tion vanishes. To obtain the high-energy part, it was necessary to evaluate the
two-photon exchange scattering amplitude in full QED. The collection and eval-
uation of all the individal terms contributing to E(7)

exch is challenging and lengthy
but the final formula, as presented in [29], is relatively simple and compact.

Numerical results for all three parts of the contribution E(7) are presented in
our paper [7]. For 23S state, the obtained contribution to ionization (centroid)
energy of 4He is −6.168(1)MHz, while for 23P state it is 2.280(1)MHz. By collect-
ing all the individual corrections to the energy levels, we get the total theoretical
prediction for transition frequencies between various triplet states in helium:

Etheo(23S − 33D1) = 786 823 849.540 (52)MHz , (4.28)
Etheo(23P0 − 33D1) = 510 059 754.863 (16)MHz , (4.29)
Etheo(23P − 23S) = 276 736 495.620 (54)MHz . (4.30)

The uncertainty is mainly given by the estimate of unknown α8 correction, based
on hydrogenic result. Our results may be compared with experiment [8, 81, 82],

Eexp(23S − 33D1) = 786 823 850.002 (56)MHz , (4.31)
Eexp(23P0 − 33D1) = 510 059 755.352 (28)MHz , (4.32)
Eexp(23P − 23S) = 276 736 495.600 0 (14)MHz . (4.33)

From the comparison, it is evident that we achieve excellent agreement for intra-
shell 23P − 23S transition, but there is notable disagreement for transitions with
different n. This disagreement was confirmed in work [12], where the ionization
energy of the 21S state was measured. In combination with experimental data
for 23S − 21S and 23S − 23P transitions, the ionization energies of 23S and 23P
states were derived. These experimental ionization energies exhibit 6.5σ and 10σ
disagreement with theoretical prediction, which was confirmed also in recent work
[13]. The source of this discrepancy is unknown at the moment, but a possible
explanation could involve some unknown theoretical contribution that shifts both
23S and 23P states by approximately the same value.
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In our paper [68], we extended the calculation to heliumlike ions with nuclear
charge Z up to Z = 12 and derived theoretical predictions for the 23S − 23PJ

transition. For Z = 3, 4, 5 we compared our results to known experimental data,
finding agreement with the exception for Be2+ [83]. It should be noted, however,
that this measurement was already reported to disagree with theoretical predic-
tions for the fine structure, which calls for an independent verification of this
experiment. Furthermore, for 5 ≤ Z ≤ 30, we combined NRQED method with
1/Z expansion in our work [67]. The method based on 1/Z expansion, sometimes
referred to as ”all-order approach”, is a completely different approach for calcula-
tion of the energy levels [84]. In this method, all orders of electron-nucleus binding
strength Zα are included and one expands in powers of the electron-electron in-
teraction parameter 1/Z. This approach is suited for heavier ions where 1/Z
is converging quickly, while the NRQED expansion cannot be used as Zα is no
longer small. Problematic is the region around Z ≈ 10 where both methods face
difficulties, requiring a combination of both of them to obtain the most accurate
results. We verified that for Z = 5, the results obtained by both approaches are
consistent with each other, namely the effects of the order α7 which were rig-
orously calculated using NRQED approach are in agreement with those derived
from fitting the all-order results [68].

Recently, there was a measurement of 23S − 23PJ transition in heliumlike
carbon 12C4+ [85]. This isotope is ideal for testing QED since it has no nuclear
spin, and its nuclear charge radius is well known from electron scattering and
muonic atom spectroscopy. The results of the measurement

Eexp(23S − 23P0) = 1 316 052.219 3(19) GHz , (4.34)
Eexp(23S − 23P1) = 1 315 677.192 8(17) GHz , (4.35)
Eexp(23S − 23P2) = 1 319 748.571 4(17) GHz , (4.36)

turned out to be in excellent agreement with our theoretical prediction from [67],

Etheo(23S − 23P0) = 1 316 052.03(27) GHz , (4.37)
Etheo(23S − 23P1) = 1 315 677.60(75) GHz , (4.38)
Etheo(23S − 23P2) = 1 319 748.55(13) GHz . (4.39)

This serves as a further test of both the consistency of our results and the es-
timate of their uncertainty. The comparison of theoretical prediction and the
measurement [85] was used for determination of the carbon charge radius, and
the result is consistent with previous determinations.

4.3 Hyperfine structure of heliumlike ions
For atomic 4He, the nuclear spin vanishes, and no hyperfine splitting occurs.
Therefore, to study hfs in helium, we need to investigate the case of the 3He
isotope, where the nuclear spin is nonzero. The measurement of the 23S state
hfs of 3He is very accurate [10], providing an excellent test of QED theory. The
leading hfs contribution is of the order α4 and is given by the Fermi splitting.
For helium it reads

EF ≡ ⟨VF ⟩ = 4 π Zα
3mM

g ⟨I⃗ · [s⃗1 δ
3(r1) + s⃗2 δ

3(r2)]⟩ . (4.40)
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The complete hfs of helium can be expressed in the same form like in the case of
hydrogen,

Ehfs = EF (1 + κe + δ(2) + δ(3) + δ(4) + δnuc + δrec) ≡ EF (1 + δ) . (4.41)

The individual δ coefficients in Eq. (4.41) for helium are correlated with those
for hydrogenlike ion. Thus, to obtain helium hfs, it is advantageous to write the
δ coefficient as a sum of two parts,

δ(He) = δ(He+) + δ(He-He+) . (4.42)

The first part, δ(He+), can be extracted from the experiment on He+ ion, encom-
passing, among other factors, contributions steming from nuclear structure. The
second part is the difference between hydrogenlike and heliumlike results and has
to be calculated theoretically. Only a limited number of terms contribute to this
difference, as outlined in our paper [9]. Specifically, the QED corrections of the
order α2 EF , α3 EF , and recoil corrections due to hyperfine mixing of 23S and 21S
states must be calculated for helium. The first of them is known in the literature
[86]. The QED contribution of the order α7 was calculated by us in Ref. [9]. Its
derivation is similar to calculation of the correction E(7) to energy centroid, with
the difference that only the relativistic correction to Bethe logarithm and radia-
tive corrections are nonvanishing. Photon exchange terms do not contribute at
this order. To evaluate radiative corrections, we employed a similar simplification
as for the energy centroid, disregarding local terms, which are later reintroduced
through comparison with the hydrogenic limit. The entire calculation can then
be conducted in d = 3 dimensions without requiring regularization.

The hyperfine mixing contribution is of the order α6, and is given by the
second-order expression with Fermi contact interaction operator

E
(6)
mix =

⟨︂
23S|VF |21S

⟩︂2

E0(23S) − E0(21S) . (4.43)

Formally, it is of the second order in electron to nucleus mass ratio, and one
would expect it to be small. However, due to small difference between energies
of the 23S and 21S states it is greatly enhanced. In addition to Eq. (4.43) we
have to include also the higher order corrections to it. At our level of precision
they are significant and cannot be omitted [9]. Specifically, we need to include
relativistic and recoil corrections to Eq. (4.43), along with the correction arising
from the mixing with higher excited states.

The total theoretical result for 23S hfs of 3He obtained by us is

νhfs(theo) = −6 739 701 181(41) Hz , (4.44)

where we improved the accuracy by a factor of 40 in comparison with previous
calculations. We can compare it with the experimental value [10]

νhfs(exp) = −6 739 701 177(16) Hz . (4.45)

The agreement between theory and experiment is exceptional, and with an un-
certainty of 41 Hz, it represents the most accurate theoretical result ever attained
for non-hydrogenic systems.
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The excellent agreement of theory and experiment for the helium hfs contrasts
sharply with the 9σ discrepancy observed for the HD+ [87]. The disagreement is
very surprising because the same theoretical approach is used in both systems.
If the discrepancy is confirmed in forthcoming studies, this would be a signal of
some unknown physics.

4.3.1 Hyperfine structure of 6,7Li+

The results of our hfs calculation can be extended to heliumlike ions, in particular
to Li+, for which accurate experimental data is available. In our paper [35] we
calculated 23S state hfs of isotopes 6,7Li+. Hyperfine splitting of Li+ is given by
a combination of the magnetic dipole and electric quadrupole hyperfine structure
contributions,

Ehfs =A ⟨I⃗ · S⃗⟩ +B ⟨(I iIj)(2)(SiSj)(2)⟩ , (4.46)

where S⃗ = s⃗1+s⃗2 is the total spin of electrons, and the symmetric traceless tensors
in the quadrupole term are defined in the same way as the expression in Eq. (3.5).
By appropriately combining experimental hfs transitions, one may eliminate the
electric quadrupole part of Eq. (4.46) and extract the value for the coefficient A.
For atomic Li, as well as for Li2+ and 3He, the quadrupole contribution vanishes
automatically. The remaining contribution to hfs will then again be in the form
of series (4.41). By comparing theoretical results for pointlike nucleus with the
measured hfs of Li+, one can determine the nuclear structure contribution δnuc,
parametrized in terms of the effective Zemach radius ˜︁rZ .

For evaluation of hfs one needs to use accurate value of nuclear g-factor. The
nuclear g-factor gI of an atom is related to the free-nucleus g-factor gN by the
shielding constant σ,

gI = gN (1 − σ) , (4.47)
which can be calculated by the atomic theory. For a light atom, the shielding
constant σ is effectively described by a double expansion in powers of the fine-
structure constant α and the electron-to-nucleus mass ratio m/M ,

σ = α2 σ(2) + α4 σ(4) + α2 m

M
σ(2,1) + . . . . (4.48)

In our work [88] we calculated the shielding constant and conducted a precise
determination of the nuclear magnetic dipole moments of isotopes 6,7Li from
measured ratios of the nuclear and the electron g-factors. We notably improved
the precision for the magnetic moments, and our results deviate significantly from
those tabulated in Ref. [89]. The discrepancy arises because previous tabulations
often overlooked uncertainties linked to theoretical calculations of diamagnetic
corrections.

Utilizing our enhanced values for nuclear g-factors, we calculated 6,7Li+ hfs
for pointlike nucleus and used it for determination of the effective Zemach radii
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[35]. For 6Li our results compared to the ones in the literature are

˜︁rZ(6Li+) = 2.39(2) fm , (4.49)˜︁rZ(6Li+)[90] = 2.44 (2) fm , (4.50)˜︁rZ(6Li+)[91] = 2.40 (16) fm , (4.51)˜︁rZ(6Li+)[91] = 2.47 (8) fm , (4.52)˜︁rZ(6Li)[92] = 2.29 (4) fm , (4.53)

and for 7Li they are

˜︁rZ(7Li+) = 3.33(3) fm , (4.54)˜︁rZ(7Li+)[91] = 3.33 (7) fm , (4.55)˜︁rZ(7Li+)[91] = 3.38 (3) fm , (4.56)˜︁rZ(7Li)[92] = 3.23 (4) fm . (4.57)

We confirmed the surprising result that the effective Zemach radius of 6Li
is smaller than for 7Li, in spite of the fact that for the nuclear charge radius
the situation is reversed. The probable explanation is a large contribution of
inelastic effects. Additionally, we noted a 2σ deviation in the effective Zemach
radius determined from Li+ ion compared to that from Li atom [92]. This is likely
caused by larger than expected α7 contribution in Li atom, which was estimated
based on hydrogenic results and not rigorously calculated. The contribution of
the order α6 calculated in [92] for Li atom already differs by approximately 50%
from the hydrogenic value, indicating that a similar discrepancy might be present
for the order α7 as well.

In summary, this Chapter demonstrates that for heliumlike systems, it is
possible to calculate energy levels with nearly the same accuracy as in hydrogen.
Comparisons between measurements and theoretical predictions in helium can be
employed for testing QED or determining fundamental constants. The potential
for further improvement lies in identifying the source of the discrepancy between
theory and experiment for ionization energies. Once this discrepancy is addressed,
it becomes feasible to extend the calculation to singlet states and utilize the results
to obtain the absolute value for the charge radius of helium.
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5. Conclusions
To summarize the preceding Chapters, the author and his coworkers accomplished
the following results in years 2014-2024:

• We investigated the energy levels of two-body systems with arbitrary con-
stituent particles up to the order α6 in NRQED theory. The derived formu-
las are applicable to both spinless and spin-1/2 particles, whether pointlike
or hadronic, and for angular momentum l ≥ 1. We checked that for spe-
cific limit cases the results are in accordance with Dirac and Klein-Gordon
equation. Furthermore, our results can be extended to exotic atoms like
muonic hydrogen, positronium, or protonium. These results were pub-
lished in [36, 37]. In the case of muonic helium ion, we used our results
to determine fine structure splitting of 2P states. Specifically, for 3He+ this
amounted to 144.785(3) meV, and for 4He+ to 146.182(3) meV, in accor-
dance with experimental values 144.763(114) meV and 146.047(96) meV,
respectively. In the future, we plan to calculate the contribution of the
order α7, which is important for positronium atom and also will serve as a
check of our calculations of the α7 contribution in helium.

• We published a review paper on hydrogenlike systems [5], comprehensively
presenting all individual contributions to the Lamb shift. One of these con-
tributions was a higher-order α6 nuclear structure correction that we derived
for both ordinary (electronic) and muonic hydrogenlike atoms in Ref. [93].
This allowed us to enhance the precision in determining the Lamb shift in
various hydrogenlike ions. For instance, for the 2S − 2P1/2 transition in
hydrogen, the theoretical result, incorporating the refined nuclear structure
contribution, is 1.057 834 12(23)(13)GHz. The first uncertainty (23) repre-
sented the theoretical uncertainty, while the second one (13) was induced
by uncertainties of nuclear radius and mass. This result was in agreement
with experimental result 1.057 847(9)GHz from [94].

• We studied hyperfine splitting in hydrogenlike atoms. The comparison of
our accurate theoretical calculations with experimental measurements can
be used either to test QED or to extract the information about the nuclear
structure effects. In the case of 3He+ ion, we used our results to extract the
information about the nuclear structure in terms of the effective Zemach
radius. Conversely, for 6,7Li2+ we obtained theoretical prediction for hyper-
fine splitting, which is currently not known experimentally. These results
were published in [35, 61].

• In the case of helium atom, we calculated the higher-order recoil correction
of the order α6 m/M for both singlet and triplet states. This allowed us to
obtain accurate theoretical prediction for 3He − 4He isotope shift of various
transitions. Through a comparison with experimental data, we extracted
values for the nuclear charge radii difference of 3He and 4He from different
measurements. We showed that the obtained values are in disagreement
with each other, which calls for verification of these experiments. These
results were published in [25, 31, 32].
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• For helium D states, we calculated the energy levels for states with n =
3 . . . 6, improving their theoretical precision. These results are in 10σ dis-
crepancy with previous calculations, due to the previously underestimated
nonradiative α6 contributions. Additionaly, we derived general formula for
the nonrecoil α6 contribution for arbitrary light atoms. We presented these
results in papers [33, 71, 72].

• We derived a complete correction of the order α7 to energy centroid for
helium triplet states. This correction consisted of three parts: relativistic
corrections to Bethe logarithm, radiative corrections, and nonradiative pho-
ton exchange corrections. We observed that for 23S − 23P transition the
theoretical prediction of 276 736 495.620 (54)MHz was in excellent agree-
ment with the measurement of 276 736 495.600 0 (14) MHz, while for the
ionization energies of individual triplet states, we have up to 10σ discrep-
ancy with experiment. The source of this discrepancy is not known at the
present time. Later, we extended our calculation also to heliumlike ions,
and our results were again in agreement with experiment for the 23S− 23P
transition. The only exception was for Be2+ which, however, had already
been reported to disagree with theory for the fine structure. Independent
verification of this experiment is thus needed. These results were published
in papers [7, 29, 30, 34, 67, 68, 80]. In the future, this calculation can be
extended also to helium singlet states. For these states, the derivation is
much more complicated but we believe it is still feasible.

• For heliumlike ions, we derived correction to the hyperfine splitting of the
order α7. In the case of 23S in 3He, with the help of the nuclear structure
contribution extracted from 3He+ ion, we achieved a theoretical prediction
of −6 739 701 181(41) Hz, in perfect agreement with the experimental result
of −6 739 701 177(16) Hz. The discrepancy between theory and experiment
is merely 4 Hz, with a theoretical uncertainty of 41 Hz, rendering it the
most accurate theoretical prediction for nonhydrogenic systems to date. In
the case of heliumlike isotopes 6,7Li+, we utilized theoretical predictions to
determine the effective Zemach radius, confirming that the value for 7Li is
approximately by 40% larger than that of 6Li. For that we also calculated
magnetic shielding in Li and used it to improve the value of lithium magnetic
dipole moments. These results were presented in papers [9, 35, 88].

Many of the topics addressed in preceding Chapters represent ongoing projects
with potential for further exploration. For example, addressing the discrepancy in
the energy centroid ionization energies in helium is crucial for reliably extracting
the nuclear charge radius. Several experimental groups are currently conducting
measurements, underscoring the demand for accurate theoretical results. Another
unresolved matter is the question of nuclear polarizability effects. As of now, we
are unable to explicitly calculate their contribution. Therefore, we parameterize
the nuclear structure effects in terms of the effective Zemach radius. Confirming
the surprisingly large effective Zemach radius of 7Li compared to the one of 6Li,
this calls for deeper investigation of the nuclear structure. Thus, there remain
numerous opportunities for extending our research and delving further into these
unresolved areas.
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012807 (2020).

[73] D. C. Morton, Q. Wu, and G. W. F. Drake, Can. J. Phys. 84, 83 (2006).
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• V. A. Yerokhin, V. Patkóš, K. Pachucki: ”QED mα7 effects for triplet states
of heliumlike ions”, Phys. Rev. A 107, 012810 (2023).
doi:10.1103/PhysRevA.107.012810
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• V. A. Yerokhin, V. Patkóš, K. Pachucki: ”Atomic structure calculations of
helium with correlated exponential functions”, Symmetry 13, 1246 (2021).
doi:10.3390/Sym13071246
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• K. Pachucki, V. Patkóš, V. A. Yerokhin: ”Three-photon-exchange nuclear
structure correction in hydrogenic systems”, Phys. Rev. A 97, 062511
(2018).
doi:10.1103/PhysRevA.97.062511
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