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1. Introduction
Symplectic geometry is a branch of differential geometry that studies symplec-
tic and contact manifolds and their Lagrangian and Legendrian submanifolds.
It originated as a formalization of the mathematical apparatus of classical me-
chanics and geometric optics. Symplectic geometry radically changed after the
1985 article of Gromov [75] on pseudoholomorphic curves and the subsequent
work of Floer [63] giving birth to symplectic topology or “Floer mehods” (some-
times called “hard methods” ) of symplectic geometry. Symplectic topology has
emerged as an important field that has contributed to key developments in low-
dimensional topology, geometry and mathematical physics.

A symplectic manifold (X, ω) consists of a smooth 2n-dimensional manifold X
and a closed non-degenerate 2-form ω. The canonical example of of a symplectic
2n-manifold is R2n with the coordinates (x1, y1, . . . , xn, yn) and with the sym-
plectic form ∑︁

i dxi ∧ dyi. One way to study a symplectic manifold is through its
Lagrangian submanifolds, L ⊂ (X, ω) which are half-dimensional submanifolds,
i.e. dim L = n with the property that ω|T L = 0.

Odd-dimensional analogues of symplectic manifolds are called contact man-
ifolds, these are manifolds Y of dimension 2n − 1 equipped with a maximally
non-integrable hyperplane field ξ called contact structure. Locally a contact
structure is given by kernel of a 1-form α such that α ∧ dαn−1 ̸= 0. Legendrian
submanifolds of Y are n − 1-dimensionall submanifolds such that TpΛ ⊂ ξp for
all p ∈ Λ. The canonical example of a contact 2n − 1-manifold is R2n−1 with the
coordinates (x1, . . . xn−1, y1, . . . , yn−1, z) and with the standard contact structure
given by ker(dz − ∑︁

i yidxi), which we will denote by R2n−1
st .

Both symplectic and contact manifolds have no local invariants thanks to
the corresponding Darboux theorems, but one can define global invariants us-
ing Lagrangian submanifolds, and Legendrian submanifolds, respectively. This
approach to studying symplectic and contact manifolds is difficult to follow as
Lagrangian submanifolds and Legendrian submanifolds are not classified in gen-
eral. The geometries of contact and symplectic manifolds are closely related. For
instance, the symplectic and contact conditions are compatible enough that one
can consider symplectic manifolds whose boundary is a contact manifold. We-
instein domains (and more generally Weinstein cobordisms), certain symplectic
manifolds with a handlebody decomposition that is compatible with the sym-
plectic structure, are examples of symplectic manifolds with a contact bound-
ary. Lagrangian cobordisms with Legendrian boundary are the relative version
of closed Lagrangians. They are natural objects to consider in symplectic mani-
folds with contact boundary. In the case of Weinstein domains, their symplectic
topology is encoded by Legendrian submanifolds. Therefore, studying Legendrian
submanifolds and (exact) Lagrangian cobordisms between them provides a new
perspective on symplectic manifolds with contact boundary. In this thesis we
study Legendrian submanifolds and (exact) Lagrangian cobordisms in Weinstein
domains and cobordisms.
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2. Structure of thesis
The thesis represents the following papers:

• R. Golovko, A note on Lagrangian cobordisms between Legendrian subman-
ifolds of R2n+1, Pacific J. Math., 261(1) (2013) 101–116.

• R. Golovko, A note on the front spinning construction, Bulletin of the Lon-
don Mathematical Society, 46 (2014), no. 2, 258–268.

• B. Chantraine, G. Dimitroglou Rizell, P. Ghiggini, and R. Golovko, Floer
homology and Lagrangian concordance, Proceedings of the Gökova Geome-
try/Topology Conference 2014, (2015) 76–113.

• G. Dimitroglou Rizell and R. Golovko, Estimating the number of Reeb
chords using a linear representation of the characteristic algebra, Algebraic
and Geometric Topology, 15-5 (2015), 2887–2920.

• B. Chantraine, G. Dimitroglou Rizell, P. Ghiggini and R. Golovko, Noncom-
mutative augmentation categories, Proceedings of the Geometry-Topology
Conference 2015. Gökova Geometry/Topology Conference (GGT), Gökova,
2016, 116–150.

• B. Chantraine, G. Dimitroglou Rizell, P. Ghiggini and R. Golovko, Geomet-
ric generation of the wrapped Fukaya category of Weinstein manifolds and
sectors, available at arXiv:1712.09126, accepted for publication in Annales
Scientifiques de l’École Normale Supérieure.

• G. Dimitroglou Rizell and R. Golovko, The stable Morse number as a lower
bound for the number of Reeb chords, Journal of Symplectic Geometry, Vol.
16, No. 5 (2018), 1209-1248.

• B. Chantraine, G. Dimitroglou Rizell, P. Ghiggini, and R. Golovko, Floer
theory for Lagrangian cobordisms, Journal of Differential Geometry, Volume
114, Number 3 (2020), 393-465.

• G. Dimitroglou Rizell and R. Golovko, On Legendrian products and twist
spuns, Algebr. Geom. Topol., 21-2 (2021), 665–695.

• R. Golovko, On topologically distinct infinite families of exact Lagrangian
fillings, Archivum Mathematicum, Vol. 58 (2022), 287–293.

• R. Golovko, A note on infinite number of exact Lagrangian fillings for spher-
ical spuns, Pacific Journal of Mathematics 317-1 (2022), 143–152.

• R. Golovko, On torsion in linearized Legendrian contact homology, Journal
of Knot Theory and Its Ramifications, Vol. 32, No. 07, 2350056 (2023).

• R. Golovko, On non-geometric augmentations in high dimensions, Geome-
triae Dedicata, 217, 104 (2023).

In Chapter 3 we discuss the basic definitions of the theory of Legendrian
submanifolds. After that, in Chapters 4–12 we discuss the results presented in
the mentioned above papers.
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3. Invariants of Legendrian
submanifolds of R2n+1

Given a contact manifold (X, ξ), where ξ = ker α, we define the Reeb vector field
Rα to be given by the equations α(Rα) = 1, iRα(α) = 0.

A Liouville domain is a compact symplectic manifold (W, dθ) with a choice
of primitive of the symplectic form such that the Liouville vector field defined
by iLdθ = θ is transverse to ∂W and points outwords. Then, given a Liouville
domain (W, dθ, L), there is a standard way of completing it: the condition that
L is outward transverse to the boundary implies that there is a symplectic collar
neighborhood ∂W × (−ε, 0] with

θ|∂W ×{t} = etθ|∂W ×{0}.

Therefore, we can attach a cylindrical end ∂W × [0, ∞) with the primitive of
sympectic form given by the same formula θ|∂W ×{t} = etθ|∂W ×{0} to get a non-
compact manifold P = W ∪ (∂W × [0, ∞)) with complete Liouville vector field.
Such a manifold is called a Liouville manifold.

In this thesis, the contact manifolds that we will use are the standard contact
vector space R2n+1

st and the so-called contactisation of a Liouville manifold (P, ω =
dθ) that is defined to be (P × R, dz + θ), where z is the coordinate on the first
R-factor. It is easy to see that for both R2n+1

st and (P ×R, dz +θ) the Reeb vector
field is given by ∂z.

From now on in this section we will discuss only the case of R2n+1
st that we will

often write simply as R2n+1. Note that most of the discussion in this section and
invariants that we define here naturally extend to the situation of (P ×R, dz +θ).

3.1 Legendrian submanifolds
An immersion of an n-manifold into R2n+1 is Legendrian if it is everywhere tan-
gent to the hyperplane field ξ, and the image of a Legendrian embedding is a
Legendrian submanifold. The Reeb chords of a Legendrian submanifold Λ are
segments of flow lines of Rα starting and ending at points of Λ. The symplecti-
sation of R2n+1 is the exact symplectic manifold (R × R2n+1, d(etα)), where t is
a coordinate on R. There are two natural projections, the first one is called the
front projection and it is defined by

ΠF (x1, y1, . . . , xn, yn, z) = (x1, . . . , xn, z)
and the second one which is called the Lagrangian projection and it is given by

ΠL(x1, y1, . . . , xn, yn, z) = (x1, y1, . . . , xn, yn)
The Lagrangian projection ΠL(Λ) of a Legendrian submanifold Λ is an exact
Lagrangian immersion into R2n. Note that for closed Legendrians generically the
self-intersection of ΠL(Λ) consists of a finite number of transverse double points.
These points correspond to the set of Reeb chords of Λ. The set of Reeb chrods is
typically denoted by Q(Λ). A Legendrian submanifold is called chord generic if it
has a finite number of Reeb chords. From now on we assume that all Legendrian
submanifolds of R2n+1 are connected and chord generic.
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3.2 Classical and non-classical invariants of Leg-
endrian submanifolds

There are two classical invariants of a closed, orientable Legendrian submanifold
Λ ⊂ R2n+1, namely the Thurston–Bennequin invariant (number) and the rotation
class.

The Thurston–Bennequin invariant has been defined by Bennequin in [9],
and independently by Thurston for Legendrian knots in R3. Then Tabachnikov
generalized it to higher dimensions, see [101]. The Thurston–Bennequin number
tb(Λ) of a closed, oriented Legendrian Λ ⊂ R2n+1 isdefined to be the linking
number lk(Λ, Λ′). Here Λ′ is an oriented submanifold which is obtained from Λ
by a small shift in the Reeb direction.

The rotation class r(Λ) for a Legendrian submanifold of R2n+1 has been defined
by Ekholm, Etnyre and Sullivan [46]. It is equal to the homotopy class of (f, dfC)
in the space of complex fiberwise isomorphisms TΛ ⊗ C → ξ, where f : Λ →
R2n+1 is an embedding of Λ. In the situation when Λ = Sn and n is odd,
r(Λ) ∈ πn(U(n)) ≃ Z and it is called r(Λ) the rotation number.

Legendrian contact homology is a modern invariant of a closed Legendrian
submanifold of R2n+1. For Legendrians in R3 it has appreared in [26], and then
in [47] it has been extended to R2n+1 for all n ≥ 1; finally, the case of P × R has
been described in [49]. The Legendrian contact homology of a closed, orientable
Legendrian submanifold Λ with the finite set of Reeb chords Q(Λ) is the homology
of the noncommutative differential graded algebra (AΛ, ∂Λ) over a unital ring R
freely generated by the elements of Q(Λ) and is denoted by LCH∗(Λ). The
differential of AΛ counts certain holomorphic curves in the symplectisation of
R2n+1, whose domains are unit disks with the boundary with points removed
from the boundary. At these points, the holomorphic curve has one positive
asymptotic and several negative asymptotics. For the details we refer the reader
to [47].

Note that (AΛ, ∂Λ) and even its homology are difficult to compute, and hence
are difficult to use for practical applications. One way to deal with this issue and
to extract useful information from (AΛ, ∂Λ) is to follow the Chekanov’s method of
linearization. For that we need the notion of augmentation. An augmentation ε
is an algebra homomorphism from (AΛ, ∂Λ) to (R, 0) which satisfies ε(1) = 1 and
ε ◦ ∂Λ = 0. Augmentation ε allows us to linearize the differential graded algebra
to a complex LCε := (AΛ, ∂ε

1,Λ) with homology groups LCHε
∗(Λ). Here AΛ is the

free R-module generated by the elements of Q(Λ). We define LCH∗
ε (Λ) to be

the homology of the dual complex LCε(Λ) := Hom(LCε(Λ), R). The linearized
homology (cohomology) groups may depend on the choice of ε. However, the
set of graded groups {LCHε

∗(Λ)} ({LCH∗
ε (Λ)}), where ε is any augmentation of

(AΛ, ∂Λ), provides a Legendrian isotopy invariant, see [26, 47]. A similar construc-
tion, where one relies on two augmentations instead of one leads to the bilinearised
Legendrian homology (cohomology), it has been defined by Bourgeois–Chantraine
in [13], and is denoted by LCHε1,ε2

∗ (Λ) (LCH∗
ε1,ε2(Λ)) for the basic properties we

refer the reader to [13].
In [46], Ekholm, Etnyre and Sullivan used Legendrian contact homology to

prove that for any n > 1 there is an infinite family of Legendrian embeddings
of the n-sphere into R2n+1 that are not Legendrian isotopic even though they

6



have the same classical invariants. They also prove similar results for Legendrian
surfaces and n-tori, see [46]. These results indicate that the theory of Legendrian
submanifolds of standard contact (2n + 1)-space is very rich.
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4. Exact Lagrangian cobordisms
and classical invariants of
Legendrian submanifolds
Lagrangian cobordism provides a relation between Legendrian submanifolds, and
it is a crucial ingredient in the definition of the functorial properties of modern
Legendrian invariants such as Legendrian contact homology in the spirit of the
symplectic field theory (SFT) of Eliashberg, Givental and Hofer [56].

Consider a Liouville manifold (P, dθ), its contactisation (Y = P × R, α =
dz + θ) and its symplectisation (R × Y, d(etα)), where t is a cooredinate on R.

Let Λ− and Λ+ be two closed Legendrian submanifolds of (Y, α). An exact
Lagrangian cobordism from Λ− to Λ+ in (R × Y, d(etα)) is a properly embedded
submanifold L ⊂ R × Y without boundary satisfying the following conditions:

1. There exists T ≫ 0 such that L ∩ ((−∞, −T ) × Y ) = (−∞, −T ) × Λ−,
L ∩ ((T, +∞) × Y ) = (T, +∞) × Λ+, and L ∩ ([−T, T ] × Y ) is compact.

2. There exists a smooth function fL : Σ → R for which etα|L = dfL,
fL|(−∞,−T )×Λ− is constant, and fL|(T,∞)×Λ+ is constant.

(T, +∞) × Λ+ ⊂ L and (−∞, −T ) × Λ− ⊂ L are called the positive end and the
negative end of L, respectively. A cobordism from a submanifold to itself is called
endocobordism.
Example. If Λ is a closed Legendrian submanifold of (Y, ξ), then R×Λ is an exact
Lagrangian cobordism inside (R× Y, d(etα)) from Λ to itself. Cobordisms of this
type are called trivial Lagrangian cylinders.

In the case when there exists an exact Lagrangian cobordism L from Λ− to
Λ+ we say that Λ− is exact Lagrangian cobordant to Λ+ and write Λ− ≺ex

L Λ+. If
Σ is an exact Lagrangian cobordism from the empty set to Λ, we call Σ an exact
Lagrangian filling of Λ. In the latter case we say that Λ is exactly fillable.

Given exact Lagrangian cobordisms La from Λ− to Λ and Lb from Λ to Λ+,
their concatenation La ⊙ Lb is defined as follows.

First, translate La and Lb so that

La ∩ ((−1, +∞) × Y ) = (−1, +∞) × Λ,

Lb ∩ ((−∞, 1) × Y ) = (−∞, 1) × Λ.

Then we define

La ⊙ Lb := (La ∩ ((−∞, 0] × Y )) ∪ (Lb ∩ ([0, +∞) × Y )).

Since different choices of translation lead to Hamiltonian isotopic exact La-
grangian cobordisms, the following Lemma holds:
Lemma 1. The compactly supported Hamiltonian isotopy class of La ⊙ Lb is
independent of the above choices of translations.
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The question about obstructions to the existence of Lagrangian cobordisms
was first approached by Chantraine [19]: employing an adjunction inequality ob-
tained through gauge theory, he showed that classical invariants (rotation number
and Thurston-Bennequin invariant) of Legendrian knots can provide obstructions
to the existence of Lagrangian cobordisms.

We prove the following high-dimensional version of Chantraine’s result:

Theorem 2 ([69]). Let Λ− and Λ+ be two closed, orientable, connected Legen-
drian submanifolds of R2n+1.

(1) If n is even and L is a smooth cobordisms from Λ− to Λ+, then

tb(Λ+) + tb(Λ−) = (−1)n
2 +1χ(L).

(2) If n is odd, Λ− is fillable and L is an exact Lagrangian cobordism from Λ−

to Λ+, then

tb(Λ)+) − tb(Λ−) = (−1)
(n−2)(n−1)

2 +1χ(L).

Endocobordisms

Rigidity of Lagrangian submanifolds has been discovered in many situations.
Dimitroglou Rizell and I proved the following rigidity result for exact La-

grangian endocobordisms of spin fillable Legendrian submanifolds of P × R:

Theorem 3 ([37]). Let Λ be a spin fillable Legendrian submanifold of P × R, L
be an exact Lagrangian endocobordism of Λ inside the symplectization, and F be
a field. In addition, assume that LΛ ∗ L is spin for any spin exact Lagrangian
filling LΛ of Λ. Then

(1) dim Hi(L;F) = dim Hi(Λ;F) for all i,

(2) the map

(i−
∗ , i+

∗ ) : Hj(Λ;F) → Hj(L;F) ⊕ Hj(L;F)

is injective for all j.

Here i+ is the inclusion of Λ as a positive end of L, i− is the inclusion of Λ
as a negative end of L, and F is an arbitrary field. If F = Z2, then the spin
assumptions above can be omitted.

Moreover, when Λ is a homology sphere, Dimitroglou Rizell and I proved the
following theorem:

Theorem 4 ([37]). 1. If Λ is a Z2-homology sphere admitting an exact La-
grangian filling, any exact Lagrangian endocobordism L of Λ has the prop-
erty that the maps in homology

i±
∗ : Hj(Λ;Z2) → Hj(L;Z2)

induced by the inclusions of the boundary are isomorphisms. In particular,
L is spin and has vanishing Maslov class.
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Figure 4.1: The exact Lagrangiann cobordism not diffeomorphic to the cylinder.

2. If Λ is a Z-homology sphere admitting an exact Lagrangian spin filling LΛ,
any exact Lagrangian endocobordism L of Λ satisfies the property that the
maps in homology

i±
∗ : Hj(Λ;Z) → Hj(L;Z)

induced by the inclusions of the boundary are isomorphisms.

It is natural to ask whether every exact Lagrangian cobordism described in
Theorem 3 is diffeomorphic to R×Λ. Dimitroglou Rizell and I in [37] constructed
an example of an exact Lagrangian endocobordism of a fillable Legendrian T 2 ⊂
R5 which is not diffeomorphic to R × T 2, see Figure 4.1.

Murphy in [84] prove an h-principle type of result for a class of certain Legen-
drian embeddings in a contact manifolds of dimension at least 5. These Legen-
drian embeddings are called loose, see [84] for the definition and for the statement
of the h-principle result in these settings.

Given an immersed exact Lagrangian cobordism with loose negative end,
Eliashberg and Murphy in [58] provided the homotopy-theoretic conditions which
determine when the double points can be removed, thus producing an embedded
exact Lagrangian cobordism. Using this result, in contrast to Theorem 3, Dim-
itroglou Rizell and I prove the following theorems:

Theorem 5 ([37]). For any closed, orientable, connected 3-manifold M and any
closed, connected loose Legendrian surface Σg ⊂ R5 of genus g, there is an exact
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Lagrangian endocobordism L of Σg in the symplectization of R5 which is diffeo-
morphic to M#(R × Σg).

Theorem 6 ([37]). For any loose Legendrian submanifold Λ ⊂ R2n+1 and num-
ber N > 0 there exists an exact Lagrangian endocobordism L of Λ satisfying∑︁

i dim Hi(L;F) ≥ N . Here F is an arbitrary field.

4.1 Lagrangian concordances
An exact Lagrangian concordance is a special case of an exact Lagrangian cobor-
dism which is diffeomorphic to R × Λ for some Legendrian Λ. In a joint work
with Chantraine, Dimitroglou Rizell and Ghiggini, we classify exact Lagrangian
concordances from the tb = −1 Legendrian unknot to itself in the tight contact
three sphere.

Theorem 7 ([21]). Let Λ0 ⊂ S3 be a Legendrian unknot with tb(Λ0) = −1, and
let L be an exact Lagrangian cobordism from Λ to itself inside the symplectisation
of S3. It follows that L is compactly supported Hamiltonian isotopic to ϕm(R×Λ0)
for some m ∈ Z.

Chantraine in [20] has shown that in dimension three the relation of being
Lagrangian concordant is not symmetric, in particular there are Lagrangian con-
cordances that cannot be inverted. Other examples in dimension three have later
been constructed in [8] and [31]. In a joint work with Chantraine, Dimitroglou
Rizell and Ghiggini, we generalize the construction of Chantraine to high dimen-
sions and prove the following theorem.

Theorem 8 ([21]). For every m1, . . . , mk ∈ N there exist fillable Legendrian
submanifolds Λ1, Λ2 ⊂ R2(1+

∑︁
i

mi)+1 diffeomorphic to S1 × Sm1 × · · · × Smk with
the property that

• there is an exact Lagrangian concordance from Λ1 to Λ2;

• there is no Lagrangian concordance from Λ2 to Λ1.

One of the consequences of Theorem 8 is the following statement:
Corollary ([21]). For any n ≥ 2, there exist two Legendrian submanifolds Λ1, Λ2 ⊂
Cn × R that are not loose and such that

• Λ1 is not Legendrian isotopic to Λ2, but

• there is an exact Lagrangian concordance from Λ1 to Λ2.
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5. Floer theory for Lagrangian
cobordisms and its applications
In order to study the topology of exact Lagrangian cobordisms and the proper-
ties of symplectic manifolds which contain these cobordisms (Weinstein cobor-
disms, Liouville cobordisms and so on), Baptiste Chantraine, Georgios Dim-
itroglou Rizell, Paolo Ghiggini and I introduce a version of Lagrangian Floer
homology for pairs of exact Lagrangian cobordisms. This construction finds its
inspiration in the work of Ekholm in [43], which gives a symplectic field theory
point of view on wrapped Floer homology of Abouzaid and Seidel from [2].

The definition of this new Floer theory requires the use of augmentations of
the Chekanov-Eliashberg algebras of the negative ends as bounding cochains in
order to algebraically cancel certain degenerations of the holomorphic curves at
the negative ends of the cobordisms. Bounding cochains have been introduced,
in the closed case, by Fukaya, Oh, Ohta and Ono in [65], while augmentations,
which play a similar role in the context of Legendrian contact homology, have
been introduced by Chekanov in [26].

For a pair of exact Lagrangian cobordisms obtained by a suitable small Hamil-
tonian push-off, the construction that Chantraine, Dimitroglou Rizell, Ghiggini
and I propose leads to several long exact sequences relating the singular homology
of the cobordism with the Legendrian contact homology of its ends. These long
exact sequences are used to give restrictions on the topology of exact Lagrangian
cobordisms under various hypotheses on the topology of the Legendrian ends.
Similar long exact sequences have been previously shown by Sabloff and Traynor,
see [93], in the setting of generating family homology under the additional as-
sumption that the cobordism admits a compatible generating family, and by the
author in [69] in the case when the negative end of the cobordism admits an exact
Lagrangian filling. Our results have been placed in a more general framework by
Cieliebak and Oancea [28].

For the extra details on Legendrian contact homology necessary for the results
in this section, we refer to [26, 50, 49, 62].

The notion of Lagrangian cobordism that we discuss is different from the
notion of Lagrangian cobordisms introduced by Arnol’d in [6] and studied by
Biran and Cornea in [10, 11]. Despite the differences, for Lagrangian cobordisms
between Legendrian submanifolds with no Reeb chords, some of the obtained
results resemble some of the results of Biran–Cornea [10, 11] and Suárez [99].

5.1 Main results.
Let (P, dθ) be a Liouville manifold and (Y, α) := (P ×R, dz+θ) its contactisation.
We consider a pair of exact Lagrangian embeddings Σ0, Σ1 ↪→ X, where (X, ω) =
(R × Y, d(etα)) is the symplectisation of (Y, α). We assume that the positive
and negative ends of Σi i = 0, 1 are cylindrical over Legendrian submanifolds Λ−

i

and Λ+
i respectively, and thus Σi is a Lagrangian cobordisms from Λ−

i to Λ+
i ; see

Figure 5.1 for a schematic representation. We assume that Σ0 and Σ1 intersect
transversely and that their Legendrian ends are chord-generic in the sense of [49].
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t Λ+
1 Λ+

0

Σ0

Σ1

Λ−
1 Λ−

0

Figure 5.1: Two Lagrangian cobordisms inside a symplectisation R × Y , where
the vertical axis corresponds to the R-coordinate.

Let R be a ring of characteristic 2 or, if all Σi’s and Λ±
i ’s are relatively Pin,

any ring. We assume that A(Λ−
i ; R) of Λ−

i admits an augmentation ε−
i over R for

i = 0, 1. It follows from the results of Ekholm, Honda and Kálmán in [52] that
A(Λ+

i ; R) also admits an augmentation ε+
i = ε−

i ◦ ΦΣi
, where ΦΣi

: A(Λ+
i ; R) →

A(Λ−
i ; R) is the unital DGA morphism induced by the cobordism Σi. Thus the

bilinearised contact cohomologies LCHε±
0 ,ε±

1
(Λ±

0 , Λ±
1 ) are defined.

The Cthulhu complex of the pair (Σ0, Σ1) is the complex whose underlying
graded R-module is

Cth•(Σ0, Σ1) := C•(Λ+
0 , Λ+

1 )[2] ⊕ C•(Σ0, Σ1) ⊕ C•(Λ−
0 , Λ−

1 )[1]

for a unital ring R. Here C•(Λ±
0 , Λ±

1 ) is the free graded R-module generated
by the Reeb chords from Λ±

1 to Λ±
0 and C•(Σ0, Σ1) is the free graded R-module

generated by the intersection points Σ0 ∩ Σ1.
Now we define the Cthulhu differential dε−

0 ,ε−
1

, which is a differential of degree
1 on Cth•(Σ0, Σ1). With respect to the direct sum decomposition above, it has
the form

dε−
0 ,ε−

1
=

⎛⎜⎝d++ d+0 d+−
0 d00 d0−
0 d−0 d−−

⎞⎟⎠ .

Loosely speaking, every non-zero entry in the presentation of dε−
0 ,ε−

1
is defined

by counting rigid punctured pseudoholomorphic strips in the corresponding mod-
uli spaces described in [24, Section 3.2], where the counts are weighted by the
corresponding augmentations.

The Cthulhu complex turns out to be acyclic, i.e. the homology of it vanishes,
because of its invariance properties with respect to a large class of Hamiltonian
deformations. These Hamiltonian deformations in the contactisation of a Liouville
manifold allow us to displace any pair of Lagrangian cobordisms.

When the negative ends are empty, this complex recovers the wrapped Floer
cohomology complex as it appears in the work of Ekholm, see [43]. When the
positive ends are empty and there are no homotopically trivial Reeb chords of
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both Λ−
i ’s, this complex is quite similar to the Floer complex presented by Akaho

in [3, Section 8].
In order to deal with the ring R of characteristic different from two, which

is essential for our applications, we define coherent orientations for the relevant
moduli spaces of pseudoholomorphic curves. This can be done in the case when
the Lagrangian cobordisms are relatively Pin (following Ekholm, Etnyre and Sul-
livan in [48] and Seidel in [95, Section 11]). The treatment of signs is done in the
work of Karlsson [78].

5.2 Long exact sequences for LCH induced by a
Lagrangian cobordism.

If Σ1 is a Hamiltonian deformation of Σ0 for some suitable and sufficiently
small Hamiltonian, there is a well defined Floer differential on CF (Σ0, Σ1) and
the Floer homology group HF (Σ0, Σ1) can be identified with the Morse ho-
mology group of Σ0. Similarly, the bilinearised Legendrian contact homology
groups LCHε±

0 ,ε±
1

(Λ±
0 , Λ±

1 ) can be identified with the bilinearised contact homol-
ogy groups LCHε±

0 ,ε±
1

(Λ±
0 ) (as defined in [13]) following [45]. Moreover, in the

same situation, the Cthulhu complex can be interpreted as a double cone, and
thus provides long exact sequences which can be reinterpreted, by the identifi-
cations discussed above, as exact sequences relating the singular homology of a
Lagrangian cobordism and the Legendrian contact homology of its ends.

In the rest of this section, Λ+ and Λ− will always denote closed Legendrian
submanifolds of dimension n. We will denote by Σ the natural compactification
of Σ obtained by adjoining its Legendrian ends Λ±. Note that Σ is diffeomorphic
to Σ ∩ [−T, +T ] × Y for some T ≫ 0 sufficiently large. We will also use the
notation ∂±Σ := Λ± ⊂ Σ, which implies that ∂Σ = ∂+Σ ⊔ ∂−Σ.

5.2.1 A generalisation of the long exact sequence of a pair.
The first exact sequence we produce from a Lagrangian cobordism is given by the
following:

Theorem 9 ([24]). Let Σ be a graded exact Lagrangian cobordism from Λ− to Λ+

and let ε−
0 and ε−

1 be two augmentations of A(Λ−) inducing augmentations ε+
0 ,

ε+
1 of A(Λ+). There is a long exact sequence

· · · →→ LCHk−1
ε+

0 ,ε+
1
(Λ+)

↓↓
Hn+1−k(Σ, ∂−Σ; R) →→ LCHk

ε−
0 ,ε−

1
(Λ−) →→ LCHk

ε+
0 ,ε+

1
(Λ+) →→ · · · ,

(5.1)

where the map Φε−
0 ,ε−

1
Σ : LCHk

ε−
0 ,ε−

1
(Λ−) → LCHk

ε+
0 ,ε+

1
(Λ+) is the adjoint of the

bilinearised DGA morphism ΦΣ induced by Σ (see [52]).

When Λ− = ∅ is empty the ong exact sequence above becomes the isomor-
phism

LCHk−1
ε+

0 ,ε+
1
(Λ+)

∼=−→ Hn+1−k(Σ; R)
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which appears in the work of Ekholm in [43]. Its proof was completed by Dim-
itroglou Rizell in [36]; also see [21] for an analogous isomorphism induced by a
pair of fillings.

5.2.2 A generalisation of the duality long exact sequence
and fundamental class

Theorem 10 ([24]). Let Σ be an exact graded Lagrangian cobordism from Λ− to
Λ+ and let ε−

0 and ε−
1 be two augmentations of A(Λ−) inducing augmentations

ε+
0 , ε+

1 of A(Λ+). Assume that Λ− is horizontally displaceable; then there is a
long exact sequence

· · · →→ LCHk
ε+

0 ,ε+
1
(Λ+) →→ LCH

ε−
0 ,ε−

1
n−k−1(Λ−) →→ Hn−k−1(Σ; R)

↓↓
LCHk+1

ε+
0 ,ε+

1
(Λ+) →→ · · ·

(5.2)

In the previous theorem we use the notion of horizontally displaceble Legen-
drian submanifold. A Legendrian submanifold Λ is called horizontally displaceable
if there exists a Hamiltonian isotopy ϕt of (P, dθ) which displaces the Lagrangian
projection of Λ from itself.

If Σ = R× Λ, then H•(Σ) = H•(Λ), and hence the above long exact sequence
recovers the duality long exact sequence for Legendrian contact homology origi-
nally constructed by Sabloff in [92] for Legendrian knots and then generalised to
arbitrary Legendrian submanifolds by Ekholm, Etnyre and Sabloff in [45]. In the
bilinearised setting, the duality long exact sequence was introduced by Bourgeois
and Chantraine in [13]. We use Exact Sequence (5.2) in [24] is used to prove that
the fundamental class in LCH defined by Sabloff in [92] and Ekholm, Etnyre and
Sabloff in [45] is functorial with respect to the maps induced by exact Lagrangian
cobordisms.

5.2.3 A generalisation of the Mayer-Vietoris long exact
sequence

Finally, we prove a version of the Mayer-Vietoris long exact sequence.

Theorem 11 ([24]). Let Σ be an exact graded Lagrangian cobordism from Λ− to
Λ+ and let ε−

0 and ε−
1 be two augmentations of A(Λ−) inducing augmentations

ε+
0 , ε+

1 of A(Λ+). Then there is a long exact sequence

· · · →→ LCHk−1
ε+

0 ,ε+
1
(Λ+)

←←
Hn−k(∂−Σ; R) →→ LCHk

ε−
0 ,ε−

1
(Λ−) ⊕ Hn−k(Σ; R) →→ LCHk

ε+
0 ,ε+

1
(Λ+)

←←· · ·

(5.3)

where the component
Hn−k(∂−Σ; R) → Hn−k(Σ; R)
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of the left map is induced by the topological inclusion of the negative end.
If ε−

0 = ε−
1 = ε, it moreover follows that the image of the fundamental class un-

der the component Hn(∂−Σ; R) → LCH0
ε,ε(Λ−) of the above morphism vanishes.

Moreover, under the additional assumption that Λ− is horizontally displaceable,
the image of a generator under H0(∂−Σ; R) → LCHn

ε,ε(Λ−) is equal to the funda-
mental class in Legendrian contact homology.

In particular we get that the fundamental class in Hn(∂−Σ; R) either is non-
zero in Hn(Σ), or is the image of a class in LCH−1

ε+
0 ,ε+

1
(Λ+). In both cases, Λ+ ̸= ∅.

Thus we obtain a new proof of the following result.
Corollary ([24, 34]). If Λ ⊂ P ×R admits an augmentation, then there is no exact
Lagrangian cobordism from Λ to ∅, i.e. there is no exact Lagrangian “cap” of Λ.
Remark 12. Assume that Λ− admits an exact Lagrangian filling L inside the
symplectisation, and that ε− is the augmentation induced by this filling. It follows
that ε+ is the augmentation induced by the filling L ⊙ Σ of Λ+ obtained as the
concatenation of L and Σ. Using Seidel’s isomorphisms

LCHk
ε−,ε−(Λ−) ∼= Hn−k(L; R), LCHk

ε+,ε+(Λ+) ∼= Hn−k(L ⊙ Σ; R)

to replace the relevant terms in the long exact sequences (5.1) and (5.3), we
obtain the long exact sequence for the pair (L ⊙ Σ, L) and the Mayer-Vietoris
long exact sequence for the decomposition L ⊙ Σ = L ∪ Σ, respectively. This fact
was already observed and used by the author in [69].

5.3 Restrictions on Lagrangian cobordisms
Using the long exact sequences from the previous subsection and their refinements
to coefficients twisted by the fundamental group, we find strong topological re-
strictions on exact Lagrangian cobordisms between certain classes of Legendrian
submanifolds.

5.3.1 The homology of an exact Lagrangian cobordism
from a Legendrian submanifold to itself

From Theorem 11 we get the following result.

Theorem 13 ([24]). Let Σ be an exact Lagrangian cobordism from Λ to Λ and F a
field (of characteristic two if Λ is not relatively Pin). If the Chekanov-Eliashberg
algebra A(Λ;F) admits an augmentation, then:

(i) There is an equality dimF H•(Σ;F) = dimF H•(Λ;F);

(ii) The map (i−
∗ , i+

∗ ) : H•(Λ;F) → H•(Σ;F) ⊕ H•(Σ;F) is injective; and

(iii) The map i+
∗ ⊕ i−

∗ : H•(Λ ⊔ Λ) → H•(Σ) is surjective.

Here i+ is the inclusion of Λ as the positive end of Σ, while i− is the inclusion of
Λ as the negative end of Σ.
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A similar statement has been proven by Dimitroglou Rizell and the author in
[37, Theorem 1.6] under the more restrictive assumption that Λ bounds an exact
Lagrangian filling.

An immediate corollary of Theorem 9 is the following result, which had already
appeared in [37, Theorem 1.7] under the stronger assumption that the negative
end is fillable.

Theorem 14 ([24]). If Λ is a homology sphere which admits an augmentation
over Z, then any exact Lagrangian cobordism Σ from Λ to itself is a homology
cylinder (i.e. H•(Σ, Λ) = 0).

Inspired by the work of Capovilla-Searle–Traynor [15], Baptiste Chantraine,
Georgios Dimitroglou Rizell, Paolo Ghiggini and I prove the following restriction
on the characteristic classes of an exact Lagrangian cobordism from a Legendrian
submanifold to itself. Given a manifold M , we denote by wi(M) the i-th Stiefel-
Whitney class of TM .

Theorem 15 ([24]). Let Σ be an exact Lagrangian cobordism from Λ to itself, and
F = Z/2Z. Assume that A(Λ;F) admits an augmentation. If, for some i ∈ N,
wi(Λ) = 0, then wi(Σ) = 0.

If Λ is relatively Pin, the same holds for the Pontryagin classes and for the
Maslov class.

In particular, we provide a partially answer to Question 6.1 of the same article.
Corollary ([24]). If Λ is an orientable Legendrian submanifold admitting an aug-
mentation, then any exact Lagrangian cobordism from Λ to itself is orientable.

5.3.2 Restrictions on the fundamental group of certain
exact Lagrangian fillings and cobordisms

Following ideas of Sullivan in [100] and Damian in [33], Baptiste Chantraine,
Georgios Dimitroglou Rizell, Paolo Ghiggini and I define a “twisted” version of
the Cthulhu complex Cth(Σ0, Σ1) with coefficients in the group ring R[π1(Σ0)].

We also establish long exact sequences analogous to those in Section 5.2 in-
volving homology groups over twisted coefficients in R[π1(Σ)]. In the setting of
Legendrian contact homology, these techniques were introduced by Ekholm and
Smith in [55] and further developed by Eriksson-Östman in [60].

Using generalisations of the long exact sequence from Theorem 9 we prove the
following theorem:

Theorem 16 ([24]). Let Σ be a graded exact Lagrangian cobordism from Λ− to
Λ+. Assume that A(Λ−; R) admits an augmentation and that Λ+ has no Reeb
chords in degree zero. If Λ− and Λ+ both are simply connected, then Σ is simply
connected as well.

We now present another result, whose proof uses an L2-completion of the
Floer homology groups with twisted coefficients and the L2-Betti numbers of the
universal cover (using results of Cheeger and Gromov in [25]).

Theorem 17 ([24]). Let Λ be a simply connected Legendrian submanifold which
is relatively Pin, and let Σ be an exact Lagrangian cobordism from Λ to itself. If
A(Λ;C) admits an augmentation, then Σ is simply connected as well.
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Combining Theorem 14 with Theorem 17, Baptiste Chantraine, Georgios Dim-
itroglou Rizell, Paolo Ghiggini and I get the following result.
Corollary ([24]). Let Σ be an n-dimensional Legendrian homotopy sphere and as-
sume that A(Λ;Z) admits an augmentation. Then any exact Lagrangian cobor-
dism Σ from Λ to itself is an h-cobordism. In particular:

1. If n ̸= 3, 4, then Σ is diffeomorphic to a cylinder;

2. If n = 3, then Σ is homeomorphic to a cylinder; and

3. If n = 4 and Λ is diffeomorphic to S4, then Σ is diffeomorphic to a cylinder.

When n = 1, a stronger result is known. Namely, in [21, Section 4] we proved
that any exact Lagrangian cobordism Σ from the standard Legendrian unknot Λ0
to itself is compactly supported Hamiltonian isotopic to the trace of a Legendrian
isotopy of Λ0 which is induced by the complexification of a rotation by kπ, k ∈ Z.
This classification makes use of the uniqueness of the exact Lagrangian filling of
Λ0 up to compactly supported Hamiltonian isotopy, which was proved in [59] by
Eliashberg and Polterovich. In contrast, the methods we develop give restrictions
only on the smooth type of the cobordisms and little information is known about
their symplectic knottedness in higher dimension.

5.3.3 Obstructions to the existence of a Lagrangian con-
cordance

First we note that a Lagrangian concordance is automatically exact. If Σ is a
Lagrangian concordance, then H•(Σ, ∂−Σ; R) = 0, and thus Theorem 9 implies
the following corollary.
Corollary ([24]). Let Σ be an exact Lagrangian concordance from Λ− to Λ+. If,
for i = 0, 1, ε−

i is an augmentation of A(Λ−; R) and ε+
i is the pull-back of ε−

i

under the DGA morphism induced by Σ, then the map

Φε−
0 ,ε−

1
Σ : LCH•

ε−
0 ,ε−

1
(Λ−) → LCH•

ε+
0 ,ε+

1
(Λ+)

is an isomorphism. Consequently, there is an inclusion

{LCH•
ε−

0 ,ε−
1

(Λ−)}/isom. ↪→ {LCH•
ε+

0 ,ε+
1
(Λ+)}/isom.

of the sets consisting of isomorphism classes of bilinearised Legendrian contact
cohomologies, for all possible pairs of augmentations.

One can apply this corollary to obstruct the existence of exact Lagrangian
concordances. For example, it can be applied to the computation of the linearised
Legendrian contact homologies given by Chekanov in [26, Theorem 5.8] to prove
that there is no exact Lagrangian concordance from either of the two Chekanov-
Eliashberg knots to the other. We also use Corollary 5.3.3 to get new examples
of non-symmetric concordances in the spirit of the example given by Chantraine
in [20].
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6. Front spinning construction
and its applications
Front spinning is a procedure to construct a closed, orientable Legendrian sub-
manifold ΣS1Λ ⊂ R2n+3 diffeomorphic to Λ × S1 from a closed, orientable Legen-
drian submanifold Λ ⊂ R2n+1. This procedure has been described by Ekholm, Et-
nyre and Sullivan in [46]. In [70] we define the notion of front Sm-spinning which
produces a closed, orientable Legendrian submanifold ΣSmΛ ⊂ R2(n+m)+1 diffeo-
morphic to Λ × Sm from a closed, orientable Legendrian submanifold Λ ⊂ R2n+1.
It is a natural generalization of the front S1-spinning invented by Ekholm, Etnyre
and Sullivan in [46]. We now describe the spherical spinning construction.

Let Λ be a closed, orientable Legendrian submanifold of R2n+1 parameterized
by fΛ : Λ → R2n+1 with

fΛ(p) = (x1(p), y1(p), . . . , xn(p), yn(p), z(p))

for p ∈ Λ. Without loss of generality assume that x1(p) > 0 for all p.
We define ΣSmΛ to be the Legendrian submanifold of R2(m+n)+1 parametrized

by fΣSm Λ : Λ × Sm → R2(n+m)+1 with

fΣSm Λ(p, θ, ϕ) = (x̃−m+1(p, θ, ϕ), ỹ−m+1(p, θ, ϕ) . . . ,x̃1(p, θ, ϕ), ỹ1(p, θ, ϕ),
x2(p), . . . , z(p)),

where ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x̃−m+1(p, θ, ϕ) = x1(p) sin θ sin ϕ1 . . . sin ϕm−1,
x̃−m+2(p, θ, ϕ) = x1(p) cos θ sin ϕ1 . . . sin ϕm−1,
x̃−m+3(p, θ, ϕ) = x1(p) cos ϕ1 . . . sin ϕm−1,
. . .
x̃1(p, θ, ϕ) = x1(p) cos ϕm−1,

(6.1)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ỹ−m+1(p, θ, ϕ) = y1(p) sin θ sin ϕ1 . . . sin ϕm−1,
ỹ−m+2(p, θ, ϕ) = y1(p) cos θ sin ϕ1 . . . sin ϕm−1,
ỹ−m+3(p, θ, ϕ) = y1(p) cos ϕ1 . . . sin ϕm−1,
. . .
ỹ1(p, θ, ϕ) = y1(p) cos ϕm−1,

(6.2)

θ ∈ [0, 2π) and ϕ = (ϕ1, . . . , ϕm−1) ∈ [0, π]m−1.
Since Λ is a Legendrian submanifold of R2n+1 and hence f ∗

Λ(dz−∑︁n
i=1 yidxi) =

0, we use Formulas 6.1 and 6.2 and see that

f ∗
ΣSm Λ(dz −

n∑︂
i=−m+1

yidxi) = 0.

Since fΛ(p) = (x1(p), . . . , yn(p), z(p)), where p ∈ Λ, is a parametrization of an
embedded n-dimensional submanifold and x1(p) > 0 for all p ∈ Λ, we easily see
that

fΣSm Λ(p, θ, ϕ) = (x̃−m+1(p, θ, ϕ), ỹ−m+1(p, θ, ϕ), . . . , ỹ1(p, θ, ϕ), x2(p), . . . , z(p))
(6.3)
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with θ ∈ [0, 2π), ϕ = (ϕ1, . . . , ϕm−1) ∈ [0, π]m−1 is a parametrization of an em-
bedded (n + m)-dimensional submanifold. We prove the following extension of
the spinning construction to exact Lagrangian cobordisms in [69] for m = 1 and
in [70] for a general m ≥ 1:

Theorem 18 ([69, 70]). Let Λ−, Λ+ be two closed, orientable Legendrian subman-
ifolds of R2n+1. If Λ− ≺ex

L Λ+, then there exists an exact Lagrangian cobordism
ΣSmL such that ΣSmΛ− ≺ex

ΣSm L ΣSmΛ+.

The extension result in particular imply the following:

Theorem 19 ([70]). There are infinitely many pairs of exact Lagrangian cobor-
dant and not pairwise Legendrian isotopic Legendrian S1 × Si1 × · · · × Sik in
R2(

∑︁k

j=1 ij+1)+1 which have the same classical invariants if one of ij’s is odd.

Dimitroglou Rizell and I prove that the front Sm-spinning construction pre-
serves looseness.

Theorem 20 ([37]). If Λ is a loose Legendrian submanifold of R2n+1
st , then ΣSmΛ

is a loose Legendrian submanifold of R2(n+m)+1
st .

In [37], Dimitroglou Rizell and I prove certain forgetfullness properties of
the front Sm-spinning construction. More precisely, we provide several types of
examples of Legendrian submanifolds Λ1, Λ2 ⊂ R2n+1

st which are not Legendrian
isotopic, but which become Legendrian isotopic after we apply the front Sm-
spinning construction.

Finally, in [38], Dimitroglou Rizell and I study the relation between the
Chekanov-Eliashberg algebra of a Legendrian Λ ⊂ R2n+1

st and the Chekanov-
Eliashberg algebra of ΣSmΛ and prove the following:

Theorem 21 ([38]). The Sm-spun ΣSmΛ ⊂ R2(n+m)+1
st of a Legendrian submani-

fold Λ ⊂ R2n+1
st satisfies the following properties:

(1) the Chekanov-Eliashberg algebra of ΣSmΛ admits a (graded) augmentation
to a unital commutative ring R if and only if that of Λ admits a (graded)
augmentation to R;

(2) the characteristic algebra of ΣSmΛ admits a (graded) finite-dimensional rep-
resentation if and only if that of Λ admits a (graded) finite-dimensional
representation;

(3) the Chekanov-Eliashberg algebra of ΣSmΛ is acyclic if and only if that of Λ
is acyclic.

6.1 Legendrian products and twist spuns
There are two constructions that are closely related to the front spinning construc-
tion: the twist spinning construction and the Legendrian product construction.
First we recall the notion of Legendrian product.
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Definition 22. Consider two Legendrian submanifolds

ιi : Λi ↪→ (Pi × R, dzi + ηi), i = 1, 2.

The Legendrian product Λ1 ⊠Λ2 ↬ (P1 × P2 ×R, dz + η1 + η2) is the Legendrian
immersion defined by

ι1 ⊠ ι2(u1, u2) = (ΠP1(ι1(u1)), ΠP2(ι1(u1)), z1(ι1(u1)) + z2(ι2(u2)))

Legendrian products have been introduced by Lambert-Cole in [80], where
computed their classical Legendrian invariants.

Then we recall the notion of twist spun.

Definition 23. Given a loop {Λθ}, θ ∈ S1, of Legendrian embeddings of Λ
in (P × R, dz + η), the corresponding mapping torus has a natural Legendrian
embedding

ΣS1{Λθ} ⊂ (R2 × P × R, dz − ydx + η)
called the twist spun

Twist spuns have first been constructed and studied by Ekholm–Kálmán in
[51]. In the special case when the loop of Legendrians is constant, it recovers the
S1 front spinning.

With Dimitrolgou Rizell we construct examples of Legendrian products which
are not Legendrian isotopic to twist spuns:

Theorem 24 ([40]). There exist Legendrian product tori Λ = Λ1 ⊠ Λ2 ⊂ R5
st

which are not Legendrian isotopic to any twist spun of a family of Legendrian
knots.
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7. Arnold chord conjecture

7.1 Homological Arnold chord conjecture
One of the first striking applications of Gromov’s theory of pseudoholomorphic
curves [75] was that a closed exact Lagrangian immersion ˜︁Λ ⊂ (P, dθ) inside
a Liouville manifold must have a double-point, given the assumption that it is
Hamiltonian displaceable. Gromov’s result has the following contact-geometric
reformulation, which will turn out to be useful. The above result translates into
the fact that a horizontally displaceable Legendrian submanifold Λ must have
a Reeb chord for the above standard contact form. A similar result holds for
Legendrian submanifolds of boundaries of subcritical Weinstein manifolds, as
proven in [83] by Mohnke.

In the spirit of Arnold [7], the following conjectural refinement of the above
result was later made: the number of Reeb chords on a chord-generic Legendrian
submanifold Λ ⊂ (P × R, dz + θ) whose Lagrangian projection is Hamiltonian
displaceable is at least 1

2
∑︁

i bi(Λ;F). However, as was shown by Sauvaget in
[94] by the explicit counter-examples inside the standard contact vector space
(R4 ×R, dz +θ0), θ0 = −(y1dx1 +y2dx2), the above inequality is not true without
additional assumptions on the Legendrian submanifold; also, see the more recent
examples constructed in [44] by Ekholm-Eliashberg-Murphy-Smith. The latter
result is based upon the h-principle proven in [58] by Eliashberg-Murphy for
Lagrangian cobordisms having loose negative ends in the sense of Murphy [84].

On the positive side, the above Arnold-type bound has been proven using
the Legendrian contact homology of the Legendrian submanifold, under the ad-
ditional assumption that the Legendrian contact homology algebra is sufficiently
well-behaved. In the case when the Chekanov-Eliashberg algebra of a Legendrian
admits an augmentation (this should be seen as a form of non-obstructedness for
its Floer theory), the above Arnold-type bound was proven by Ekholm-Etnyre-
Sullivan in [48] and by Ekholm-Etnyre-Sabloff in [45].

In [38], Georgios Dimitroglou Rizell and I generalised this proof to the case
when the Chekanov-Eliashberg algebra admits a finite-dimensional matrix repre-
sentation, in which case the same lower bound also is satisfied.

Theorem 25 ([38]). Given a horizontally displaceable Legendrian submanifold
Λ ⊂ P × R with the property that its characteristic algebra CΛ admits a k-
dimensional representation ρ : CΛ → Mk(F) for some field F. Then the following
inequality holds:

1
2

∑︂
i∈I

bi ≤
∑︂
i∈I

ci,

where bj := dimF Hj(Λ;F), cj is a number of Reeb chords of Λ of grading j, and
I ∈ {2Z,Z \ 2Z}.

In addition, if ρ is a graded representation, then the following refinement of
the previous inequality holds

bi ≤ ci + cn−i,

for all n and i such that n ≥ i ≥ 0.
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In addition, Dimitroglou Rizell and I in [38] constructed the following family
of examples:

Theorem 26 ([38]). There exists an infinite family of pairwise not Legendrian
isotopic Legendrian submanifolds (Λl)l∈N diffeomorphic to S1 × Sm1 × · · · × Sms

such that the Chekanov-Eliashberg algebra A(Λl) does not admit an augmentation
to any unital commutative ring, but the characteristic algebra CΛl

admits a finite-
dimensional matrix representation over Z2, and hence

1
2

∑︂
i∈I

bi ≤
∑︂
i∈I

ci(Λl),

where bj := dimZ2 Hj(S1 ×Sm1 ×· · ·×Sms ;Z2), cj(Λl) is a number of Reeb chords
of Λl of grading j, and I ∈ {2Z,Z \ 2Z}.

7.2 Failure of homological Arnold chord conjec-
ture

There are examples of horizontally displaceable Legendrian submanifolds Λ ⊂
P × R for which the homological Arnold’s inequality is not satisfied. Observe
that all known examples have an acyclic Chekanov-Eliashberg algebra.

Using this h-principle, together with the h-principle for exact Lagrangian
caps as shown in [58], Ekholm, Eliashberg, Murphy and Smith in [44] provided
many examples of exact Lagrangian immersions with few double-points. We here
present a weaker form of their result.

Theorem 27 (Ekholm, Eliashberg, Murphy and Smith [44]). Suppose that Λ is
a smooth closed n-dimensional manifold for which TΛ ⊕ C is a trivial complex
bundle. There exists a loose horizontally displaceable Legendrian embedding Λ ⊂
R2n+1 satisfying⎧⎪⎪⎨⎪⎪⎩

1 ≤ |Q(Λ)| ≤ 2, if n is odd;
|Q(Λ)| = 1

2 |χ(Λ)|, if n is even and χ(Λ) < 0;
1
2 |χ(Λ)| ≤ |Q(Λ)| ≤ 1

2 |χ(Λ)| + 2, if n is even and χ(Λ) > 0.

Dimitroglou Rizell and I show the following slight improvement of the lower
bound in the case when a Legendrian submanifold has a non-acyclic Chekanov-
Eliashberg algebra.

Theorem 28 ([38]). Suppose that Λ ⊂ P × R is a horizontally displaceable n-
dimensional Legendrian submanifold whose characteristic algebra is non-trivial,
but does not admit any finite-dimensional representations. It follows that

|Q(Λ)| ≥ 3.

Moreover, if n = 2k, we have the bound

|Q(Λ)| ≥ 1
2 |χ(Λ)| + 2,

under the additional assumptions that Λ is orientable and either
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1. χ(Λ) ≥ 0, or

2. µ(Λ) = 0 and all generators have non-negative grading.
The above Arnold-type bound is also related to the one regarding the num-

ber of Hamiltonian chords between the zero-section in T ∗L (or, more generally,
any exact closed Lagrangian submanifold of a Liouville manifold) and its image
under a generic Hamiltonian diffeomorphism. Namely, such Hamiltonian chords
correspond to Reeb chords on a Legendrian lift of the union of the Lagrangian
submanifold and its image under the Hamiltonian diffeomorphism. In fact, as
shown by Laudenbach-Sikorav in [81], the number of such chords is bounded
from below by the stable Morse number of the zero-section (and hence, in partic-
ular, it is bounded from below by half of the Betti numbers of the disjoint union
of two copies of the zero-section). Arnold originally asked whether this bound
can be improved, and if in fact the Morse number of the zero-section is a lower
bound. However, this question seems to be out of reach of current technology.
On the other hand, we note that the stable Morse number is equal to the Morse
number in a number of cases, see [32].

In the following we assume that a Legendrian submanifold Λ ⊂ (P × R, α :=
dz + θ) is chord-generic and has an exact Lagrangian filling LΛ ⊂ (R × P ×
R, d(etα)). Here t denotes the coordinate on the first R-factor. Further, the set
of Reeb chords c in degree |c| = CZ(c) − 1 ∈ Z/ZµLΛ will be denoted by Q|c|(Λ),
where the grading is induced by the Conley-Zehnder index modulo the Maslov
number µLΛ ∈ Z of LΛ as defined in [47]. Observe that µLΛ = 0 in particular
implies that the first Chern class of (P, dθ) vanishes on H2(P ).

For a group G being the epimorphic image of π1(LΛ), consider the Morse
homology complex (CM•(LΛ, f ; R[G]), ∂f ) of LΛ with coefficients in the group
ring R[G] twisted by the fundamental group, where R is a unital commutative
ring and f : LΛ → R is a Morse function satisfying df(∂t) > 0 outside of a
compact set. (The generators of this complex are graded by the Morse index,
and the differential counts negative gradient flow lines.)
Theorem 29 ([39]). Let LΛ ⊂ (R × P × R, d(etα)) be an exact Lagrangian
filling of an n-dimensional closed Legendrian submanifold Λ ⊂ (P × R, α) with
fundamental group π := π1(LΛ) and Maslov number µLΛ ∈ Z.

(i) In the case when the filling is spin and when µLΛ = 0, the Morse homology
complex (CM•(LΛ, f ;Z[π]), ∂f ) is simple homotopy equivalent to a Z[π]-
equivariant complex (Z[π]⟨Qn−•(Λ)⟩, ∂);

(ii) In the general case, it follows that the complex

(CM•(LΛ, f ; R[G]), ∂f )

is homotopy equivalent in the category of G-equivariant complexes to a com-
plex (R[G]⟨Qn−•(Λ)⟩, ∂) with grading in Z/µLΛZ. Here we can always take
R = Z2, while we are free to choose an arbitrary unital commutative ring
in the case when LΛ is spin.

Now let stabMorse(M) denote the stable Morse number of a manifold M
with possibly non-empty boundary. Using Theorem 29 and the adaptation of
[32, Theorem 2.2] to the case of manifolds with boundary, the following result is
immediate:
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Corollary ([39]). Suppose that Λ ⊂ P × R is a chord-generic closed Legendrian
submanifold admitting an exact Lagrangian filling LΛ which is spin and has van-
ishing Maslov number. It follows that the bound

|Q(Λ)| ≥ stableMorse(LΛ) (7.1)

is satisfied for the number of Reeb chords on Λ.
By using the long exact sequence in singular homology of the pair (LΛ, ∂LΛ =

Λ), where LΛ denotes the compact part of LΛ, we obtain the following inequalities

stableMorse(LΛ) ≥
∑︂

i

bi(LΛ;F) ≥ 1
2

∑︂
i

bi(Λ;F),

for any field F. Obviously, Inequality (7.1) is a strengthening of the original
Arnold-type bound.

In the course of showing the above result, Georgios Dimitroglou Rizell and I
also obtain the following generalisation of the aforementioned result by Sikorav-
Laudenbach [81], which also is related to the theory of stable intersection numbers
as introduced by Eliashberg-Gromov in [57, Section 2.3].

Theorem 30. [39] Consider a closed exact Lagrangian submanifold L ⊂ (P, dθ)
which is spin and has vanishing Maslov number. For any k ≥ 0, the exact La-
grangian submanifold L×Rk ⊂ (P ×Ck, dθ⊕ω0) with ω0 = dx1∧dy1+· · ·+dxk∧dyk

satisfies the property that

#(L × Rk) ⋔ ϕ1
Hs

(L × Rk) ≥ stableMorse(L),

given that the above intersection is transverse, and that the Hamiltonian is of the
form Hs = fs + Q, where:

• Q(x1+iy1, . . . , xk +iyk)=Q(x1, . . . , xk) is a non-degenerate quadratic form
on Rk ⊂ Ck; and

• fs : P × Ck → R, s ∈ [0, 1], satisfies that maxs∈[0,1] ∥fs∥C1 is bounded for a
product Riemannian metric of the form gP ⊕gstd on P ×Ck. Here we more-
over require gP to be invariant under the Liouville flow on (P, dθ) outside
of a compact subset, while gstd denotes the Euclidean metric.

We also get the following two theorems which are consequences of Theorem 29
together with the algebraic machinery developed by Ono and Pajitnov in [90]. For
a finitely presented group G, we denote by d(G) ∈ Z≥0 the minimal number of
generators of G and in [39] prove the following:

Theorem 31 ([39]). Let µLΛ = 0. Assume that π1(LΛ) admits a finite epimorphic
image G, which is a simple or solvable group.

(i) Under the above assumptions, we have

|Q(Λ)| ≥ d(G) +
∑︂
i ̸=1

bi(LΛ;F);

(ii) If moreover π1(LΛ) is a finite perfect group, then

|Q(Λ)| ≥ d(G) +
∑︂
i ̸=1

bi(LΛ;F) + 2.
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Here we have to use the field F = Z2 unless LΛ is spin, in which case it can be
chosen arbitrarily.

Theorem 32 ([39]). Assume that π1(LΛ) admits a finite epimorphic image G,
which is a simple or solvable group.

(i) Under the above assumptions, we have

|Q(Λ)| ≥ max(1, d(G) − 1) +
∑︂
i ̸=1

bi(LΛ;F),

where i ∈ Z/µLΛZ;

(ii) If moreover µLΛ ≥ 2n + 2, then

|Q(Λ)| ≥ d(G) +
∑︂
i ̸=1

bi(LΛ;F),

where i ∈ Z/µLΛZ.

Here we have to use the field F = Z2 unless LΛ is spin, in which case it can be
chosen arbitrarily.
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8. Polyfilable Legendrian
submanifolds
Within the last few years the question of existence of infinitely many exact La-
grangian fillings for Legendrian links has received a certain amount of attention.
First it has been positively answered by Casals and Gao [16], and then by An-
Bae-Lee [4, 5], Casals-Zaslow [18], and Gao-Shen-Weng [67, 68].

In [17] Casals and Ng following the ideas of Kálmán [76] have constructed the
first series of Legendrian links in the standard contact 3-dimensional vector space
with the property that the Legendrian contact homology DGAs detect infinitely
many exact Lagrangian fillings. We show that Sk fron spinning construction
applied to the examples of Casals–Ng leads to examples of Legendrian submani-
folds with infinite number of pairwise Hamiltonian non-isotopic exact Lagrangian
fillings. More precisely, we prove the following:

Theorem 33 ([72]). For a given m ≥ 1 and ki ≥ 2, where i = 1, . . . , m, there is
a Legendrian submanifold Λ in the standard contact vector space R2(k1+···+km+1)+1

diffeomorphic to the disjoint union of some number of S1 × Sk1 × · · · × Skm which
admits an infinite number of exact Lagrangian fillings distinct up to Hamiltonian
isotopy.

Then from the examples in [72] and polyfillable Legendrian submanifolds from
the work of Cao-Gallup-Hayden-Sabloff [14] we constructed the following family:

Theorem 34 ([71]). For a given n ≥ 3 and K > 0, there is a connected Legen-
drian submanifold Λ ⊂ (R2n+1, dz − ∑︁

i yidxi) which admits a collection of exact
Lagrangian fillings

{Lj
k | 1 ≤ j ≤ K(Λ), k ∈ Z≥0},

where K(Λ) ≥ K, such that

• Lj1
k1 is not homeomorphic to Lj2

k2 for j1 ̸= j2 and k1, k2 ∈ Z≥0;

• for a fixed j, {Lj
k}∞

k=1 consists of an infinite number of diffeomorphic exact
Lagrangian fillings that are pairwise distinct up to Hamiltonian isotopy.
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9. Torsion in Legendrian contact
homology
Legendrian contact homology of a Legendrian submanifolds Λ ⊂ R2n+1 is often
defined with Z2-coefficients, but if Λ is spin, it can be also defined over other
fields, over Z [48, 78] and even more general coefficient rings such as Z2[H1(Λ;Z)]
or Z[H1(Λ;Z)] [47, 78].

The Legendrian contact homology DGA is not finite rank, even in fixed de-
gree; the same holds in homology. In order to deal with this issue Chekanov
in [26] proposed to use an augmentation of the DGA to produce a generically
finite-dimensional linear complex, whose homology is called linearized Legendrian
contact homology.

Given an exact Lagrangian filling L of Λ in the symplectization of R2n+1

with vanishing Maslov number, it induces the augmentation of the Chekanov–
Eliashberg algebra, i.e. a unital DGA homomorphism ε : A(Λ) → (Z2, 0), see
[52]. If besides that L is equipped with a spin structure extending the given spin
structure on Λ, then one also has an augmentation ε : A(Λ) → (Z, 0), see [52, 78].

The majority of computations of linearized Legendrian contact homology
groups have been done with Z2-coefficients. One can ask whether for coeffi-
cients in Z one can get a non-trivial algebraic torsion in linearized Legendrian
contact cohomology. Note that certain examples of Legendrian submanifolds of
J1(T n) and of J1(S2) with torsion elements in linearization appear in [48, 86, 87].
We answer the more concrete question about the type of algebraic torsion that
could appear for Legendrian submanifolds of R2n+1, i.e. whether an arbitrary
finitely generated abelian group can be realized as a linearized Legendrian con-
tact cohomology of some Legendrian submanifold of the standard contact vector
space.

In [73], we provide the following answer to this question in high dimensions:

Theorem 35 ([73]). Given a finitely generated abelian group G and an integer
n ≥ 3, n ̸= 4. There is a Legendrian submanifold Λ in R2n+1 of Maslov number
0 such that the Chekanov-Eliashberg algebra of Λ admits an augmentation ε :
A(Λ) → (Z, 0) with LCHn−1

ε (Λ;Z) ≃ G.

Very recently this question has been also solved by Lipshitz and Ng in the low
dimensional case [82], i.e. for Legendrian submanifolds of R3.
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10. Non-geometric
augmentations in high
dimensions
There are a few obstructions to the existence of an exact Lagrangian filling which
induces a given augmentation, see [19, 43, 36, 53, 61, 66, 69]. Besides that there
are many examples of augmentations of Legendrian knots that are not induced
by exact Lagrangian fillings i.e., are non-geometric.

We construct non-geometric augmentations for certain high dimensional Leg-
endrian submanifolds. The obstructions to the existence of exact Lagrangian
fillings that we use are Seidel’s isomorphism [43, 36] and the injectivity of a cer-
tain algebraic map between the corresponding augmentation varieties proven by
Gao and Rutherford [66]. More precisely, in [74] we prove the following:

Theorem 36. [74] There is a Legendrian submanifold Λ in R2n+1
st of Maslov

number 0 such that the Chekanov-Eliashberg algebra of Λ admits an augmentation
ε : A(Λ) → (F2, 0) which is not induced by a spin exact Lagrangian filling of
Maslov number 0.

In addition, along the way in [74] we prove the following relation between aug-
mentation varieties over a field F of Legendrian submanifolds and their spherical
spuns:

Theorem 37. [74] Let Λ be a Maslov number 0 spin Legendrian submanifold,
whose Reeb chords have only non-negative degrees. Then there is an isomorphism
of (graded) augmentation varieties Aug(Λ;F) ≃ Aug(ΣSmΛ;F) for all m ≥ 2,
and Aug(ΣS1Λ;F) ≃ Aug(Λ;F) × F∗.
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11. Noncommutative
augmentation category
In order to recover at least part of the nonlinear information lost in the lineari-
sation of Legendrian contact homology, one can study products in the linearised
Legendrian contact homology groups induced by the product structure of the
Chekanov-Eliashberg DGA.

Civan, Koprowski, Etnyre, Sabloff and Walker in [29] endowed Chekanov’s
linearised chain complex with an A∞-structure. This construction was gener-
alised in [13] by Chantraine and Bourgeois, who showed that a differential graded
algebra naturally produces an A∞-category whose objects are its augmentations.
In dimension three, the A∞-category constructed by Chantraine and Bourgeois
admits a unital refinement defined by Ng, Rutherford, Shende, Sivek and Zaslow
in [89]. The latter article also establishes an equivalence between this unital A∞-
category and one defined in terms of derived sheaves of microlocal rank one with
microsupport given by a fixed Legendrian knot.

A∞-algebras are by now classical structures which were first introduced by
Stasheff in [98] as a tool in the study of ‘group-like’ topological spaces. Fukaya
was the first to upgrade the notion of an A∞-algebra to that of an A∞-category.
In [64] he associated an A∞-category, which now goes under the name of the
Fukaya category, to a symplectic manifold. See [95] for a good introduction.
Inspired by Fukaya’s work [64], Kontsevich in [79] formulated the homological
mirror symmetry conjecture relating the derived Fukaya category of a symplectic
manifold to the derived category of coherent sheaves on a “mirror” manifold.

The construction in [29] and [13] defines A∞-operations only when the coef-
ficient ring of the DGA is commutative. In [22] Chantraine, Dimitroglou Rizell,
Ghiggini and I extend that construction to noncommutative coefficient rings in
the following two cases:

(I) the coefficients of the DGA as well as the augmentations are taken in a
unital noncommutative algebra, or

(II) the coefficients of the DGA as well as the augmentations are taken in a non-
commutative Hermitian algebra. This case includes both finite-dimensional
algebras over a field and group rings.

Case (II) is obviously included in Case (I), but as we show in [22] there is a
particularly nice alternative construction of an A∞-structure in case (II) which
gives a different result. Both generalisations above are sensible to study when
having Legendrian isotopy invariants in mind, albeit for different reasons.

Case (I) occurs because there are Legendrian submanifolds whose Chekanov-
Eliashberg DGA does not admit augmentations in any unital algebra of finite rank
over a commutative ring, but admits an augmentation in a unital noncommuta-
tive infinite-dimensional one (for example, in their characteristic algebras). The
first such examples were Legendrian knots constructed by Sivek in [96] building
on examples found by Shonkwiler and Shea Vela-Vick in [97]. From them, Dim-
itroglou Rizell and I constructed higher dimensional examples in [38]. Observe
that any differential graded algebra has an augmentation in its “characteristic
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algebra”, introduced by Ng in [85], which is the quotient of the DGA by the
two-sided ideal generated by its boundaries. This algebra is in general noncom-
mutative and infinite-dimensional, and any augmentation factors through it. It
is of course possible that the characteristic algebra vanishes, but it does so if and
only if the DGA is acyclic [35]. The complex that we will define in case (I) (but
not the higher order operations) was used in [34] by Dimitroglou Rizell in order to
deduce that a Legendrian submanifold with a non-acyclic Chekanov-Eliashberg
DGA does not admit a displaceable Lagrangian cap.

Finally, we note that the construction we give in Case (I) is closely related
to the A∞-structures and bounding cochains with noncommutative coefficients
as introduced by Cho, Hong and Sui-Cheong in their work [27]. Namely, the
(uncurved) A∞-structures that we produce from a DGA and its augmentations
can be seen to coincide with the (uncurved) A∞-structures produced by their
bounding cochains.

Case (II) also occurs naturally in the context of Legendrian contact homol-
ogy. For example, in [88] Ng and Rutherford show that augmentations of certain
satellites of Legendrian knots induce augmentations in matrix algebras for the
Chekanov-Eliashberg DGA of the underlying knot. Moreover, coefficients in a
group ring appear naturally if one considers the Chekanov-Eliashberg DGA with
coefficients “twisted” by the fundamental group of the Legendrian submanifold.
We learned this construction from Eriksson-Östman, who makes use of it in [60].
This version of Legendrian contact homology can be seen as a natural general-
isation of Morse homology and Floer homology with coefficients twisted by the
fundamental group; see the work [100] by Sullivan and [33] by Damian. In the
setting of Legendrian contact homology with twisted coefficients, an exact La-
grangian filling gives rise to an augmentation taking values in the group ring
of the fundamental group of the filling. See the work [24] by Chantraine, Dim-
itroglou Rizell, Ghiggini and I for more details, were Legendrian contact homology
with twisted coefficients is used to study the topology of Lagrangian fillings and
cobordisms.

In [22] we outline how our construction can be used as an efficient computa-
tional tool for distinguishing a Legendrian knot from its Legendrian mirror in the
case when there are no augmentations in a commutative algebra. Note that it,
in general, it is much easier to extract invariants from the A∞-algebra compared
to the DGA.

Finally, we recall that Legendrian contact homology is not the only place
where noncommutative graded algebras appear in symplectic geometry. Another
source is cluster homology, a proposed generalisation of Lagrangian Floer homol-
ogy due to Cornea and Lalonde [30], which is supposed to provide an alternative
approach to the A∞-structures in Floer homology introduced by Fukaya, Oh,
Ohta and Ono [65].
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12. The wrapped Fukaya
category of Weinstein manifolds
and sectors and Seidel’s
conjecture
A Fukaya category of a symplectic manifold (M, ω) is a category F(M) whose
objects are Lagrangian submanifolds of M and morphisms are Floer chain groups:
Hom(L0, L1) = CF (L0, L1). Its finer structure can be described in the language
of quasi categories as an A∞-category. As Fukaya categories are A∞-categories,
they have associated derived categories, which are the subject of the celebrated
homological mirror symmetry conjecture of Maxim Kontsevich [79] which says
that for a closed symplectic Calabi-Yau manifold, its Fukaya category is derived
equivalent to the category of coherent sheaves on its mirror. Recall that a phe-
nomenon called mirror symmetry was first observed by physicists studying string
theory, and it provides a bridge between symplectic geometry and string theory.

The version of Fukaya category for Weinstein manifolds (manifolds with cylin-
drical ends) was defined by Abouzaid and Seidel [2] and it is called the wrapped
Fukaya category. There is a version of homological mirror symmetry for Wein-
stein manifolds, where wrapped Fukaya categories play the same role as Fukaya
categories in the homological mirror symmetry conjecture in the case of closed
manifold. The following result that I prove with Baptiste Chantraine, Geor-
gios Dimitroglou Rizell and Paolo Ghiggini provides a natural presentation of
the wrapped Fukaya category of a Weinstesin manifold (or, even more generally,
Weinstein sector):

Theorem 38 ([23]). The wrapped Fukaya category of a Weinstein manifold (or,
more generally, Weinstein sector) W is generated by the Lagrangian cocore discs
of critical Weinstein handles.

In other words, in a joint work with Chantraine, Dimitroglou Rizell and Ghig-
gini [23], we decompose any object in the wrapped Fukaya category as a twisted
complex built from the cocores of the critical (i.e. half-dimensional) handles in
a Weinstein handle decomposition. The main tools used are the Floer homology
theories of exact Lagrangian immersions, of exact Lagrangian cobordisms in the
SFT sense (i.e. between Legendrians), as well as relations between these theo-
ries. Note that exact Lagrangians admit Legendrian lifts, and that appropriate
Lagrange surgeries can be seen to give rise to an exact Lagrangian cobordism of
the aforementioned type.

As a corollary of Theorem 38 we get a proof of the long-standing Seidel’s
conjecture:

Theorem 39. [23] Let W be a Weinstein manifold of finite type. Let D be the
full A∞-subcategory of the wrapped Fukaya category WF (W ) whose objects are
the Lagrangian cocore planes. Then the open-closed map

OC : HH∗(D, D) → SH∗(W ).
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is an isomorphism. Hence,

OC : HH∗(WF (W ), WF (W )) → SH∗(W )

is an isomorphism. Here HH∗ denotes Hochschild homology, SH∗ denotes sym-
plectic cohomology and OC is the open-closed map defined in [1].
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2008.

[96] S. Sivek. The contact homology of Legendrian knots with maximal Thurston-
Bennequin invariant. J. Symplectic Geom., 11(2):167–178, 2013.

39



[97] Clayton Shonkwiler and David Shea Vela-Vick. Legendrian contact homology
and nondestabilizability. J. Symplectic Geom., 9(1):33–44, 2011.

[98] J. D. Stasheff. Homotopy associativity of H-spaces. I, II. Trans. Amer.
Math. Soc. 108 (1963), 275-292; ibid., 108:293–312, 1963.
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