
Charles University

Faculty of Mathematics and Physics

HABILITATION THESIS

David Hartman

Properties of networks characterizing
dynamical systems

Prague 2022





Acknowledgments

First, I would like to thank Jaroslav Hlinka for the long-term scientific coopera-
tion on complex network topics in various real-world domains. His ideas about
nonlinearity in time series, presented in paper [61], initiated our subsequent colab-
orative papers about nonlinearity in brain networks, see [49] or its reprint P-17 ,

and stock networks, see [48] or its reprint P-6 , as well as another paper about

nonlinearity in climate, see [59] or its reprint P-16 , where he was the first author
and I was a second coauthor. Jaroslav Hlinka also initiated and lead our studies
about small-world motivated by complex networks in brain and represented by
next two results, see [58] or its reprint P-18 and see [56] or its reprint P-8 .
Finally, I was a coauthor of two paper mainly authored by Jaroslav Hlinka about
causality, see [60] or its reprint P-9 , and about evolving network, see [57] or its

reprint P-14 .
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Preface

This thesis consists of selected papers coauthored by David Hartman. The com-
mon topic is understanding complex networks and their processing. These net-
works are models of dynamic complex systems, and their utilization requires
working with data, minimizing uncertainty, as well as studying the theoretical
properties of graphs and other structures. For that reason, such a topic combines
combinatorics, algebraic graph theory, optimization, interval algebra, statistics,
data processing, and others.

To use a complex network for analysis of a real-world system, what we need
to apply is a pipeline starting with data preprocessing and ending with net-
work analysis itself. We study most of the steps in this pipeline. The presented
results are subdivided into groups according to their position in this pipeline.
The �rst group studies reliability of analyses for the systems de�ned by behav-

ioral connectivity. Special attention is given to constructing networks from data
accounting for properties of the dataset when using various types of connectiv-
ity measures [6, 7, 15, 16, 17]. The next group contains results about global

structures of these networks such as graph decompositions or small-world char-
acter [12, 13, 14, 18, 19]. The third group deals with potential symmetry of

complex network studying various symmetries applicable to large networks such
as homomorphism-homogeneity or regularity of centralities [1, 8, 9, 10]. The last
group deals with uncertainty in the data discussing the adoption of the interval
algebra on matrices as potential representative of complex networks [2, 3, 4, 5, 11].

I also want to thank all my colleagues for their collaboration, see my kind
acknowledgments for their contributions above in a separate section.

[1] A. Aranda and D. Hartman. The independence number of HH-homogeneous
graphs and a classi�cation of MB-homogeneous graphs. European Journal

of Combinatorics, 85:103063, 2020. doi:10.1016/j.ejc.2019.103063.

[2] D. Hartman and M. Hladík. Tight bounds on the radius of nonsingularity.
In M. Nehmeier, J. W. VonGudenberg, and W. Tucker, editors, Scienti�c
Computing, Computer Arithmetic, and Validated Numerics. SCAN 2015,
volume 9553 of Lecture Notes in Computer Science, pages 109�115. Springer,
2015. doi:10.1007/978-3-319-31769-4_9.

[3] D. Hartman and M. Hladik. Regularity radius: Properties, approximation
and a not a priori exponential algorithm. Electronic Journal Of Linear Al-

gebra, 33:122�136, 2018. doi:10.13001/1081-3810.3749.

1



[4] D. Hartman and M. Hladík. Complexity of computing interval matrix powers
for special classes of matrices. Applications of Mathematics, 65(5):645�663,
2020. doi:10.21136/AM.2020.0379-19.

[5] D. Hartman, M. Hladík, and D. �íha. Computing the spectral decomposition
of interval matrices and a study on interval matrix powers. Applied Mathe-

matics and Computation, 403:126174, 2021. doi:10.1016/j.amc.2021.126174.

[6] D. Hartman and J. Hlinka. Nonlinearity in stock networks. Chaos:

An Interdisciplinary Journal of Nonlinear Science, 28(8):083127, 2018.
doi:10.1063/1.5023309.

[7] D. Hartman, J. Hlinka, M. Palu², D. Mantini, and M. Corbetta. The
role of nonlinearity in computing graph-theoretical properties of resting-
state functional magnetic resonance imaging brain networks. Chaos,
21(1):art.num.013119, 2011. doi:10.1063/1.3553181.

[8] D. Hartman, J. Hubi£ka, and J. Ne²et°il. Complexities of relational struc-
tures. Mathematica Slovaca, 65(2):229�246, 2015. doi:10.1515/ms-2015-0019.

[9] D. Hartman, J. Hubi£ka, and D. Ma²ulovi¢. Homomorphism-homogeneous
L-colored graphs. European Journal of Combinatorics, 35(0):313�323, 2014.
doi:10.1016/j.ejc.2013.06.038.

[10] D. Hartman, A. Pokorná, and P. Valtr. On the connectivity and the diameter
of betweenness-uniform graphs. In Conference on Algorithms and Discrete

Applied Mathematics, pages 317�330. Springer, 2021. doi:10.1007/978-3-030-
67899-9_26.

[11] M. Hladík, D. Hartman, and M. Zamani. Maximization of a PSD
quadratic form and factorization. Optimization Letters, pages 1�14, 2020.
doi:10.1007/s11590-020-01624-w.

[12] J. Hlinka, D. Hartman, N. Jajcay, D. Tome£ek, J. Tint¥ra, and M. Palu².
Small-world bias of correlation networks: From brain to climate. Chaos:

An Interdisciplinary Journal of Nonlinear Science, 27(3):035812, 2017.
doi:10.1063/1.4977951.

[13] J. Hlinka, D. Hartman, N. Jajcay, M. Vejmelka, R. Donner, N. Marwan,
J. Kurths, and M. Palu². Regional and inter-regional e�ects in evolving
climate networks. Nonlinear Processes in Geophysics, 21(2):451�462, 2014.
doi:10.5194/npg-21-451-2014.

[14] J. Hlinka, D. Hartman, and M. Palu². Small-world topology of func-
tional connectivity in randomly connected dynamical systems. Chaos,
22(3):art.num.033107, 2012. doi:10.1063/1.4732541.

[15] J. Hlinka, D. Hartman, M. Vejmelka, D. Novotná, and M. Palu². Non-linear
dependence and teleconnections in climate data: sources, relevance, nonsta-
tionarity. Climate dynamics, 42(7-8):1873�1886, 2014. doi:10.1007/s00382-
013-1780-2.



[16] J. Hlinka, N. Jajcay, D. Hartman, and M. Palu². Smooth informa-
tion �ow in temperature climate network re�ects mass transport. Chaos:

An Interdisciplinary Journal of Nonlinear Science, 27(3):035811, 2017.
doi:10.1063/1.4978028.

[17] M. Palu², D. Hartman, J. Hlinka, and M. Vejmelka. Discerning connec-
tivity from dynamics in climate networks. Nonlinear Process Geophysics,
18(5):751�763, 2011. doi:10.5194/npg-18-751-2011.

[18] J. Runge, C. Petoukhov, J.F. Donges, J. Hlinka, N. Jajcay, M. Vejmelka,
D. Hartman, N. Marwan, M. Palu², and J. Kurths. Identifying causal gate-
ways and mediators in complex spatio-temporal systems. Nature Communi-

cations, 6(1):1�10, 2015. doi:10.1038/ncomms9502.

[19] M. Vejmelka, L. Pokorná, J. Hlinka, D. Hartman, N. Jajcay, and M. Palu².
Non-random correlation structures and dimensionality reduction in mul-
tivariate climate data. Climate Dynamics, 44(9):2663�2682, 2015. doi:
10.1007/s00382-014-2244-z.





Contents

Preface 1

1 Complex networks analysis 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Real-world motivation . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Common tasks and corresponding gaps . . . . . . . . . . . 6

1.2 Behavioral connectivity . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Nonlinearity in connections . . . . . . . . . . . . . . . . . 10
1.2.2 Dynamics of the time series . . . . . . . . . . . . . . . . . 13
1.2.3 Causal network discovery . . . . . . . . . . . . . . . . . . . 13

1.3 Global network structure . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Network decompositions . . . . . . . . . . . . . . . . . . . 14
1.3.2 Small-world phenomenon . . . . . . . . . . . . . . . . . . . 16

1.4 Symmetry of networks . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.1 Notions of homogeneity . . . . . . . . . . . . . . . . . . . . 17
1.4.2 Uniform distributions of graph characteristics . . . . . . . 22

1.5 Uncertainty in network design . . . . . . . . . . . . . . . . . . . . 22
1.5.1 Radius of regularity . . . . . . . . . . . . . . . . . . . . . . 23
1.5.2 Interval matrix powers . . . . . . . . . . . . . . . . . . . . 25
1.5.3 Quadratic programming approximations . . . . . . . . . . 28

1.6 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

References 31

Reprints of papers 41
P-1 Connectivity of betweenness uniform graphs . . . . . . . . . . . . 42
P-2 Complexity of computing interval matrix powers . . . . . . . . . . 56
P-3 Complexity of computing interval matrix powers . . . . . . . . . . 69
P-4 Maximization of a PSD quadratic form and factorization . . . . . 88
P-5 The independence number of HH- and MH-homogeneous graphs . 102
P-6 Nonlinearity in stock networks . . . . . . . . . . . . . . . . . . . . 115
P-7 Regularity radius: properties approximation and algorithm . . . . 130
P-8 Small-world bias of correlation networks: From brain to climate . 146
P-9 Smooth information flow in temperature climate network . . . . . 156
P-10 Tight bounds on the radius of nonsingularity . . . . . . . . . . . . 162
P-11 Complexities of relational structures . . . . . . . . . . . . . . . . . 169
P-12 Identifying causal gateways and mediators in complex systems . . 187
P-13 Non-random correlation structures in climate data . . . . . . . . . 197
P-14 Regional and inter-regional effects in evolving climate networks . . 217
P-15 Homomorphism-homogeneous L-colored graphs . . . . . . . . . . 229
P-16 Non-linear dependence and teleconnections in climate data . . . . 240
P-17 Nonlinearity in computing graph properties of brain networks . . 254
P-18 Small-world topology in randomly connected dynamical systems . 267
P-19 Discerning connectivity from dynamics in climate networks . . . . 274

1



2



1. Complex networks analysis

1.1 Introduction

Characterization, modeling, or even behavior prediction of complex dynamical
systems are in some areas still far from being completely understood, see, e.g.,
the human brain [17] or the Earth’s climate [75]. An important observation in
science, see [12], is that many systems are made out of parts, and we can study
the particular system via learning how these parts work. Authors of [12] also
observe that there is a “new approach to science, studying how relationships
between parts give rise to collective behaviors of a system, and how the system
interacts and forms relationships with its environment”. We can rephrase this
observation into a simplified one, saying that many of these systems are composed
of smaller subsystems interconnected via particular synchronization patterns [93].
One can imagine a simple model where a family of oscillators are connected via
synchronization. We know that even such a simple system can produce quite
complicated dynamics [93].

As a consequence of the above statements, we can see that even though we
consider the representation power of particular models of subsystems as sufficient,
we still might get into troubles when considering a specific interconnection struc-
ture. At the same time, it has been recently suggested that one can substantially
contribute to the understanding of the systems mentioned above by exploting the
so-called network character of the system [88, 2]. The system analysis is carried
out by studying this “underlying network,” assuming that crucial aspects of the
system’s behavior can be ascribed to specific connectivity patterns [88]. Such
complex networks surprisingly often share structural properties across different
real-world systems, and their characterization can benefit from using the same
set of analytic tools [29].

There are a plethora of approaches when analyzing dynamical systems us-
ing complex networks. We can describe a relatively direct utilization within
neuroscience. Consider the task of discriminating patients with a particular neu-
rological disorders from healthy controls in various stages of the disease. This
task represents a very complex problem that has been approached from multiple
perspectives [9, 102, 24]. The tools used for the classification of various diseases
range from standard classification techniques such as Support vector machine
(SVM) [8] to more comprehensive ones using complex networks, e.g. Graph neu-
ral networks (GNN) [121, 118]. Except for the relatively direct application of the
connectivity structure using GNN, we can also use specific network descriptors.
Such an approach is always associated with a particular task, as we can see in a
specific example of the characterization of Alzheimer’s disease [53]. This study
uses magnetic resonance imaging (MRI) data to construct a complex network re-
presenting the brain’s functional structure. Alzheimer patients’ networks exhibit
longer distances indicating less efficient information exchange and a higher ten-
dency to create clusters indicating higher local specializations. We can compute
both properties for every subject using network characteristics and combine them
into the well-known small-world coefficient [120]. Consequently, we can say that
Alzheimer’s disease modifies the small-world character of the patient’s network.
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The examples above show specific approaches. However, there is a typical
analytical pipeline that is shared by many studies using complex networks. This
pipeline is subject to many forms of uncertainty in various levels of processing,
including problems in the accuracy of the data as well as the expressive power of
the used graph characteristics. This thesis explores ways to minimize uncertainty
in a complex network analytical pipeline. To better understand the motivation
of this approach, we start with a short review of some applications of complex
networks in section 1.1.1. In section 1.1.2, we identify research gaps and define
general goals in this area. In the subsequent four sections (from 1.2 to 1.5), we
describe results achieved when resolving the defined goals. The final section 1.6
provides some final remarks and describes several projects solved in this area
having more applied outputs.

1.1.1 Real-world motivation

The areas of application of complex networks range from biological, natural, and
socio-economic systems to characterizing purely technological ones.

Biological systems: Within biological systems, we can find tasks such as the
analysis of the human brain [23, 94, 98] usually predicting the development of
neurodegenerative diseases such as Alzheimer’s [30, 117] or characterizing epilep-
tic seizures [107, 41]. Other biological tasks are connected with protein-to-protein
interactions [65] usually utilized in new drug design [64]. There are other com-
monly studied networks, such as metabolic networks [66] or genetic networks [33].
An example of a physical system handled via this approach is the Earth’s cli-
mate [34, 108, 110], usually employed to explain complicated global phenomena
such as El Niño/La Niña [109].

Social systems: Social systems represent a vast area of applications giving birth
to many notions such as centrality [39], homophily [81] or the small-world proper-
ty [83, 120]. These systems range from classical social systems to online commu-
nities. Social networks can represent, e.g., personal relations such as friendship
or trust [119, 19]. These models can also be defined for online communities or
online social activities represented, e.g., by Facebook [72] or Email communi-
cations [43]. These networks give rise to the area of Social Network Analysis
(SNA) [119]. This type of analysis can help in several application domains such
as target marketing [68] or recommender design [18]. Similar to a computer virus
that can spread through a particular structure of email contacts, see [122], phys-
ical contacts are responsible for transmitting diseases. This, in fact, gave birth
to a whole area of research called epidemic spreading [92] that studies the spread
dynamics of various diseases on social networks [85]. There are particular exam-
ples of diseases whose analysis can be improved using a social network viewpoint,
such as sexually transmitted diseases [73]. Another critical topic is the analysis of
rumors and fake-news [124] that has been applied to several social networks such
as Twitter [67, 70]. There are other types of social networks based on scientific
collaboration, criminal networks, etc., see survey [29].

Social-economic systems: Another type of real-world system that is quite
complex and has a network character is a social-economic system [42]. An econ-
omy is usually considered as a system of complex interactions between players
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of various types. This phenomenon is further inherited into various subsystems
of the economy. A nice example is that of financial markets. A financial market
exhibits several properties that characterize general complex systems in which
large numbers of complex units interact together [79, 80]. Due to the usual
lack of data, information about the interconnection structure can be helpful [80].
There are various economic subsystems handled via the complex network ap-
proach, including world-trade networks [103], stocks networks [78] or currency
market networks [84]. Applications include the characterization of markets, such
as the task of designing strategies for market indices [106]. Another example is
portfolio design and trading strategies providing a tool to support portfolio opti-
mization, e.g., a study of topological properties of Markowitz portfolio assets [35].
As the last example, we can name systematic risk management, more specifically
characterizing risk emerging on markets, e.g., characterization and prediction of
financial crises using network properties [16, 116].

Technological systems: Another group of systems suitable for complex network
analysis are the technological systems. The internet [4] has a prominent position
among these systems. This network is fascinating due to its enormous size and
growing character, giving rise to the problem of efficient approximation of the
whole structure without direct access to it, e.g., via sampling [74]. One reason to
obtain information about the structural properties of the internet is to analyze
its resilience to random breakdowns [27]. Resilience to random attacks is related
to the degree distribution of the internet graph. However, on the internet, we
can also expect directed attacks to highly interconnected systems called hubs.
This leads to the research of both types of resiliences [3]. The internet has been
found to possess a specific degree distribution [36]. Following these findings,
random graph models were suggested to represent this phenomenon, such as the
Barabási-Albert model [13] or Linearized Chord Diagram [20]. Apart from the
whole network structure, we can also study networks constituted by particular
malware such as a botnet. The botnet is a type of malware formed by a botmaster,
a commanding program installed on the command-and-conquer server, and an
army of bots, malicious microprograms installed on multiple devices over the
internet obeying commands from the botmaster. Such a botnet structure can
implement a Distributed Denial-of-service (DoS) attack capable of shutting down
large and well-protected world servers. Characterizing models of potential botnet
structures is helpful in the detection of existing botnets on the internet [31].

Web graph: Another complex network that is often studied is a network rep-
resenting the interconnections of the World-Wide-Web network abbreviated as
the Web graph [15, 21]. This network represents directed references between web
pages. This graph is already massive, and it is still growing quite rapidly. Its
network analysis is crucial to optimize search engines and facilitate access to in-
formation; note algorithms for searching the web such as PageRank introduced
by Brin and Page [22] or HITS introduced by Kleinberg [69]. Apart from imme-
diate application areas, this network is fascinating by itself. It is vast and sparse
in edges, self-organizing, efficient in communication, and resistant to various at-
tacks [21]. This extensive network also motivated new lines of studies in the area
of infinite random models, including the area of countable random graphs [21] as
well as the area of uncountable graph limits [74].
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The overview of potential application areas continues to other fields such as
logistic networks, linguistics, or even software architecture. For their review, see
the comprehensive study [29].

1.1.2 Common tasks and corresponding gaps

As shown above, complex networks are used to understand some complex features
of the underlying dynamical system. From a general perspective, the primary task
in this field is to characterize the system’s behavior, such as

� changes of brain structure and information processing emerging from a po-
tential neurological disorders, or

� critical features of the epidemic spreading process depending on social net-
work structure, or

� the reactions of financial markets to economic crises based on the develop-
ment of mutual relationships between financial elements, or

� principles of internet threats such as Distributed Denial-of-service attacks
using botnet networks.

The second, more specific, task using complex networks is classifying or pre-
dicting the behavior of the underlying interconnected system. This task can highly
benefit from the general characterization task defined above. Examples include

� classification of subjects having Alzheimer’s disease, or

� prediction of the rate of epidemic spreading in society, or

� prediction of an incoming economic crisis, or

� identification of a botnet structure or prediction of Distributed Denial-of-
Service attacks.

Even though both tasks are connected, the corresponding analytical pipelines
can differ significantly. However, there are some typical steps in the analyti-
cal pipeline using complex networks. We can depict a simplified pipeline as in
Figure 1.1.

The output of this complex network analysis might contribute to a machine
learning process or enable a better understanding of the underlying system. How-
ever, we need to apply every step carefully, considering the overall goal. A typical
example that substantially impacts the accuracy of complex network analysis is
omitting some preprocessing steps. Examples include

1. removing head movement artifacts in magnetic resonance brain data,

2. minimizing the bias introduced by periodic changes in the solar input via
removing the mean annual cycle in climate data, or

3. using logarithmic return instead of prices in stock market analysis.

This leads to a general goal, or rather a motivation, of the research presented
in this thesis.
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Real world system Measured data Preprocessing Network construction Network analysis

C(G) = 0.83

∇r

Figure 1.1: General simplified complex network analysis pipeline. The pipeline
starts with the measurement of observables of the dynamical system (as usual
we assume the system to be composed of many smaller subsystems). The next
step is preprocessing. In this step, the data are adjusted with respect to their
properties, the nature of the constructed model and the target task. Having the
data prepared properly, we can construct the network in the next step. In the
final step, we analyze the network and infer the target property of the underlying
system.

Main Goal 1.1.1. Considering a particular dynamical system and a correspond-
ing task, design a complex network analytical pipeline solving the task that mini-
mizes uncertainty.

As mentioned above, many tasks solved via complex networks share a large
part of the analytical pipelines. For that reason, we can approach this goal
in a general form improving complex network utilization in general. Complex
networks built from various underlying systems share some properties such as
degree distribution or tendency to exhibit the small-world character. Therefore,
an approach to solving issues of an analytical pipeline for a particular system
can be, after some modifications, reused for other systems. Still, the task given
above is quite general, and we can further subdivide it into several subtasks. The
idea is to explore the effect of model-building steps on the robustness of the final
characteristics utilized in the complex network analysis. Considering this, we can
rephrase and concretize the above given main goal 1.1.1 as

Main Goal 1.1.2. Considering a particular dynamical system, minimize the
effect of network model creation on the robustness of the chosen graph character-
istics.

For many systems mentioned above, we have their overall behavior encoded
in the form of multiple time series (see references in Section 1.1.1), e.g.

� brain networks, or

� Earth’s climate networks, or

� financial system networks, or

� malware activity networks.

We create a corresponding network for a system of this type by applying
some dependency measures, such as correlation coefficients or various versions
of mutual information, on this multivariate time series. This immediately brings

7



questions about the effect of statistical properties of the data, such as nonlinearity,
on the computation of the dependency measure and consequently on the network
structure. We can define our first goal solved in section 1.2 as follows.

Goal 1.1.1. Enable complex network analysis of a particular complex system
via proper computation of dependency measures accounting for particular data
properties.

The main object in our analyses is a network. We need to understand the
building of the global network structure to represent the phenomenon of our task.
From one perspective, such understanding includes the proper space decompo-
sition and consequent determination of the vertices. From another perspective,
it also includes computation of characteristics of interest, expressing the studied
phenomenon correctly and minimizing the effect of the pipeline steps.

Considering the first perspective, note that complex networks are often de-
fined on various levels of detail. Different details may provide other information
about the studied phenomenon. Examples are various decompositions of clima-
tological data of the Earth using different globe grids or even using a set of
major dynamical components such as El Niño Southern Oscillation or North At-
lantic Oscillation. Other examples can be various Internet decompositions using
single computers as nodes or some well-defined subnetworks. Usually, some near-
optimal decomposition of the original space offers the best expressive power of
the network characteristic. For that reason, the search for proper decomposition
is one of the most critical steps in complex network analysis. It stands on the
boundary of preprocessing and analysis. One of the critical aspects of the suc-
cessful application of this step is the interpretability of the results. This leads to
the following goal.

Goal 1.1.2. Determine the best approach for decomposition for a particular dy-
namical system that would enable to explain observed phenomena.

An example of the second perspective is the small-world phenomenon. This
global characteristic of the network is frequently used in analyses. The question is
to what extent the observed small-world character is due to the system’s structure
or due to the applied steps of the pipeline. The following goal represents this
perspective.

Goal 1.1.3. Determine the sensitivity of the global network characteristics con-
sidering the commonly applied network-building steps.

Both perspectives are discussed in section 1.3.
Motivated by the global network structure studies such as small-world, we

consider another property. Note that one important property of complex networks
is their potential growing character that might result in large networks. Studies
of such enormous networks are complicated. For that reason, some substitute
notions as graph limit [74] are often used. One of the prominent examples, in
this case, is the Web graph [15]. Among various fascinating properties of the Web
graph, researchers were also attracted by its symmetric properties, see [21]. The
symmetry of a general complex network was also studied from the perspective of
the corresponding automorphism group, see [76, 101]. It appears, however, that
such a definition of symmetry might not be the best for real-world networks due
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to its strict definition. Motivated by approach of [21] and properties of motif
counting, we also study the following goal.

Goal 1.1.4. Considering a large network, what are existing notions of symme-
tries, and what are their properties?

As mentioned above, one of the critical issues of complex networks built from
data is uncertainty. As suggested in the sections referenced above, we can handle
uncertainty using proper preprocessing or improving the representative model.
Still, there can be remaining uncertainty due to irremovable inaccuracies in data.
We can represent inaccuracies in different ways. A fruitful way to do this is the
utilization of interval arithmetic, see [86], which accounts for all possible measured
values.

Many problems in graph theory can be translated into matrix questions. Since
interval algebra is mostly developed for matrices, we have also focused on that
perspective. A good understanding of handling uncertainty in this area can help
significantly in consequent complex network applications, see [6, 5].

Another type of uncertainty can be hidden in an optimization task that is not
solvable in a reasonable time, and we need to apply an approximation method.
Altogether, we can formulate the following goal.

Goal 1.1.5. Understand the various forms of uncertainty when representing net-
work tasks as matrix problems with particular attention to the interval algebra
approach.

1.2 Behavioral connectivity

One specific type of complex network is designed from a multivariate image of
the dynamic system’s behavior, often expressed as time series [123]. Examples
of systems analyzed in this way include brain networks [23], Earth’s climate
networks [34], or econo-financial networks such as stock market networks [78].
The crucial step in corresponding analyses is the design of the network, i.e., the
computation of the weight for each edge.

A general way to construct the weight of an edge connecting two subsystems
is to calculate the mutual relationship between time developments of the corre-
sponding subsystems. One of the most straightforward cases, still surprisingly
popular, is Pearson’s correlation coefficient. This choice can face problems in
many datasets representing measured states of dynamical systems. We can use
other more elaborate methods to evaluate dependence in some applications. This
choice, however, can bring other problems with estimation.

Let us show the analysis of such a system on the example of brain complex
network analysis. We can redraw Figure 1.1 for complex network analysis of brain
activity measurement as in Figure 1.2, see also [23].

The first step is the measurement itself, resulting in a multivariate time series
dataset. The next step is preprocessing, which resolves problems such as head
movement or known measurement artifacts. This step can also deal with statisti-
cal issues of the data. Having well-preprocessed data, we can compute for every
pair of subsystems the interdependence of a corresponding pair of time series
resulting in the weight of an edge. In this way, we design the whole weighted
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Figure 1.2: The figure shows a simplified depiction of the complex network anal-
ysis of the brain using the brain’s activity measurement, such as functional mag-
netic resonance imaging (fMRI).

network Gw. The next step often applies proper thresholding resulting in the
unweighted network G. We run the final analyses on this network. Examples
might include direct utilization of simple measures such as small-world [53, 105],
centralities [32, 1], or community detection [37, 82]. These networks can also be
used as an input to further machine learning techniques such as Graph neural net-
works, see, e.g., a recent review of machine learning methods for the classification
of schizophrenia [24].

Utilizing network characteristics in brain studies is highly dependent on the
robustness of this pipeline. One of the core issues in this process is the com-
putation of dependence measures for pairs of time series. The most popular
dependence measure is (Pearson’s) correlation coefficient. For random variables
X, Y we can simply define it as

r(X, Y ) =
Cov(X, Y )

σXσY
, (1.1)

where Cov(X, Y ) denotes covariance and σX denotes standard deviation of X.
Several problems may arise during such calculation, namely the presence of non-
linearity discussed in Section 1.2.1 and the effect of the dynamical memory dis-
cussed in section 1.2.2. Resolving these is given as the Goal 1.1.1. We studied
several issues of these computations as described in the subsections below.

1.2.1 Nonlinearity in connections

The most common way to determine the weight of an edge is via some dependency
measure such as Pearson’s correlation coefficient, which has been developed to
assess the linear dependence. While Pearson’s correlation detects dependence
reliably in the case of multivariate Gaussian probability distributions, it may be
suboptimal in the case of complex non-Gaussian dependence patterns. We use the
term “linear” to denote the “Gaussianity” and the term “nonlinear” to say that
the distribution is not Gaussian. These terms are motivated by the distinction
between respective linear and nonlinear methods. Apart from linear correlation
coefficients, we can use other measures sensitive to nonlinearities, such as mutual
information. Mutual information is defined using a statistical distance measure
between two probability distributions. For two discrete probability distributions
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P and Q defined on the same probability space X . We define Kullback–Leibler
divergence as

DKL(P‖Q) =
∑

x∈X
P (x) log

(
P (x)

Q(x)

)
(1.2)

We define the divergence using the integral instead of the sum for continuous prob-
ability distributions. The mutual information is then defined as Kullback-Leiber
divergence of the bivariate distribution from a hypothetical bivariate distribution
of two independent variables with the same marginal distributions as the original
ones, i.e.

I(X, Y ) = DKL(P (X, Y )‖P (X)P (Y )), (1.3)

where P (X, Y ) is joint probability distribution and P (X) is marginal distribu-
tion. This measure can account for nonlinearity, but it has problems with related
estimators, such as dependence on space discretization, computational bias, or
computational demands. For these reasons, their utilization can bring more prob-
lems than solutions.

We suggest applying a careful process accounting for potential nonlinearity in
data when performing complex network analysis. This effort includes assessing
the effect of nonlinearity and possible steps to mitigate it. To determine the effect
of nonlinearity, we suggest using multivariate Fourier transform (FT) surrogate
datasets, i.e., realizations of multivariate linear Gaussian stochastic process that
mimics individual spectra of the original time series and their cross-spectrum, see
e.g. [95, 90, 89]. The multivariate FT surrogates are obtained by computing the
Fourier transform of the series, keeping unchanged the magnitudes of the Fourier
coefficients (the spectrum), but adding the same random number to the phases of
coefficients of the same frequency bin; the inverse FT into the time domain is then
performed. The multivariate FT surrogates (partially) preserve synchronization,
if present in the original data, which can be explained by a multivariate linear
Gaussian stochastic process. This step creates a linear counterpart for the original
dataset and enables comparison with the original complex network results.

Nonlinearity in brain complex networks: For brain magnetic resonance
datasets, we suggest a testing pipeline for nonlinearity based on a particular
utilization of Fourier surrogate datasets, see [49] or its reprint P-17 . To enable
the testing, we make use of the lower bound for mutual information given as
I(X, Y ) ≥ −1

2
log(1 − r(X, Y )2) if some conditions are met such as univariate

Gaussianity. The tests are performed for network measures of various types
inspired by their application in neuroscience. We consider local measures such
as betweenness centrality or clustering coefficient and global measures such as
efficiency or assortative coefficient measures. To perform the test themselves, we
introduce several dominance indicators and functions.

We considered resting-state fMRI (no particular subject activity) data from
healthy volunteers measured by the cooperating institute from Italy with stan-
dard neuroimaging preprocessing; see [49] for details. We used a box-counting
algorithm based on the marginal equiquantization method to compute mutual
information. Considering global network characteristics computed for the whole
network, we found only a negligible effect of nonlinearity. We have found sta-
tistically significant deviation for local parameters computed for vertices of the
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network. Nevertheless, a quantitative comparison showed that the nonlinearity
effect is practically negligible when compared to the intersession variability.

Nonlinearity in climate complex networks: The major contribution of the
study mentioned above is delivering a particular pipeline to assess the nonlin-
earity. The advantage of brain studies is the possession of multiple subjects and
potential measurement sessions. We have also explored a different type of dataset
describing the evolution of the Earth’s climate, see [59] or its reprint P-16 . In
the case of climate systems, the data availability is significantly lower compared
to brain studies. We develop a multi-step approach that allows the detailed
assessment of the nonlinear contribution to dependence patterns in a dataset,
including quantification, localization, and analysis of sources of this contribution.
This pipeline enables researchers to identify parts of the data responsible for
nonlinear contribution and assess the effect on the network construction. Apart
from nonlinearity given by rescaling of variables that can be controlled by Spear-
man’s rank correlation or marginal normalization, we also elaborate working with
“extra-normal” information. It is well known that for a bivariate Gaussian dis-
tribution using variables X and Y , the mutual information is directly defined
by correlation ρ(X, Y ) as IG(X, Y ) = −1

2
log (1− ρ2(X, Y )). For a non-Gaussian

distribution this is not generally true and thus, based on [62], we define “extra-
normal” information as IE(X, Y ) = I(X, Y ) − IG(X, Y ). Since some of this
nonlinearity remains in the dataset, we suggest a localization method based on
the corresponding complex network.

To have robust results, we consider two major datasets in climatology, the
NCEP/NCAR reanalysis dataset as well as the ERA dataset. The main variable
was surface air temperature. Similar to the brain nonlinearity study shown above,
we have used box-counting marginal equiquantization method. Due to some
properties of climate data, we have also used an estimator based on k-nearest
neighbor obtaining similar results.

Nonlinearity in financial complex networks: Based on experience with net-
work constructions for the brain and the climate datasets, we studied finan-
cial data that are well known to possess nonlinear character, see [48] or its
reprint P-6 . We have investigated various complex networks created for the
different stock markets expressing synchronization of the strongest stocks in the
chosen region, namely stock markets given by indices New York Stock Exchange
100 (NYSE100), Financial Times Stock Exchange 100 (FTSE100), and Standard
& Poor 500 (SP500). The selection of the stock markets covers more countries
and dimensions. For the construction of the networks, we consider the logarithmic
return of the daily closing prices.

In this case, the source of nonlinearity hides quite often in the time develop-
ment of a particular stock. We propose a pipeline to identify and remove several
effects of nonlinearity using various commonly used thresholding techniques for
financial market networks. There can be remaining components for which we sug-
gest a method of localization. These remaining nonlinearities have been found to
have a negligible impact on the complex network level, especially if we account
for the behavior around the crisis of 2008.
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1.2.2 Dynamics of the time series

Even if we resolve the problem of nonlinearity in the dataset, we can still end up
with different issues causing uncertainty in the resulting connectivity. The time
series dynamics can influence resulting dependence measures, including nonlin-
ear mutual information. Note that for stochastic processes Xi(t), the potential
uncertainty is measured by entropy rate h = limn→∞

1
n
H(X1, . . . , Xn). In partic-

ular, processes with lower entropy rates (i.e., processes with higher regularity or
dynamical memory) tend to have their non-negative dependence measures biased
upward.

In our study, see [91] or its reprint P-19 , we have demonstrated such a bias
for simple process defined by an autoregressive process. Apart from observing this
phenomenon, we suggest a method to correct this bias. The bias correction is done
by replacing the absolute correlations with their Z-scores based on independent
Fourier transform surrogate data used above for nonlinearity handling. These
surrogate datasets are realizations of processes preserving the original spectra of
the studied process and their entropy rates in the Gaussian approximation. As a
result of this operation, the cross-correlations of the independent FT surrogates
have a approxamately normal distribution, and the Z-score is a statistical quantity
suitable for the thresholding used to construct binary networks. On the network
level, we have considered area weighted connectivity and betweenness centrality
(BC) to test our approach.

We have observed the phenomenon described above for the surface air temper-
ature data obtained from NCEP/NCAR reanalysis data for tropical areas. After
correcting for this bias, the most connected areas of the climate networks move
from the tropical areas influenced by the El Niño Southern Oscillation to the
Northern Hemisphere areas dominated by the North Atlantic Oscillation (NAO).
Using this corrected connectivity measure we are able to observe the influence of
NAO and solar variability on the connectivity in the climate networks.

1.2.3 Causal network discovery

For some complex systems, we can also be interested in the directionality of the
dependence. Undirected measures are interesting to characterize phenomena such
as teleconnections, see [115]. Directed dependency measures can be helpful to re-
construct information flow being in close relation to the air-mass flow, see [60] or
its reprint P-9 . The directional dependence is delivered by causality computed
using the Granger causality analysis. The space of the globe has been subdivid-
ed into an equidistant geodesic grid to suppress the effect of unequal distances
between grid points of pairs located in different latitudes. We need to apply
appropriate thresholding to obtain the final unweighted graph suitable for inter-
pretations. We found common approaches, such as using (extensions of) minimal
spanning trees or a particular threshold, not ideal in this case. For that reason,
we constructed a new winner-takes-all approach considering the situation in each
node of the network. For the case of the air temperature field, our methodol-
ogy clearly uncovers a smooth flow structure; evident both qualitatively and in
quantitative comparison with appropriate random graphs. The climatological
relevance is shown by the close relation to the air-mass flow.
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1.3 Global network structure

To use a network for analytical purposes, we need to believe that its global struc-
ture represents the studied phenomenon reliably. We have already commented
on the problem of edge determination in Section 1.2. As described in the intro-
duction, there are other problems with the global structure of the network.

1.3.1 Network decompositions

One of the critical problems when building complex networks is decomposing the
space into subsystems, i.e., vertices of the constructed network, representing the
studied phenomenon well. Solving this task relates to the Goal 1.1.2.

Decomposition of complex networks: For some dynamical systems, deter-
mining subsystems represented by nodes can be complicated. In the case of
climate networks, a simple globe grid can be insufficient for some applications.
The reason is that instead of the situation at particular positions on the globe,
we are interested in global events such as El Niño or North Atlantic Oscillation.
These localized phenomena are well-known modes of variability and play a crucial
role in Earth’s climate. Principal component analysis (PCA) has a long tradition
in the climatological community. A common approach is performing a regional
analysis or focusing on a smaller selection of the highest-variance components.
The goal of our method, see [113] or its reprint P-13 , is to handle a meaningful
portion of the variability in the entire globe and thus automatically reduce the di-
mensionality of large climate datasets into spatially localized components suitable
to represent nodes of a complex network that allows interpretable utilizations.

The method mentioned above identifies non-random modes of variability,
where non-random means with a high probability, i.e., such a mode could not
have been generated by a stochastic model in which the processes at each grid
point are independent. This method statistically separates the modes that cannot
be explained by random fluctuations of independent processes (the non-random
modes) from those that can (and are therefore discarded before further analysis).
A fully automatic method proposed here is essential if large bodies of data are
being analyzed as they are likely to result in many modes of variability, among
which it is not easy to choose. In this way, we can reduce the dimensionality
of the data prior to applying complex network approaches and support a more
straightforward interpretation of the results. Some of the applications, such as
using FFT surrogates described in Section 1.2.2, would not be computationally
possible for the whole network, and dimensionality reduction is necessary.

The PCA method identifies a predefined number of principal components
serving as a new basis for data vectors. The problem is selecting the correct
number of components. We proposed to identify non-random components by
comparing the eigenvalues of the sample covariance matrix of the original data
with their distributions arising from a surrogate stochastic model. Due to some
climate data properties, including autocorrelation, we cannot directly apply re-
sults from Random Matrix Theory. We showed that the identified non-random
modes characterize most global dynamics in two variables of interest, the month-
ly surface level pressure (SLP) and the monthly surface air temperature (SAT)
using NCEP/NCAR reanalysis data.
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Decomposition in evolving networks: Time series covering long time inter-
vals are convenient to obtain robust estimates of a dependency measure. For
non-stationary processes, structural information can be, and for long time in-
tervals usually is, time-dependent. For that reason, evolving networks are often
applied, e.g., they can be used to disentangle different types of El Niño episodes.
The evolving network is a dynamic network whose states are determined using
sliding window approaches on time series. The question is how to apply dimen-
sionality reduction in such a setting. Assume we apply the PCA-based method
to identify climate system components as described above. Key questions studied
in [57] or its reprint P-14 are as follows: Firstly, how and to what extent the
temporal evolution of the grid-based climate network is already reflected in the
dynamics of the higher level inter-component network and vice versa; and second-
ly, what is the role of local (within-component) and distant (between-component)
links in the global network evolution.

The applied dimensionality reduction (based on PCA) provides clusters of the
grid-based network. For each grid vertex, we determine the major cluster that
this vertex belongs to. We compare differences in connectivity for local grid-based
discretization and more crisp PCA cluster-based decompositions. Comparisons
are made for several coarsening equidistant grids. We have also commented on
the effect of several climatological phenomena. Apart from the important role
of the ENSO region that was suggested earlier, our detailed analysis provided
evidence for the additional role of other tropical regions. For these reasons, we
concluded that the component network reflects other climate phenomena com-
pared to coarsened grid-based network and might be valuable for climatological
analyses.

Causality reconstruction with dimensionality reduction: Putting togeth-
er experiences with dependency measures and decompositions of the datasets,
we have proposed a methodology to identify regions important for spreading and
mediating perturbations in dynamical systems, see [99] or its reprint P-12 . This
complex network methodology combines dimensionality reduction, causality re-
construction, and causal effect assessment. We have applied this approach to a
dataset of atmospheric dynamics, which results in identification of several strong-
ly uplifting regions acting as major gateways of perturbations spreading in the
atmosphere. Additionally, the method provides a stricter statistical approach to
pathways of atmospheric teleconnections, yielding insights into the Pacific-Indian
Ocean interaction relevant to monsoonal dynamics. This methodology is not
limited to climate. It has been suggested to be used in a broader context of neu-
roscience or power grid analyses. Note that, in general, it can be helpful in the
potential increase of resilience of a dynamical system to shocks or extreme events.
Examples of perturbations studied by complex networks are volcanic eruptions
and geoengineering in climate systems, epileptic seizures in the brain, epidemic
spreading, blackouts in power grids, or failure of banks in the financial system.

To identify processes responsible for spreading and mediating perturbations
in spatio-temporal systems, we need to reconstruct both variables of interest from
the potentially invalid grid dataset and their causal interaction distinguishing di-
rect from indirect interactions. The final pipeline consists of the above-studied
dimensionality reduction based on PCA, iterative causality discovery avoiding
spurious links, and the construction of suitable causal network measures to ana-
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lyze the underlying system. We use a causal discovery algorithm based on the PC
algorithm [104]. This approach removes spurious links due to common drivers
(influencing subsystems) and transitivity effects which has been shown to have
an effect also in undirected networks when studying the small-world property,
see Section 1.3.2. We also provided arguments supporting the power of the sug-
gested method for handling perturbations compared to the classical correlation
approach.

1.3.2 Small-world phenomenon

Assume we have already determined the network structure, and we have the
network ready for analysis. We can decide to study some of its properties and
use them to characterize the underlying system. An example of such approach
can be utilizing the small-world character; see an example at the beginning of
Section 1.1. Roughly speaking, a graph is small-world if it tends to create clusters
and its average shortest path is not long. To quantify this, we can make use of the
following characteristics. For a graph G = (V,E) of size |V | = n define average
shortest path as

L(G) =
1

n(n− 1)

∑

u6=v,u,v∈V
d(u, v), (1.4)

where d(u, v) is the distance between vertices u and v. Let us denote the degree
of a vertex as kv = deg(v). For any vertex v ∈ V define clustering coefficient of v

as C(v) = |NG(v)|
kv(kv−1)

, where NG(v) is the neighborhood of the vertex v. We define
the clustering coefficient of the graph as

C(G) =
1

n

∑

v∈V
C(v). (1.5)

Note that this represents the density of triangles. We want to compare quantities
of these characteristics to a specific null model. We can use standard Erdős-
Renyi random graph Gn,p defined on vertex set {1, . . . , n} with each edge included
independently with probability p. Let us denote Ln,p and Cn,p the expected values
of average shortest path and clustering coefficient of the random graph G(n, p).
For a given graph G of size n and density given by p introduce the following indices
λ(G) = L(G)

Ln,p
and γ(G) = C(G)

Cn,p
. The small-world condition can be formulated as

follows
λ(G) & 1 and γ(G)� 1, (1.6)

or we can formulate the whole property as σ(G) = λ(G)
γ(G)
� 1.

Bias of the small-world for functional networks: The small-world char-
acteristic, defined above, is a popular graph descriptor in neurological studies
used to characterize several neurological diseases. Networks in brain studies are
built using data from various measurements, including magnetic resonance (MRI)
or electroencephalography (EEG). Apart from structural connectivity expressing
connections of brain regions via white matter, we also measure so-called function-
al connectivity describing synchronization of brain regions during the predefined
task. We use the name functional MRI (fMRI) when using MRI for this type of
measurement. Since the results of these measurements are time series, the result-
ing network is computed using the methods discussed above. We argue in [58]
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or its reprint P-18 that using dependence measures having partial transitivity,
such as Pearson’s correlation coefficient, leads to upwardly biased estimates of
small-world characteristics.

A simple model for the relation between structural and functional connectivity
is the autoregressive (AR) process defined as

Xt = c+ AXt−1 + et, (1.7)

where c is a vector of constants, A is the association matrix, and et is the vector
of error terms. The matrix A corresponds to structural connectivity. We set
up this matrix in a way corresponding to random structure; more precisely, we
use Erdős-Renyi adjacency with several other parameters controlling properties
of the AR process. The values of small-world indices indicate increased clustering
and approximately conserved average path length with respect to a correspond-
ing random graph. This signifies a small-world like structure of the functional
connectivity matrix, even though the coupling structure of the generating system
is completely random. This remains true even if we use some degree preserving
random generations such as the Maslov-Sneppen procedure.

Evaluation of the small-world bias in real-world networks: The study
mentioned above provides arguments for the existence of potential bias of the
small-world characteristics when working with functional networks of the dy-
namical systems. However, the strength of this bias depends heavily on a range
of parameters. The relevance of this bias for real-world data is further studied
in a subsequent study for brain and climate datasets, see [56] or its reprint P-8 .
The small-world properties of fMRI functional connectivity graph obtained using
standard methods have been shown to be largely reproduced or even exceeded by
a matching randomly connected multivariate autoregressive process. This result
shows for the first time that the small-world properties of functional connectivity
real-world graphs can be attributed to the correlation coefficients’ transitive prop-
erties. For climate data, we have observed even lower small-world index than for
a matching randomly connected multivariate autoregressive process, suggesting
a “large-world property” of global climate.

1.4 Symmetry of networks

As mentioned in the introduction, there is growing attention given to large net-
work symmetries. This is not limited to usual symmetries, such as the size of
the automorphism group, but we also consider various notions of homogeneity
generalizing vertex transitivity. Apart from such a perspective, we can also study
symmetry connected with network characteristics, namely regularities in their
distribution motivated by similar degree distribution studies.

1.4.1 Notions of homogeneity

A countable graph G = (V,E) is ultrahomogeneous if for any finite A,B ∈ V
and for any isomorphism f : A → B we can find an automorphism g ∈ Aut(G)
such that g|A = f , i.e., any local isomorphism is extendable to an automorphism.
The classification of all countable undirected graphs is a famous result in this
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field [71]. This classification provides interesting results such as ultrahomogeneity
of the Rado graph, a countably infinite random graph, or utilization of the Fräıssé
limit theory [38].

Relational complexity of graphs: Consider a finite graph G that is not ultra-
homogeneous. Such a graph has some local isomorphisms that are not extendable
by an automorphisms, think of a cycle C6 with vertex set {1, 2, . . . , 6} and the
local isomorphism {1, 3} → {1, 4}. We can, however, introduce new colored edges
for pairs of distant vertices with colors corresponding to their distance. If we add
all such possible edges, the resulting graph is ultrahomogeneous, see Figure 1.3.
In this case, edges are sufficient, but for the Petersen graph, we need relations of
arity 3.

1

2

3

4

5

6

Figure 1.3: Homogenization of C6: Introducing new edges colored by distance
create an edge colored graph that is ultrahomogeneous.

We can introduce a notion of homogenization to a relational structure as
generalizations of hypergraphs. A relational structure A is a pair (A, (Ri

A : i ∈
I)), where Ri

A ⊆ Aδi is δi-ary relation on A. The family (δi : i ∈ I) is called a
type ∆. The class of all (countable) relational structures of type ∆ is denoted as
Rel(∆). Classical graphs (V,E) can be understood as relational structure with
one binary symmetric irreflexive relation with ∆G = (2). Let ∆′ = (δi : i ∈ I ′) be
a subtype of ∆. Then any structure X ∈ Rel(∆′) may be viewed as a structure
A with additional relations X i

X, i ∈ I ′ \ I. We call such X a lift.
Let A be a relational structure and let Aut(A) be the automorphism group

of A. A k-ary relation ρ ⊆ Ak is an invariant of Aut(A) if (α(x1), . . . , α(xk)) ∈ ρ
for all α ∈ Aut(A) and all (x1, . . . , xk) ∈ ρ. Let Invk(A) denote the set of
all k-ary invariants of Aut(A) and let Inv(A) =

⋃
k≥1 Invk(A), Inv≤k(A) =⋃

1≤k′≤k Invk′(A). It easily follows that a lift (A, (Ri
A : i ∈ I), Inv(A)) (possibly of

infinite type) is an ultrahomogeneous structure for every structure A = (A, (Ri
A :

i ∈ I)). For a structure A the relational complexity rc(A) of A is the least k
such that (A, (Ri

A : i ∈ I), Inv≤k
(A)) is ultrahomogeneous, if such a k exist. If no

such k exists, we say that the relational complexity of A is not finite and write
rc(A) = ∞. To define the lift complexity, lc(A), of a relational structure just
omit the condition about invariancy of the added reations.

We study relational complexity for graphs in [50], see its reprint P-11 . The
paper’s major contribution is represented by steps towards the classification of
finite graphs having fixed relational complexity, namely 1 and 2, and providing a
bound for relational complexity for the specific countable class of graphs. Rela-
tional complexity 1 decomposes the graph into sets colored by unary relations of
the corresponding lift. We call them parts. In the following, c-coloured k-graph
is a relational structure on V partitioned into V = V1 ∪ V2 ∪ . . . ∪ Vk such that
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structures induced on Vi are graphs and there are c coloured edges existing be-
tween parts [26]. Note that colored edge and non-edge play the same role for
isomorphism. We provided the following classification result.

Proposition 1.4.1 (Proposition 3.5 in [50]). Let G be a graph with rc(G) = 1
or lc(G) = 1 and let V1, V2, . . . , Vk be its parts. Then the following holds.

1. The subgraph induced by each part is an ultrahomogeneous graph.

2. G corresponds to an ultrahomogeneous 2-colored k-graph with partitions
V1, V2, . . . , Vk.

3. The subgraph induced by each pair of parts corresponds to an ultrahomoge-
neous 2-colored 2-graph.

This result relies on the classification of c-colored n-graphs that are only
partially classified, see [97]. Therefore the complete classification is still open.

Consider finite graphs with relational complexity 2. Apart from some obvi-
ous cases such as metrically homogeneous graphs or cographs, we also provided
classification results for trees as follows.

Proposition 1.4.2 (Proposition 3.9 in [50]). Finite (graph) trees have relational
complexity at most 2.

For the countably infinite case, we need to adopt approaches from Fräıssé
theory. Let Age(A) be the class of all finite structures isomorphic to an (induced)
substructure of A. Call this class the age of A. Studying such classes can help you
to find ultrahomogeneous countable graphs via Fräıssé’s theorem [38, 63]. Apart
from some other class properties, the core property for ultrahomogeneity is an
amalgamation property. Class K has amalgamation property if for A,B,C ∈ K
and α, β embeddings α : C → A and β : C → B, there exists D ∈ K and
embeddings γ, δ embeddings γ : A→ D and δ : B→ D such that γ ◦ α = δ ◦ β.
A structure U is universal for K if all A ∈ K embedds to U. Roughly speaking,
Fräıssé theorem says that for a class K having amalgamation property there exists
a unique universal ultrahomogeneous structure U. This results can be used to
seach for ultrahomogenous relational structures.

We are interested in countably infinite graphs that are not ultrahomogeneous
but can be extended to an ultrahomogeneous lift (note that it might not be
possible – if infinite arities are needed). We consider a class Forbh(F) where F
is a family of connected structures. Forbh(F) denotes the class of all structures
A for which there is no homomorphism F → A, F ∈ F . The main result for
infinite structures shows that we can find (bounds of) relational complexity via
simple exploration of the family of forbidden graphs.

Theorem 1.4.1 (Theorem 5.2 in [50]). Let F be a finite minimal family of finite
connected relational structures and U an ω-categorical universal structure for
Forbh(F). Denote by n the size of the largest minimal g-separating g-cut in F .
Then

(a) rc(U) ≥ n;

(b) if U is the canonical universal structure for Forbh(F), then rc(U) = n.
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The g-separating g-cut is a specific edge cut of the structure. For other no-
tions, such as ω-categoricity and canonical universal structure, see [50].

Homomorphism-homogeneity of colored graphs: The notion of ultraho-
mogeneity was generalized in multiple ways, see [77]. One of the generalizations
was due to Cameron and Nešetřil [25]. They use homomorphisms instead of
isomorphisms in the definition of homogeneity. Let X and Y are two charac-
ters such that X ∈ {H,M, I} that stands for prefixes homo, mono, and iso
and Y ∈ {H,A,B,M} that stands for prefixes homo, auto, bi, and mono. We
can call relational structure XY -homogeneous if any local X-morphism can be
extended to Y -morphism over the whole graph. In this way, IA-homogeneity
stands for the original ultrahomogeneity. Other interesting classes are defined by
HH-homogeneity and MH-homogeneity. These extend either a local homomor-
phism or a local monomorphism to an endomorphism. Since the original paper
of Cameron and Nešetřil there exists a question about potential equality of class-
es HH and MH. For graphs, this equality has been proven by Rusinov and
Schweitzer [100].

In our work about homomorphism-homogeneity, see [51] or its reprint P-15 ,
we have made a step towards generalization of such results. We investigated the
equality mentioned above for graphs with sets of colors assigned to vertices and
edges and homomorphisms preserving these colors. We can see on the example
from Figure 1.4 that for a general graph of this type, the equality does not hold.

Figure 1.4: An example of a colored graph that is MH-homogeneous but not
HH-homogeneous.

For that reason, we have introduced a notion of L-colored graphs, where L
is a partially ordered set with the ordering relation ≺ , with the least element 0
and the greatest element 1 (the idea is that L contains sets of colors ordered by
containment). For some partially ordered sets L, we can prove the equality. For
instance, in the case of the linearly ordered set, that we call a chain, we have.

Theorem 1.4.3 (Theorem 3.3 in [51]). Let G be a finite L-colored graph where L
is a chain with the least element 0 and the greatest element 1. Then the following
are equivalent:

(1) G is HH-homogeneous,

(2) G is MH-homogeneous,

(3) G has the following structure:

– every connected component of G is a uniform L-colored graph, and

– if U(n1, α1, β1) and U(n2, α2, β2) are connected components of G such
that α1 � α2, then n1 ≤ n2 and β1 � β2. Consequently, if α1 = α2,
then n1 = n2 and β1 = β2.
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For definitions of L-colored graphs U(·, ·, ·), see [51]. We have obtained similar
results for L, a set of incomparable elements enriched with minimal and maximal
elements (we call it a diamond). This result can be found as Theorem 4.4. in [51].

Independence number of HH-homogeneous graphs: One of the problems
that are still open is the classification of countable homomorphism-homogeneous
(HH-homogeneous) graphs. According to the original paper of Cameron and
Nešetřil [25] there are uncountably many countably infinite HH-homogeneous
graphs – namely, graphs having the Rado graph as a spanning subgraph. Rusinov
and Schweitzer gave the first example of a graph with a different structure [100].

Let α(G) denote an independence number, i.e., the largest set of vertices
that span no edges in a graph G. Define the star number of G as σ(G) :=
sup{α(N(v)) : v ∈ V (G)}, where N(v) denote neighborhood of a vertex v. To
complete the classification, we need to search for such examples that are not im-
ages of the Rado graph. These graphs are characterized by having bounded star
numbers. Exploring possible values of star numbers can help the classification.
We elaborate, see [7] or its reprint P-5 , a structural argument to show a bound
for an independence number of HH homogeneous graph.

Theorem 1.4.2 (Theorem 20 in [7]). If G is a countably infinite connected HH-

homogeneous graph with finite star number σ(G), then α(G) ≤ 2σ(G)+dσ(G)
2
e−1.

This theorem shows that any connected HH-homogeneous graph with infi-
nite independence number always has the Rado graph as a spanning subgraph.
Using these results, we can narrow the space for potential future classification via
limiting to particular combinations of α(G) and σ(G).

Using the property for connected infinite HH-homogeneous graphs with in-
finite independence mentioned above, we also finished the classification of MB-
homogeneous graphs nicely elaborated by Coleman-Evans-Gray [28]. We use the
term bimorphism for bijective homomorphism. Any classification has to be spec-
ified up to a chosen equivalence. Graphs G and H are bimorphism-equivalent if
there exist bijective homomorphisms F : G → H and J : H → G. Note that
for graphs, bimorphism-equivalence means that G is (isomorphic to) a spanning
subgraph of H and H is (isomorphic to) a spanning subgraph of G. We have
provided final classification.

Theorem 1.4.4 (Theorem 26 in [7]). Let G be a countably infinite MB-homo-
geneous graph. Then G is bimorphism-equivalent to one of the following or its
complement:

1. Kω,

2. Iω[Kω],

3. The Rado graph R.

For two graphs G and H, we use G[H] to denote the lexicographic product of
G and H.
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1.4.2 Uniform distributions of graph characteristics

Apart from symmetry defined by extending local morphisms, we have also inves-
tigated a symmetry hidden in the regularity of a particular graph characteristic
distribution – note a simple example of (degree) regular graphs. An interest-
ing class of graph descriptors is the class of centralities, i.e., characteristics that
measure the importance of a vertex in a graph. One of these characteristics is
betweenness centrality defined as follows

B(x) =
∑

{u,v}∈(V (G)\{x}
2 )

σu,v(x)

σu,v
, (1.8)

where σu,v denotes the number of shortest paths between u and v and σu,v(x) is
the number of shortest paths between u and v passing through x.

Connectivity and the Diameter of Betweenness-Uniform Graphs: The
graph G is called betweenness uniform (BUG) if all vertices from V (G) have the
same value of betweenness. There exist some trivial examples of BUGs, such as
vertex-transitive graphs. However, there are betweenness-uniform graphs that
are neither vertex- nor edge-transitive. Several authors attempt to classify these
graphs. In one of the results, Gago, Hurajová-Coroničová, and Madaras [40]
asked several open questions. Our results, see [52] or its reprint P-1 , positively
answer two of them.

Vertex connectivity of G, κ(G), is minimal size of a vertex cut in G. We say
that G is k-connected if |V (G)| > k and G always remains connected after the
removal of less than k vertices. We have shown the following.

Theorem 1.4.3 (Theorem 2 in [52])). If G is a connected betweenness-uniform
graph then it is a cycle or a 3-connected graph.

This limits the space for the potential future search of BUGs. Another result
deals with maximal distances in a graph. For two vertices x, y, the length of the
shortest xy-path is their distance d(x, y). Diameter d(G) of a graph G is then
maxx,y∈V (G) d(x, y). We get the following.

Theorem 1.4.4 (Theorem 3 in [52])). If G is betweenness-uniform graph and
∆(G) = n− k, then d(G) ≤ k.

We have also improved the bound given in last mentioned theorem to a the
following: d(G) ≤ dk+5

2
e (Theorem 11 in [52]).

1.5 Uncertainty in network design

One of the major issues of complex networks created from data is the uncertainty
in the input. There are multiple ways to represent and handle uncertainty. One
of the theoretically strong approaches is represented by interval methods [86].
Roughly speaking, this approach substitutes real numbers in a given problem
with intervals representing lower and upper bound of potential values. Subse-
quent computations attempt to express the solution as an interval of possible
outputs considering any combination of values from the input variables. This is
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quite interesting for networks, as noticed recently [5, 6]. Networks are commonly
represented by matrices such as the adjacency matrix. For that reason, we can
explore the reliability of computation with interval matrices or related matrix
perturbation theory aiming to contribute to the Goal 1.1.5.

1.5.1 Radius of regularity

One of the issues that might be problematic when working with dynamical sys-
tems is the singularity of corresponding matrices, e.g., when we care about the
stability of linear time-invariant dynamical systems [96]. Assume that we know
that the matrix A of our system is regular, and thus the system is stable. We are
interested in the nearest singular matrix to keep the system stable even consider-
ing the small perturbation of its values. The distance can be measured using the
radius of nonsingularity defined as follows. Given a matrix A ∈ Rn×n, the radius
of nonsingularity (or regularity radius) is defined by

d(A) := inf {ε > 0; (∃ singular B)(∀i, j) : |aij − bij| ≤ ε}. (1.9)

In other words, it is the minimum distance of A to a singular matrix in the
maximum norm. We also consider a generalization of this radius as follows.

d(A,∆) := inf {ε > 0; (∃ singular B)(∀i, j) : |aij − bij| ≤ ε∆ij}, (1.10)

where ∆ ∈ Rn×n is a given non-negative matrix. Thus, d(A) is a special case of
d(A,∆) when putting ∆ := E, and the matrix E consists of all ones.

Approximating regularity radius: To compute this regularity radius, we can
make use of the following relationship.

d(A) =
1

‖A−1‖∞,1
, (1.11)

where ‖·‖∞,1 is a matrix norm defined as ‖M‖∞,1 := max {‖Mx‖1; ‖x‖∞ = 1} =
max {‖Mz‖1; z ∈ {±1}n}. Computing this norm is known to be NP-hard prob-
lem. We develop, see [44] or its reprint P-10 , a randomized approximation algo-
rithm to calculate this norm. Note that computing this norm can be represented
as an integer programming. We utilize the semidefinite relaxation of this problem
motivated by the randomized approximation algorithm for the MaxCut problem.

The final randomized algorithm has an approximation ratio equal to 0.78343281.
Besides the design of a new approximation algorithm for regularity radius, we also
produced rigorous upper and lower bounds improving previously known results,
see

0.78343281γ =
α

2− αγ ≤ ‖Mij‖∞,1 ≤ γ + ε (1.12)

where γ is an optimal solution for a norm and α = 0.87856723 is the Goemans-
Williamson value characterizing the approximation ratio of their approximation
algorithm for MaxCut.

Regularity radius for various classes of matrices: We follow our interests in
regularity radius in the subsequent work, see [45] or its reprint P-7 . In this work,
we show other properties of the regularity radius and explore its computation for
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several classes of matrices, contributing thus to the overall understanding of this
characteristic. At first, we show that checking the finiteness of this characteristic
is polynomial.

Theorem 1.5.1 (Theorem 3.2 in [45]). Checking whether r(A,∆) = ∞ is a
polynomial problem.

We also provide a sharp upper bound on the number of non-zero elements of
∆ to achieve infinite r(A,∆) (Proposition 3.4 in [45]). We use the relationship
between the maximum (Chebyshev) norm and the spectral norm to construct
new bounds for the radius of regularity. Let u and v be the left and right singular
vectors, respectively, corresponding to minimum singular value σmin(A) and set
y := sgn(u) and z := sgn(v). Then we have

r(A) ≤ 1

ρ0(A−1yzT )
,

where ρ0 is the real spectral radius providing maximum from absolute values of
real eigenvalues of the matrix and equal to 0 if no such eigenvalue exists.

Several results are provided for a situation where an input matrix has a special
form, such as exact formulas for several special classes of matrices, e.g., for totally
positive or inverse non-negative. We also design approximation algorithms for
special classes, e.g., rank-one radius matrices. For tridiagonal matrices, we design
a polynomial algorithm to compute the radius of regularity.

Searching for the regularity radius can be understood as a problem from in-
terval algebra. In this field, we consider matrices containing intervals instead of
real numbers. More formally, the interval matrix is defined as

A = [A,A] = {A ∈ Rn×n; A ≤ A ≤ A},

We can read this as a set of all matrices having elements between defined bounds.
Note that an interval matrix can also be understood as an interval given by the
relation between midpoint matrix Ac and the radius matrix A∆ as

A = [Ac − A∆, Ac + A∆]

An interval matrix is called regular if it consists merely of nonsingular matrices;
otherwise, it is called singular (or irregular). Let’s consider the simple case
that we have one parameter δ and define the corresponding interval matrix as
Aδ = [Ac − A∆, Ac + A∆], where A∆ = δeeT for e being the vector of ones. The
search for the distance to a singular matrix can be rephrased as a search for the
minimal δ such that the interval matrix Aδ becomes singular, i.e.

r(A) = min{δ ≥ 0 | Aδ is singular}. (1.13)

Considering situations where the known bounds are not tight enough, a new
method based on the Jansson-Rohn algorithm for testing the regularity of an
interval matrix is presented, which is a priory not exponential.
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1.5.2 Interval matrix powers

To control or analyze dynamical systems, you often need to use matrix powers,
remind the stability of linear systems, or random walk algorithms. What if the
matrix itself is again subject to uncertainty? Motivated by our results of the
radius of nonsingularity, we consider interval uncertainty.

Before defining interval matrix power, let us define some auxiliary notions.
Note that an interval matrix of dimension 1 × 1 is an interval a = [a, a]. We
denote the space of these intervals as IR and the space of interval n×m matrices
as IRn×m. For a bounded set B ⊂ Rn×n we define an enclosure of B as any
B ∈ IRn×n such that B ⊆ B. The interval hull of B, denoted by �B, is the
smallest enclosure of B, that is, �B :=

⋂
B⊆B∈IRn×nB.

We define k-th interval matrix power or k-th power of interval matrix A as

Ak := {Ak; A ∈ A}.

Since this is not an interval matrix in general, we are content with its interval hull[
Ak
]

:= �{Ak; A ∈ A}. We can imagine this hull as the tightest n-dimensional
box aligned with the axes.

There exists arithmetic for intervals with many nice properties. However,
some of the expected ones are missing, e.g., the absence of distributivity. For
that reason, this arithmetic can lead to overestimation when enumerating ex-
pressions. Computing interval matrix powers can lead to n-dimensional boxes
mentioned above that are not as tightest as possible, i.e., just enclosures. Over-
estimation within the enumeration of algebraic terms containing intervals is well
characterized, and thus we can identify the case when it happens. Following this
observation, it is well known that computing the square of an interval matrix
is polynomial, but the cube is already an NP-hard problem. Note that matrix
powers can result in irrational numbers. For that reason, here and in further text,
when speaking about computational complexity, we use the term polynomial al-
ways for polynomial up to a given accuracy.

Computing matrix powers for special classes of matrices: Note that if all
matrix elements are values and not intervals, the problem of computing matrix
powers is easy. We can consider a real value as a special type of interval that
we call degenerate interval and for which holds a = a. We can say that for any
interval matrix having all elements degenerate, computation of powers is easy.
What if some of the elements are not degenerate? We can consider a class of
interval matrices, where some elements are degenerate. An example can be an
interval matrix where diagonal elements are non-degenerate intervals, and all
remaining elements are degenerate. We consider several such subclasses in our
next work, see [46] or its reprint P-3 . For a matrix with only diagonal elements
non-degenerate, computing the cube is polynomial. The proof of the NP-hardness
of the cube for interval matrices uses the class of matrices that only have interval
components in one row and one column. Motivated by this structure, we have
shown that computing the cube of matrices with only one interval column is
polynomial (Theorem 2.5). However, the major result concerns a fixed power
coefficient k and the following special class of matrices.

Definition 1.5.1 (Definition 3.1 in [46]). Let k and me be fixed. We say that a
class of interval matrices has constant expression of k-th power if any component
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of their k-th powers can be expressed as a polynomial in at most me interval
variables.

This class is not bounded in size, as we can see on tridiagonal interval matrices
having me fixed for a fixed k. We can show that the computation of kth powers
for these matrices is easy.

Theorem 1.5.1 (Theorem 3.2 in [46]). Let k be fixed and let A be an interval
matrix having rational end-points with constant expression of k-th power. Then
computation of k-th power of A up to any given accuracy ε is a polynomial prob-
lem with respect to input data and log(1/ε).

This polynomiality is shown by transforming the problem into a quantifier
elimination task and utilizing the Tarski elimination method. This result is used
to show the polynomiality of computing the cube of matrices generalizing diagonal
ones, namely interval band matrices (Proposition 3.5 in [46]).

Among other results for smaller classes, such as companion matrices, we con-
sider a rather specific class: linear parametric interval matrices defined as

A(p) :=
m∑

q=1

pqA
(q), pq ∈ pq, (1.14)

where p1, . . . ,pm ∈ IR. Note that this generalization of interval matrices repre-
sents potential dependencies between elements of a matrix. We can approximate
the solution via direct evaluation of the expression A :=

∑m
q=1 pqA

(q) using stan-
dard interval arithmetic. This approach leads to overestimation, and thus it is
better to use the special structure of parametric matrices. The interval hull of
the kth power can be defined as

[
A(p)k

]
:= �{A(p)k; p ∈ p}.

We show the following result about the hardness of the corresponding computa-
tions already for k = 2.

Theorem 1.5.2 (Theorem 4.1 in [46])). Computation of
[
A(p)2

]
is an NP-hard

problem.

The area of parametric interval matrices contains many open problems. More-
over, many of the studied problems in this area are computationally hard. Some-
times, we can help ourselves by restricting the elements of matrices as above. In
fact, the proof of the above-mentioned Tarski method can be rephrased and show
the variant of the Theorem 1.5.1 for parametric matrices (Theorem 4.4 in [46]).

Spectral interval method and interval matrix powers: Computing powers
of (real) matrices can be handled using spectral decomposition of the original
matrix. We use this simple observation to handle powers of interval matrices
in our next work, see [47] or its reprint P-2 . Indeed, assume that a matrix A

is diagonalizable and we have its spectral decomposition A = V ΛV −1, where
Λ ∈ Cn×n is a diagonal matrix with the eigenvalues of A on the diagonal, and
V ∈ Cn×n is a matrix having the corresponding eigenvectors as its columns. We
can compute the kth power of matrix A as Ak = V ΛkV −1. We can follow the
same approach with the interval matrix. To enable this approach, we need to
first handle the spectral decomposition for interval matrices. Given A ∈ IRn×n,
our problem states.
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Find a diagonal matrix Λ ∈ ICn×n and a matrix V ∈ ICn×n such that
for each A ∈ A there are Λ ∈ Λ and V ∈ V such that A = V ΛV −1.

Once we have an enclosure V , we can compute an enclosure of the set of
inverses {V −1; V ∈ V } by methods from interval computation (and use V −1 to
denote an interval enclosure of the set of such inverses). The high-level algorithm
for matrix powers is as follows

Algorithm 1: enclosure of the k-th power by spectral method

Input: Matrix A, power coefficient k
Result: Enclosure C of power Ak

1 λ← eigenvalues of A
2 Λ← diag(λ) // create a diagonal matrix with eigenvalues
3 V ← eigenvectors of A // stored in columns

4 estimate enclosure of V −1

5 C = V ΛkV −1

The resulting interval matrixC is an enclosure of the k-th power of the interval
matrix A. We need to resolve two tasks to make this algorithm work:

1. Compute (the enclosure of) eigenvalues of an interval matrix

2. Compute (enclosures of) eigenvectors of an interval matrix

The first task, computing enclosures of the eigenvalues, can be done using the
well-known Bauer-Fike theorem. Roughly speaking, for two matrices A,B such
that A is diagonalizable, this theorem shows for any eigenvalue λ(A + B) that
there is an eigenvalue λi(A) that is relatively close. This closeness can determine
an interval for eigenvalues. For that reason, we can use this theorem to estimate
interval eigenvalues in some cases – see assumptions and principles in Section 2.1
of [47].

The next step is to compute an interval eigenvector for a given interval eigen-
value. We enclose the null space of the interval matrix A − λIn. The idea is as
follows. Let A ∈ A and λ be one of its (simple) eigenvalues, and x the corre-
sponding eigenvector. This means that Bx = 0 for B := A − λIn having rank
n − 1. There has to be xj 6= 0 and we can assume that x is normalized such
that xj = 1. The next step is to select the row and column indices carefully and
rewrite the equation Bx = 0 into a solvable and not overdetermined system. Solv-
ing this new system can produce (after some adjustments) interval eigenvectors.
This procedure includes the search for the best column and row indices. This can
be computationally demanding. For that reason, we produce a heuristic search
based on sufficient regularity conditions for interval matrices. This procedure
reduces the complexity significantly.

The major contribution of the work mentioned above lies in providing pre-
viously absent spectral decomposition of interval matrices. This could help in
various different applications. We utilize this approach relatively directly for the
computation of interval matrix powers.
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1.5.3 Quadratic programming approximations

It is well-known that many graph-theoretical problems can be transformed either
to linear or quadratic programming. Even forgetting uncertainty in data, we can
face problems with tractability, e.g., integer linear programming or maximization
of a convex quadratic form. We can apply some approximation method, but we
need to consider it as another source of uncertainty, this time connected with the
precision of the computations. Considering approximation algorithms, further
bounds for the optimized function are also helpful.

Bounds for maximization of a convex quadratic form: In our next work,
see [55] or its reprint P-4 , we consider maximization of a convex quadratic form
on a convex polyhedral set, i.e.

f ∗ = max xTAx subject to x ∈M, (1.15)

whereM is a convex polyhedral set and A ∈ Rn×n is a symmetric positive definite
matrix. This problem is known to be NP-hard even when M is restricted to be
a box (hypercube). Several standard approaches include cutting plane methods,
branch & bound methods, or polynomial-time approximation methods. Most of
these methods exploit the structure of the feasible set and the objective function
simultaneously. In contrast, we propose bounds based on a finer overestimation
of the objective function in this work. This approach outperforms some of the
other methods, see numerical tests in a separate paper [54].

The idea is as follows. Let A be a matrix with the properties given above.
We can factorize this matrix into A = GTG. We can express quadratic form as
xTAx = xTGTGx = ‖Gx‖2

2 and reformulate the problem as

max ‖Gx‖2
2 subject to x ∈M. (1.16)

We focus on an upper bound of f ∗. To derive such an upper bound we can
estimate the Euclidean norm by some other norm. The main focus of this paper
is to investigate the relation between the upper bounds and the factorization and
the vector norm used. Denote by H the set of orthogonal matrices of size n and
by

g∗ := min
R∈Rn×n:A=RTR

max
x∈M

‖Rx‖2
∞

the best upper bound obtained by a factorization of A. For this, we have the
following.

Theorem 1.5.2 (Theorem 1 in [55]). We have

f ∗ = n ·max
x∈M

min
H∈H

‖HGx‖2
∞ ≤ n · min

H∈H
max
x∈M

‖HGx‖2
∞ = g∗. (1.17)

The theorem says that the upper bound g∗ overestimates f ∗ the same way as
max-min inequality. We provide an example (Example 1 in [55]) showing that the
relation in the above inequality can be sharp. On the other hand, we show that
the bound is not far away in general (Proposition 1 in [55]), namely g∗ ≤ nf ∗.
We also provide arguments that this inequality holds as an equation in some
instances (Proposition 2 in [55]).

We further consider one special case - the maximization on a box represented
by an interval vector x = [x, x] = {x ∈ Rn; x ≤ x ≤ x} that stands for M.
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We show that the bound given by the above theorem is not tight and provide an
exemplary bound for f ∗ that stands in between f ∗ and g∗ (Proposition 3 in [55]).

The original bound uses preconditioning with orthogonal matrices due to their
zero effect on the quadratic form. We further consider a general class of matrices
suitable for preconditioning when searching for upper bounds, i.e.

B := {B ∈ Rn×n; ‖x‖2 ≤
√
n‖Bx‖∞ ∀x ∈ Rn} (1.18)

= {B ∈ Rn×n; 1 ≤ √n‖Bx‖∞ ∀x ∈ Rn : ‖x‖2 = 1}.
Consider that we have SVD decomposition of B. We show several properties

of corresponding singular values (Propositions 6 - 8 in [55]) arriving at the end
in the following claim.

Proposition 1.5.3 (Proposition 9 in [55]). Checking B ∈ B is a co-NP-hard
problem.

To help in such unfortunate situation, we provide several sufficient conditions
(Propositions 10 - 12 in [55]). We also consider a set similar to a set given in
Equation 1.18 but for non-negative case of Gx ≥ 0 (section 3.1 in [55]).

Finally, we were able to generalize Theorem 1.5.2 to general vector norm
(Theorem 2 in [55]).

1.6 Closing remarks

We have provided a description of the research performed for complex networks
covering many aspects of the analytical pipeline given in Figure 1.1. Section 1.2
covers the processing of data in the form of multivariate time series to build a
complex network. This section discusses the handling of nonlinearity, dynamics
of time series, or causality problems. In the following Section 1.3 we describe
principles of building and analyzing the global structure of the network. The ma-
jor topics are determining the vertices using dimensionality decomposition and
the global network property of small-world. In the next Section 1.4 we consid-
er one specific network global property: symmetry. First, we show research for
various forms of homogeneity for large networks approximated by countable infi-
nite graphs. This includes steps towards classifying homomorphism-homogeneous
countable graphs and ranking homogenizations using relational complexity. An-
other presented topic dealing with symmetry was represented by research around
the regularity of betweenness centrality. In the final Section 1.5, we describe
research dealing with topics of numerical uncertainty in data used for network
constructions. The first topic covers interval matrix tasks such as regularity ra-
dius and interval matrix powers. The second topic is about designing specific
bounds for an NP-hard problem that can be used for approximate algorithms.

These research works cover various perspectives of complex networks. To
solve related problems, we need to apply many scientific disciplines. Examples
of domains are combinatorics, graph theory, model theory, optimization, linear
algebra, interval algebra, statistics, data processing, theory of dynamical systems,
data processing using neurological, climate, and financial data.

Notes to future work: There are many open questions in the above-described
areas. Considering the dependency measures, we expect research around synchro-
nization of dynamical systems given by specific differential equations, see [10]. As
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an example, computing the Granger causality for diffusion processes, see [114].
Considering the global structure, we believe that there are many unresolved tasks.
There are several interesting open problems around specific sparsity definitions,
such as bounded expansion [87]. Another interesting generalization of a complex
network is a hypergraph, see [14]. Considering the symmetry topics, we are still
working on the classification of homomorphism-homogeneous graphs as well as
the classification of betweenness uniform graphs. We expect to work with interval
networks, see [6, 5], namely the community structure of interval graphs. Further
research of parametric interval matrices properties represent another area.

Industrial project using complex networks: We have also used complex
network approaches in several industrial projects, apart from scientific works. Let
us provide a short note to several recent projects. The central topic was computer
security. The first project was for Avast Software; see contract reference at [112].
The topic was the characterization of the structure of dependencies in a high-
dimensional dynamic system. The next project was for Cisco Systems, Inc., see
contract reference at [111]. The topic was the classification of malicious NetFlow
communications, which will further serve to classify malicious hosts, with special
attention to various time-series analysis methods. Another topic dealt with the
automatic evaluation of crowd behavior and its modeling. The cooperation was
with CertiCon a.s., see their annual report at [11].
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[6] Hélder Alves, Paula Brito, and Pedro Campos. Community detection in
interval-weighted networks. arXiv preprint arXiv:2106.10217, 2021.

[7] A. Aranda and D. Hartman. The independence number of HH-homogeneous
graphs and a classification of MB-homogeneous graphs. European Journal
of Combinatorics, 85:103063, 2020.

[8] M. R. Arbabshirani, K. Kiehl, G. Pearlson, and V. D. Calhoun. Classifi-
cation of schizophrenia patients based on resting-state functional network
connectivity. Frontiers in Neuroscience, 7:133, 2013.

[9] M. R. Arbabshirani, S. Plis, J. Sui, and V. D. Calhoun. Single subject
prediction of brain disorders in neuroimaging: Promises and pitfalls. Neu-
roimage, 145:137–165, 2017.

[10] A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou. Synchro-
nization in complex networks. Physics Report - Review Section of Physics
Letters, 469(3):93–153, 2008.

[11] CertiCon a.s. Certicon Annual Report for 2020. https://www.certicon.

cz/about-us/?lang=en#media, 2020. page 19, [Online; accessed 9-
January-2022].

[12] Y. Bar-Yam. General features of complex systems. Encyclopedia of Life
Support Systems (EOLSS), UNESCO, EOLSS Publishers, Oxford, UK, 1,
2002.

[13] A. L. Barabasi and R. Albert. Emergence of scaling in random networks.
Science, 286(5439):509–512, 1999.

[14] F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, J.-
G. Young, and G. Petri. Networks beyond pairwise interactions: structure
and dynamics. Physics Reports, 874:1–92, 2020.

[15] T. Berners-Lee, W. Hall, J. Hendler, N. Shadbolt, and D. J. Weitzner.

31

https://www.certicon.cz/about-us/?lang=en#media
https://www.certicon.cz/about-us/?lang=en#media


Creating a science of the Web. Science, 313(5788):769–771, 2006.

[16] M. Billio, M. Getmansky, A. W. Lo, and L. Pelizzon. Econometric measures
of connectedness and systemic risk in the finance and insurance sectors.
Journal of Financial Economics, 104(3, SI):535–559, 2012.

[17] B. B. et al. Biswal. Toward discovery science of human brain function.
Proceedings of the National Academy of Sciences of the United States of
America, 107(10):4734–4739, 2010.

[18] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutierrez. Recommender
systems survey. Knowledge-based Systems, 46:109–132, 2013.
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[62] Jaroslav Hlinka, Milan Paluš, Martin Vejmelka, Dante Mantini, and Mau-
rizio Corbetta. Functional connectivity in resting-state fmri: is linear cor-
relation sufficient? Neuroimage, 54(3):2218–2225, 2011.

[63] W. Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

[64] A. L. Hopkins. Network pharmacology: the next paradigm in drug discov-
ery. Nature Chemical Biology, 4(11):682–690, 2008.

[65] H. Jeong, S. P. Mason, A. L. Barabasi, and Z. N. Oltvai. Lethality and
centrality in protein networks. Nature, 411(6833):41–42, 2001.

[66] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási. The
large-scale organization of metabolic networks. Nature, 407(6804):651–654,
2000.

[67] F. Jin, E. Dougherty, P. Saraf, Y. Cao, and N. Ramakrishnan. Epidemio-
logical modeling of news and rumors on twitter. In Proceedings of the 7th
workshop on social network mining and analysis, pages 1–9, 2013.

[68] G. C. Kane, M. Alavi, G. Labianca, and S. P. Borgatti. What’s different
about social media networks? A framework and research agenda. MIS
Quarterly, 38(1):275–304, 2014.

[69] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Jour-
nal of the ACM (JACM), 46(5):604–632, 1999.

[70] S. Kwon, M. Cha, and K. Jung. Rumor Detection over Varying Time
Windows. PLoS ONE, 12(1), 2017.

[71] A. H. Lachlan and R. E. Woodrow. Countable ultrahomogeneous graphs.
Transactions of the American Mathematical Society, 262(1):51–94, 1980.

[72] K. Lewis, J. Kaufman, M. Gonzalez, A. Wimmer, and N. Christakis. Tastes,
ties, and time: A new social network dataset using facebook.com. Social
Networks, 30(4):330 – 342, 2008.

[73] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and Y. Aberg.

35



The web of human sexual contacts. Nature, 411(6840):907–908, 2001.

[74] L. Lovász. Large Networks and Graph Limits. American Mathematical
Society colloquium publications. American Mathematical Society, 2012.

[75] S. Lovejoy and D. Schertzer. The weather and climate: emergent laws and
multifractal cascades. Cambridge University Press, 2013.

[76] B. D. MacArthur, R. J. Sanchez-Garcia, and J. W. Anderson. Symmetry
in complex networks. Discrete Applied Mathematics, 156(18):3525–3531,
2008.

[77] D. Macpherson. A survey of homogeneous structures. Discrete Mathemat-
ics, 311(15):1599 – 1634, 2011.

[78] R. N. Mantegna. Hierarchical structure in financial markets. European
Physical Journal B, 11(1):193–197, 1999.

[79] R. N. Mantegna and H. E. Stanley. Scaling behaviour in the dynamics of
an economic index. Nature, 376(6535):46–49, 1995.

[80] R. N. Mantegna and H. E. Stanley. Introduction to econophysics: correla-
tions and complexity in finance. Cambridge university press, 1999.

[81] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Ho-
mophily in social networks. Annual Review of Sociology, 27:415–444, 2001.

[82] D. Meunier, S. Achard, A. Morcom, and E. Bullmore. Age-related changes
in modular organization of human brain functional networks. Neuroimage,
44(3):715–723, 2009.

[83] S. Milgram. Small-world problem. Phychology Today, 1(1):61–67, 1967.

[84] T. Mizuno, H. Takayasu, and M. Takayasu. Correlation networks among
currencies. Physica A - Statistical Mechanics and its Applications, 364:336–
342, 2006.

[85] C. Moore and M. E. J. Newman. Epidemics and percolation in small-world
networks. Physical Review E, 61(5):5678, 2000.

[86] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction
to Interval Analysis. SIAM, Philadelphia, PA, 2009.
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