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Notation

N natural numbers
N0 = N ∪ {0} natural numbers including 0
R real numbers
C complex numbers
x, y, . . . ∈ Rd, d ∈ N points in Rd

o = (0, . . . , 0) ∈ Rd the origin in Rd

A,B, . . . ⊂ Rd subsets of Rd

A ∪B union of A and B
A ∩B intersection of A and B
∅ empty set
A+ x = {a+ x : a ∈ A}, x ∈ Rd fixed the translation of the set A by x ∈ Rd

A⊕B = {a+ b : a ∈ A, b ∈ B} Minkowski addition of the sets A and B
Ǎ = {−a : a ∈ A} symmetric set to A with respect to the origin
|.| Euclidean norm
vd d−dimensional Lebesgue measure
Hd d−dimensional Hausdorff measure
intA interior of A
∂A boundary of A
Φ(A) =

3√π(6v3(A))2/3

H2(∂A)
sphericity of A ⊂ R3 with the volume v3(A) <
∞ and the surface area H2(∂A) <∞

b(x, r) = {y ∈ Rd : |x− y| ≤ r, r > 0} closed ball centred in x ∈ Rd with the radius r
B(x, r) = {y ∈ Rd : |x− y| < r, r > 0} open ball centred in x ∈ Rd with the radius r
B family of Borel sets
K family of compact subsets of Rd

F family of closed subsets of Rd

σF = σ({F ∈ F : K ∩ F 6= ∅} : K ∈ K) σ-algebra generated by special subsets of F
N system of locally finite subsets of Rd

N = σ({N ∈ N}) σ-algebra generated by all subsets of N
Ω set of elementary events
A = σ({ω ∈ Ω}) σ-algebra generated by all subsets of Ω
P probability
E expected value
X, Y, . . . point processes
X,Y, . . . random sets
x,y, . . . realisations of point processes / random sets
X∗, Y ∗, . . . marked point processes
T tessellation
Ci ∈ T , i ∈ I (an index set) cells of the tessellation T
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DA(M) dilatation of the set M by the set A
EA(M) erosion of the set M by the set A
OA(M) opening of the set M by the set A
CA(M) closing of the set M by the set A
SK(M) morphological skeleton of the set M
G(V,E) graph with vertices V and edges E
Γ(z) =

∫∞
0
xz−1e−xdx the Gamma function for z ∈ C,Real(z) > 0
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Chapter 1

Introduction

Stochastic geometry and spatial statistics have been on the rise in the last few decades.
Mostly investigated fields are point processes and random sets, see e.g. [7], [9], [11], [38]
or [42]. The reasons for their attractiveness are, firstly, the development of computer
technology, which allows faster simulations and hence derivation of statistical inferences
based very often on these simulations, and secondly, a wide range of their applications,
e.g. in biology, medicine or materials sciences.

The most common applications concern models in two-dimensional space (e.g. occur-
rences of illnesses on an area [3], shapes of plant undergrowths [41], cross-sections of
cell tissue [43], etc.) and three-dimensional space (e.g. material structures or particles in
them [55]). Therefore, also statistical methods of their analyses focus on these dimensions.
The methods may be very various from model constructions through descriptive statistics
to parameter estimates and testing several hypotheses about constructed models.

The 2D and 3D models and their statistical analyses are the main points of interest in
the presented habilitation thesis. The thesis is intended as comments of nine papers pub-
lished by the author since 2014 concerning the above-mentioned topics. The aim of the
commented papers was to further develop the theory, simulations, methods for several
statistical analyses and applications of random sets in 2D and 3D using already exist-
ing results for both random sets and point processes. Namely, a special planar model
of random set called the Quermass-interaction process, see [27] or [40], is studied from
an unexplored point of view so that the random disc process [40] is generalised to the
process with convex compact grains and its the theoretical results from [27] are corrected
and extended (this is done in the commented paper [22]). Further, the thesis concerns
two methods for assessing similarity of planar random sets without knowledge of their
models when having only two realisations of the random sets on the input. The first one
takes into account positions of components in the realisations and assesses their similar-
ity based on increment of mass around a given point (the commented paper [10]). The
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second one focuses only on the geometrical characteristics of individual components in
the realisations (the commented paper [19]). The last topic includes various 3D mate-
rial analyses, where a mathematical definition of characteristics describing transmissivity
through a material is given, their estimations are derived and properties are studied (the
commented paper [47]), a stochastic model for a special material is constructed (the com-
mented paper [46]), a method of processing incomplete dataset of crystalline material is
suggested (the commented paper [48]), basic descriptive spatial statistics of data obtained
from crystalline material using the 3D EBSD method are provided (the commented pa-
pers [32] and [33]) and a difference in segmentation of 2D and 3D EBSD data is briefly
discussed (the commented paper [59]).

The thesis is organised as follows. In Chapter 2, basic definitions, notation and previous
results are introduced. Chapter 3 consists of the comments on the papers concerning
2D analyses mentioned above, namely Section 3.1 concerns the paper on the Quermass-
interaction process with convex compact grains and in Section 3.2, the methods for dis-
tinguishing realisations of random sets is described. Chapter 4 is related to 3D models,
where Section 4.1 defines new characteristics of material properties, Section 4.2 concerns
a construction of a model for a special material consisting of three phases, in Section 4.3,
a method for reconstruction of material grain structure is suggested, Section 4.4 intro-
duces descriptive statistics of two material specimen processed in special conditions and
finally, Section 4.5 comments differences between 2D and 3D EBSD processing. At the
end, the commented papers are enclosed.
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Chapter 2

Theoretical background

In this habilitation thesis, there are used notations, definitions and propositions taken
from or based mainly on the publications [5], [7], [11], [14], [27], [30], [31], [35], [36], [38],
[40], [41], [42], [44], [54], [57] and [58]. This chapter provides a brief summary of that
ones needed in the following two chapters dedicated to commented papers.

2.1 Geometry in Euclidean space

Denote N the set of natural numbers. For d ∈ N, Rd denotes the d−dimensional Euclidean
space, |.| the Euclidean norm in Rd, vd the d−dimensional Lebesgue measure and Hk the
k−dimensional Hausdorff measure for 1 ≤ k ≤ d.

Let A,B ⊂ Rd and x ∈ Rd. Then A ∪ B denotes the union of A and B, A ∩ B denotes
their intersection, the interior of A is denoted as intA and the boundary of A as ∂A,
Ǎ = {−a : a ∈ A} is the set symmetric to A with respect to the origin, A+ x = {a+ x :
a ∈ A} is the translation of the set A by x ∈ Rd, A⊕ B = {x+ y : x ∈ A, y ∈ B} is the
Minkowski addition of the sets A and B, ∅ is the empty set and o = (0, ..., 0) denotes the
origin in Rd.

Open and closed balls with radius r > 0 centered at x ∈ Rd are denoted as B(x, r) and
b(x, r), respectively, i.e. B(x, r) = {y ∈ Rd : |x−y| < r}, b(x, r) = {y ∈ Rd : |x−y| ≤ r}.

Further, consider a smooth 2D curve c parameterised by a parameter ϕ ∈ [0, φ] ⊂ R, i.e.
c(ϕ) = (x(ϕ), y(ϕ)). Then the curvature κ of c is defined as

κ(c(ϕ)) =
x′(ϕ)y′′(ϕ)− x′′(ϕ)y′(ϕ)

(x′2(ϕ) + y′2(ϕ))3/2
.
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It means that κ(c(ϕ)) = ±1/R(ϕ), where R(ϕ) is the radius of the osculating circle
touching the curve in the point [x(ϕ), y(ϕ)] and the choice between “+“ and “−“ is
determined by the local convexity convention.

Finally, let A ⊂ R3, the volume v3(A) <∞ and the surface area H2(∂A) <∞. Then the
sphericity of A is

Φ =
3
√
π(6v3(A))2/3

H2(∂A)
.

In Chapter 3 and Chapter 4, we work with special formations built in the Euclidean
space, which are introduced in the following subsections.

2.1.1 Laguerre tessellation

Definition 2.1 A tessellation in Rd is a countable collection of sets (called cells) T =
{Ci ⊂ Rd : i ∈ N} such that

• Ci ∈ K for all i ∈ N,

• intCi ∩ intCj = ∅ for i 6= j,

• ∪i∈NCi = Rd,

• T is locally finite.

Definition 2.2 Consider a couple (x, r), x ∈ Rd, r ≥ 0, called a marked point, and
y ∈ Rd. Then the power distance (Laguerre distance measure) of the point y from the
marked point (x, r) is defined by

pow((x, r), y) = |y − x|2 − r2.

Definition 2.3 Consider a set of marked points {(xi, ri)}i∈I (I ⊆ N is an index set).
The Laguerre tessellation T is the system of the sets {Ci, i ∈ I}, where

Ci = {y ∈ Rd : pow((xi, ri), y) ≤ pow((xj, rj), y) for all j ∈ I}. (2.1.1)

The set Ci is called the i-th cell of the Laguerre tessellation T , the points xi are called
seeds, the values ri are called weights and the marked points (xi, ri) are called weighted
generating points.

10



The Laguerre tessellation, also called power diagram or additively weighted power Voronoi
tessellation, is a generalization of the Voronoi tessellation, see [7] or [39], in the sense that
in the Voronoi tessellation, the weights ri are identical, i.e. each cell Ci is the set of points
y ∈ Rd which are closer to the seed xi than to any other seed xj, j ∈ I \ {i}.

A special usage of the Laguerre tessellation is introduced in [40], where the authors work
with the intersection of the Laguerre tessellation with a union of discs, called the power
tessellation of the union of discs. It is a helpful tool for simulations of the Quermass-
interaction process, see Section 2.2.3 below. It is constructed as follows. Consider a
configuration of discs b = (b1(x1, r1), . . . , bn(xn, rn)) and denote the union of the discs as
Ub = ∪ni=1bi(xi, ri). Let T is the Laguerre tessellation with weighted generating points
(xi, ri), i = 1, . . . , n. Denote

C̃i = Ci ∩ b(xi, ri), i = 1, . . . , n,

where Ci are the cells of the tessellation T . The system {C̃i, i = 1, . . . , n} is the power
tessellation of the union of discs Ub.

2.1.2 Binary images, morphological operations and skeletons in R2

Definition 2.4 Consider A,M ⊆ Rd arbitrary sets. The dilation, erosion, opening and
closing of the set M by the structuring element A are defined, respectively, as

DA(M) = M ⊕ A = {x ∈ Rd : Ǎx ∩M 6= ∅} =
⋃
a∈A

Ma,

EA(M) = M 	 Ǎ = {x ∈ Rd : Ax ⊆M} =
⋂
a∈A

M−a,

OA(M) = DA(EA(M)) = (M 	 Ǎ)⊕ A,
CA(M) = EA(DA(M)) = (M ⊕ A)	 Ǎ,

where Ma is the set M translated by a, i.e. Ma = {x+ a;x ∈M}.

Definition 2.5 Let B(x, r) be the open disc with the radius r centred in x ∈ R2 and
M ⊆ R2. The disc B(x, r) is called maximal with respect to the set M if there exists no
other disc B̃(x̃, r̃) included in M and containing B(x, r), i.e.

B(x, r) ⊆ B̃(x̃, r̃) ⊆M ⇒ B(x, r) = B̃(x̃, r̃).

Definition 2.6 Let ImaxM be the set of all maximal discs with respect to M . The morpho-
logical skeleton (called only skeleton in the sequel) SK(M) of the set M is defined as the
set of centres of all maximal discs, i.e.

SK(M) = {x;B(x, r) ∈ ImaxM , r > 0}.
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For r > 0, we can define the r-th skeleton subset Sr(M) as

Sr(M) = {x ∈ SK(M) : B(x, r) ∈ ImaxM }.

Obviously, it holds that

SK(M) =
⋃
r>0

Sr(M).

As the r-th skeleton subset can be obtained by using morphological set transformations,
namely

Sr(M) =
⋂
s>0

{
EB(o,r)(M)\OB(o,s)(EB(o,r)(M))

}
, (2.1.2)

where o denotes the origin, we can represent the skeleton of M as

SK(M) =
⋃
r>0

⋂
s>0

{
EB(o,r)(M)\OB(o,s)(EB(o,r)(M))

}
. (2.1.3)

Binary image

In practice, we often work with planar data in the form of binary images. By a binary
image, we mean the matrix of black and white pixels or, alternatively, of 1’s and 0’s.
When we talk about a set A to be in the form of binary image, we mean that A is the
set of black pixels (or the set of 1’s) in the matrix, while the set of white pixels (or the
set of 0’s) corresponds to its complement Ac.

Skeleton of a binary image

Let M be in the form of binary image and nB be the binary disc with radius n ∈ N using
the Manhattan distance, i.e. nB = {(x, y) ∈ Z2; |x| + |y| ≤ n}. Let us find N ∈ N such
that ENB(M) 6= ∅ and E(N+1)B(M) = ∅. Then, the skeleton SK(M) is defined by

SK(M) =
N⋃
n=0

Sn(M),

where Sn(M) = EnB(M)\OB(EnB(M)), cf. (2.1.2) and (2.1.3).
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2.1.3 Beta-skeleton

Let X be an arbitrary locally finite set of points (called vertices) in Rd. Consider x, y ∈ X
and a ≥ 1. Denote

m(1)
x,y =

a

2
x+

(
1− a

2

)
y,

m(2)
x,y =

a

2
y +

(
1− a

2

)
x,

Aa(x, y) = b(m(1)
x,y, |m(1)

x,y − y|) ∩ b(m(2)
x,y, |m(2)

x,y − x|).

Definition 2.7 The beta-skeleton on X with the parameter a is defined as the graph
Ga(X) = (X,Edga), where X is the set of vertices and the set of edges is defined by

Edga = {(x, y) : x, y ∈ X, (X \ {x, y}) ∩ Aa(x, y) = ∅}.

In the case a = 2, the beta-skeleton coincides with the relative neighborhood graph,
see [29]. It is easy to show that the beta-skeleton Ga(X) is a connected graph for all
1 ≤ a ≤ 2 if the beta skeleton G2(X) is a connected graph, see [46].

2.2 Basics of stochastic geometry

2.2.1 Point processes

Definition 2.8 Let (Ω,A, P ) be a probability space. Consider N the system of locally
finite subsets of Rd with the σ-algebra N = σ({x ∈ N : n(x∩A) = m} : A ∈ B,m ∈ N0),
where B denotes the system of bounded Borel sets and n(x) denotes the number of points
in the configuration x. A point process X defined on Rd is a measurable mapping from
(Ω,A) to (N ,N). The distribution PX of the point process X is given by the relation
PX(K) = P ({ω ∈ Ω : X(ω) ∈ K}) for K ∈ N.

Definition 2.9 A measure Λ on B satisfying Λ(A) = EX(A) for all A ∈ B, where
X(A) denotes the number of points in A, is called the intensity measure. If there exists
a function ρ(x) for x ∈ Rd such that Λ(A) =

∫
A
ρ(x)dx, then ρ(x) is called the intensity

function. If the intensity function ρ(x) is constant, ρ(x) = ρ, the point process is called
homogeneous with the intensity ρ. Otherwise, it is said to be inhomogeneous.

Definition 2.10 A point process X is called to be

13



• stationary, if the distribution PX is invariant under translation, i.e. PX = PX+v

for all v ∈ Rd.

• isotropic, if the distribution PX is invariant under rotation, i.e. PX = Pψ(X) for
each rotation ψ around the origin o in Rd.

• motion invariant if it is both stationary and isotropic.

Definition 2.11 Consider a given locally finite measure Λ. Then the Poisson point
process Y is the process which satisfies:

• for any finite collection {An} of pairwise disjoint sets from B, the numbers of points
in these sets, Y (An), are independent random variables,

• for each A ∈ B, the number of points in A, Y (A), has Poisson distribution with the
parameter Λ(A), i.e. P [Y (A) = k] = Λ(A)k

k!
e−Λ(A) for k = 0, 1, 2, . . .

Note that Λ in Definition 2.11 is the intensity measure of the Poisson point process.

Definition 2.12 Let Y be the Poisson point process defined on S ⊆ Rd. Denote Nf =
{x ⊂ S : n(x) < ∞} and Nf = {F ∈ N : F ⊆ Nf}. Then a point process X is given by
a density f : Nf → R+ with respect to the Poisson point process Y if

P (X ∈ F ) =

∫
F

f(x)PY (dx) for F ∈ Nf .

Definition 2.13 Let X be a point process given by a density f with respect to a Poisson
process Y . For any configuration x ∈ Nf and any point v ∈ S \ x, the Papangelou
conditional intensity is defined as

λ(x, v) = f(x ∪ {v})/f(x) if f(x) > 0, (2.2.1)
= 0 otherwise.

Definition 2.14 A density f : Nf → R+ is called Ruelle stable if there exist positive
constants α and β such that f(x) ≤ αβn(x) for all x ∈ Nf .

Definition 2.15 A density f : Nf → R+ is called locally stable if there exists a constant
β such that λ(x, v) ≤ β for all x ∈ Nf and all v ∈ S \ x.

Remark 2.1 The local stability implies the Ruelle stability and moreover, both the sta-
bility properties imply the integrability of the density with respect to PY .
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Definition 2.16 A point process X is said to be attractive if for the Papangelou condi-
tional intensity, it holds that

λθ(x, v) ≥ λθ(y, v) whenever y ⊂ x, x ∈ Nf , v ∈ S,

and repulsive if

λθ(x, v) ≤ λθ(y, v) whenever y ⊂ x, x ∈ Nf , v ∈ S.

Definition 2.17 A marked point process on Rd is a random sequence X∗ = {[xi,mi]},
where the points xi form a point process in Rd and mi are the marks (usually random
variables) corresponding to each xi. The marks belong to a given space M of marks which
is assumed to be Polish.

2.2.2 Random sets

Denote K the family of compact subsets of Rd, F the family of closed subsets of Rd and
σF = σ({F ∈ F : K ∩ F 6= ∅} : K ∈ K).

Definition 2.18 Let (Ω,A, P ) be a probability space. Then a measurable mapping X
from (Ω,A) to (F , σF) is called a random closed set. The distribution PX of the random
set X is given by the relation PX(F ) = P ({ω ∈ Ω : X(ω) ∈ F}) for F ∈ σF .

Definition 2.19 The random set X is called to be

• stationary, if the distribution PX is invariant under translation, i.e. PX = PX+v

for all v ∈ Rd.

• isotropic, if the distribution PX is invariant under rotations, i.e. PX = Pψ(X) for
each rotation ψ around the origin o in Rd.

• motion invariant, if it is both stationary and isotropic.

Definition 2.20 The volume fraction of a stationary random closed set X is defined by

p = Evd(X ∩ [0, 1]d).

Definition 2.21 Let X∗ = {[xi,Ai]} be a marked point process, where the points xi form
a point process X in Rd and A1,A2, . . . are random compact sets in Rd. Then the union

A = ∪∞i=1(xi + Ai) (2.2.2)

is called a germ-grain model. The points x1, x2, . . . from (2.2.2) are called germs and the
random sets A1,A2, . . . are called grains.
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Definition 2.22 Let X = {x1, x2, . . .} in Definition 2.21 be the Poisson point process in
Rd and A1,A2, . . . independent identically distributed random compact sets in Rd that are
independent on X. If Evd(A1 ⊕K) <∞ for all compact sets K, then the union (2.2.2)
is called the Boolean model.

2.2.3 Random disc Quermass-interaction process

In general, the Quermass-interaction process, see e.g. [27], [40] or [41], is a special planar
germ-grain model X given by a density with respect to a planar germ-grain model Y,
where Y is usually a Boolean model. The authors of [40] and [41] - the main motivation
for study in the commented paper [22] summarised in section 3.1 - focus on a special
case, when the grains are discs with random radii and an intensity function of the disc
centers ρ(x). The local integrability of this intensity function is assumed to ensure that
with probability 1, the point process of the centres of the discs is finite for any bounded
region S ⊂ R2 such that

∫
S
ρ(x) dx > 0.

In the sequel, we denote b = {b1, . . . , bn} a finite configuration of discs and Ub their
union. We assume that the reference process Y has unit intensity of the disc centers in
a given region S and zero intensity otherwise, i.e. ρ(x) = 1 for x ∈ S and ρ(x) = 0 for
x /∈ S. Note that it means that the centres of the discs are contained in S but the discs
themselves may extend outside S. Further, we assume that X is absolutely continuous
with respect to the reference process Y and it is given by a density f(b) with respect to
Y in the form

fθ(b) = exp{θ · T (Ub)}/cθ, (2.2.3)

where θ is a real parameter vector, · denotes the usual inner product, T (Ub) is a vector of
geometrical characteristics depending on the union Ub of the discs from the configuration
b and cθ is the normalising constant.

Definition 2.23 The random disc Quermass-interaction process is the disc process X
given by the density (2.2.3) with respect to a given reference random disc Boolean model
Y, in which we set T (Ub) = (A(Ub), L(Ub), χ(Ub)), where A(Ub) is the area, L(Ub) is the
perimeter and χ(Ub) is the Euler-Poincaré characteristic (i.e. the number of connected
components minus the number of holes) of the set Ub.

Remark 2.2 The authors of [40] and [41] work with so called extended random disc
Quermass-interaction process, where more geometrical characteristics are included in the
vector T (Ub) (e.g. the number of individual discs, the number of connected components
and the number of holes considered separately, etc.), but in the commented paper [22],
the classical Quermass-interaction process using only T (Ub) = (A(Ub), L(Ub), χ(Ub)) is
studied.
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Simulation by Metropolis-Hastings algorithm

For simulation of the Quermass-interaction process (2.2.3), a simple version of the birth-
death type Metropolis-Hastings algorithm studied in [14] is used.

Denote λθ(b, b) Papangelou conditional intensity (2.2.1) of the Quermass-interaction pro-
cess X. Then the simulating algorithm works as follows.

1. Start from an arbitrary configuration b0.

2. Suppose that in iteration t ∈ {0, . . . , tmax}, we have bt = {b1, . . . , bn}.

3. In the iteration t+ 1:

(a) with the probability 1/2, we propose to add a disc bn+1, i.e. to change the
configuration to bt ∪ {bn+1}
i. we accept the proposal with probability min{1;H(bt, bn+1)} and set

bt+1 = bt ∪ {bn+1},
ii. else we set bt+1 = bt,

(b) else, we propose to delete a randomly chosen disc bi from bt, i.e. to change
the configuration to bt\{bi}
i. we accept it with probability min{1; 1/H(bt\{bi}, bi)} and set

bt+1 = bt\{bi},
ii. else bt+1 = bt,

where H(bt, bn+1) = λθ(bt, bn+1) |S|
n+1

and H(bt\{bi}, bi) = λθ(bt\{bi}, x = bi)
|S|
n
.

An advantage of the algorithm is that it requires only the value of Papangelou conditional
intensity, so only local computations of the geometrical statistics are needed. Namely,
denoting G(b, b) = G(Ub ∪ b)−G(Ub) the increment of an arbitrary geometrical charac-
teristic G ∈ {A,L, χ} when adding a disc b to the configuration b, we get the Papangelou
conditional intensity in the form

λθ(b, b) = exp{θ1A(b, b) + θ2L(b, b) + θ3χ(b, b)}. (2.2.4)

It means that λθ(b, b) depends only on the increments of the geometrical characteristics
and neither on the characteristics themselves nor on the normalising constant.

Moreover, the power tessellation of the union of discs Ub plays an important role. Its
usefulness is such that it provides a division of the union of overlapping discs to the union
of disjoint convex compact sets, thus instead of inclusion-exclusion formula

G(Ub) =
∑
i

G(bi)−
∑
{i1,i2}

G(bi1 ∩ bi2) + . . .+ (−1)n+1
∑

{i1,...,in}

G(bi1 ∩ · · · ∩ bin),
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we can calculate

A(Ub) =
∑
i

A(C̃i), L(Ub) =
∑
i

L(C̃i), , χ(Ub) = N1 −N2 +N3,

where C̃i are the cells of the power tessellation of the union Ub, N1 is the number of
nonempty cells of the corresponding tessellation, N2 the number of so called interior edges
(the lines corresponding to the boundaries between two cells, i.e. to their intersections)
and N3 the number of so called interior vertices (the points where three cells meet, i.e.
their intersections), since almost surely, more than three cells cannot meet in one point.
It allows to make only local calculations in the sense that when we add or delete a disc,
the geometrical characteristics are recalculated only for such cells of the tessellation which
are intersected by the added or deleted disc, respectively, since for the other cells, the
characteristics remain unchanged.

2.3 Equality of distributions of random functions

A part of this thesis, namely Section 3.2, works with a description of random sets by a
group of functions, which are used for assessing dissimilarity of realisations of random
sets. Therefore, we need methods for testing equality of distributions of random functions.
In [10] and [19], which are summarised in Section 3.2, we use the envelope test from [44],
which has become very popular in the field of spatial statistics in the last years, and the
test from [18] based on N -distances of probability measures [30], since it appears to be a
very promising procedure for this purpose.

2.3.1 Envelope test

Consider s+1 exchangeable random objects described by functional characteristics Ti(u),
i = 1, ..., s + 1, u ∈ I (index set). For each u ∈ I, let R↑i (u) and R↓i (u) denote the ranks
of the values Ti(u) from the smallest value with rank 1 to the largest one with rank s+ 1
and from the largest value with rank 1 to the smallest one with rank s+ 1, respectively.
For each u ∈ I, we define u-wise ranks of Ti(u) as Ri(u) = min

(
R↑i (u), R↓i (u)

)
.

In practice, we observe Ti(u) in a discrete index set I = {u1, . . . , un}, i.e. Ti(u) =

(Ti(u1), . . . , Ti(un)). Denote Ni = (Ni1, . . . Nis̃) , where Nik =
n∑
j=1

1(Ri(uj) = k) and

s̃ = b(s+ 2)/2c, and define

Ni ≺ Nj ⇐⇒ ∃m ≤ s̃ ∀k < m : Nik = Njk & Nim > Njm.
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Then the p-value of the test is

p =
1

s+ 1

(
1 +

s+1∑
i=1

1(Ni ≺ N1)

)
.

For our purposes, the aim is to test the equality of distributions of two random functions
t(1) and t(2). Suppose we have m1 samples of geometrical objects described by functions
t
(1)
1 (u), . . . , t

(1)
m1(u) coming from a distribution and m2 samples of geometrical objects

described by functions t(2)
1 (u), . . . , t

(2)
m2(u) coming from an other distribution. We use a

Monte Carlo permutation test, see e.g. [12], for testing whether these two samples of
functions come from the same distribution. It works as follows. We consider all functions
t
(1)
1 (u), . . . , t

(1)
m1(u), t

(2)
1 (u), . . . , t

(2)
m1(u) together and make s random permutations of them.

Consequently, we split each permuted pooled sample into two groups of the lengths m1

and m2, and calculate the characteristics Ti(u), i = 2, . . . s+ 1, as the differences between
the means of the functions from the i-th permutation.

2.3.2 Test based on N-distance

Definition 2.24 Let X be a nonempty set. A map L : X × X → C is called a negative
definite kernel if for any n ∈ N, arbitrary c1, ..., cn ∈ C such that

∑n
i=1 ci = 0 and

arbitrary x1, ..., xn ∈ X , it holds that
n∑
i=1

n∑
j=1

L(xi, xj)cic̄j ≤ 0. (2.3.1)

Definition 2.25 The negative definite kernel L is called a strongly negative definite ker-
nel if for an arbitrary probability measure µ and an arbitrary f : X → R such that∫
X f(x)dµ(x) = 0 and

∫
X

∫
X L(x, y)f(x)f(y)dµ(x)dµ(y) exists and is finite, the relation∫

X

∫
X L(x, y)f(x)f(y)dµ(x)dµ(y) = 0 implies f(x) = 0 µ-almost surely.

Theorem (Klebanov [30]) Denote IL the set of all measures µ such that the integral∫
X

∫
X L(x, y)dµ(x)dµ(y) exists. Let L(x, y) = L(y, x). Then

N (µ, ν) = 2

∫
X

∫
X
L(x, y)dµ(x)dν(y)

−
∫
X

∫
X
L(x, y)dµ(x)dµ(y)−

∫
X

∫
X
L(x, y)dν(x)dν(y) ≥ 0 (2.3.2)

holds for all measures µ, ν ∈ IL with the equality in the case µ = ν only, if and only if L
is a strongly negative definite kernel.
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In the sequel, the termN (µ, ν) from (2.3.2) is called the N -distance of the measures µ and
ν. There are introduced some examples of strongly negative definite kernels L in [30] for
X = Rd, e.g. the Euclidean distance used in [19], which is summarised in Section 3.2.2.
Further, since we often focus on testing the equality in distribution of random functions
t(1) and t(2), we use the kernel from [18] constructed especially for random functions.
Namely, when we evaluate the testing functions t(1) and t(2) in discrete arguments from
the index set I = {u1, . . . , un}, the kernel is

L(t(1), t(2)) =
∑
K∈2I

(∑
uk∈K

(
t(1)(uk)− t(2)(uk))

)2

)1/2

,

where 2I denotes the set of all subsets of I.

The estimate of the N -distance of the (random) functions t(1) and t(2) based on the
random samples t(1)

1 (u), . . . , t
(1)
m1(u) and t(2)

1 (u), . . . , t
(2)
m2(u), respectively, is evaluated as

N̂1 =
2

m1m2

m1∑
i=1

m2∑
j=1

L(t
(1)
i , t

(2)
j )− 1

m2
1

m1∑
i=1

m1∑
j=1

L(t
(1)
i , t

(1)
j )− 1

m2
2

m2∑
i=1

m2∑
j=1

L(t
(2)
i , t

(2)
j ).

(2.3.3)

It plays the role of the testing characteristic so that we again use Monte-Carlo permutation
test, i.e. we make s permutations of all functions t(1)

1 (u), . . . , t
(1)
m1(u), t

(2)
1 (u), . . . t

(2)
m2(u),

split each permuted pooled sample into two groups of the lengthsm1 andm2, respectively,
and analogously to (2.3.3), we calculate N̂i for the i-th permutation, i = 2, . . . , s + 1.
Then the p-value of the test is

p =
#{i ∈ {2, . . . , s+ 1} : N̂i ≥ N̂1}+ 1

s+ 1
.

2.4 Cross-entropy method

The cross-entropy method (denoted as CE in the sequel) is a stochastic optimisation
method which is able to solve many continuous optimisation problems, see [31] and [54].
Consider a cost function c. The idea of the CE method is to find the global minimum
z∗ = arg minz∈Rd c(z) by a stochastic searching from a d-dimensional distribution so that
z∗ is the global maximum with probability 1.

We assume that the distribution of the location of the global minimum z∗ is given by
a parametric density f(z; θ) with a parameter θ ∈ Rd̃. Consider l, n ∈ N such that
n > l. Generate a sample (z(1), ..., z(n)) from a given density f(z; θ) and calculate the
corresponding values c(z(1)), ..., c(z(n)). Let us call the set of l members from the sample
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(z(1), ..., z(n)) with the smallest values of the cost function c(z) the elite set. Then, the
parameter θ is updated by computing the maximal likelihood estimate from the samples
in the elite set. This procedure is repeated until the distribution given by f(z; θ) is nearly
determined.

The standard choice of the density f(z; θ) is

f(z; θ) = Πd
i=1ϕ(zi;µi, σi), (2.4.1)

where z = (z1, ..., zd), θ = (µ1, σ1, ..., µd, σd) and ϕ(z;µ, σ) is the density of the normal
distribution with the mean µ ∈ R and the standard deviation σ > 0. In this case, the
CE algorithm works as follows:

1. Initialization: Choose an initial parameter θ(0) = (µ
(0)
1 , σ

(0)
1 , ..., µ

(0)
d , σ

(0)
d ) and set

k = 0.

2. Sampling: Generate a sample (z(1), ..., z(n)) from the density f(z; θ(k)) and select
the elite set (z(e1), ..., z(el)) from this sample with respect to the cost function c.

3. Updating: Calculate the MLE of the parameter θ from the elite sample, which
corresponds to the sample means and the standard deviations for the density (2.4.1),
i.e. calculate

z̄1 =
1

l

l∑
i=1

z
(ei)
1 , ..., z̄d =

1

l

l∑
i=1

z
(ei)
d ,

z
(sd)
1 =

√√√√ 1

l − 1

l∑
i=1

(z
(ei)
1 − z(sd)

1 )2, ..., z
(sd)
d =

√√√√ 1

l − 1

l∑
i=1

(z
(ei)
d − z̄d)2,

and set θ(k+1) = (µ
(k+1)
1 = z̄1, σ

(k+1)
1 = z

(sd)
1 , ..., µ

(k+1)
d = z̄d, σ

(k+1)
d = z

(sd)
d ).

4. Iteration: If the value of the cost function c does not decrease significantly for a
certain number of steps, see (2.4.2) below, the algorithm is stopped. Otherwise, set
k = k + 1 and go to the step 2.

Variance injection

When using the CE algorithm, the variance of the distribution f(z; θ) may decrease too
quickly, hence the algorithm converges to a local minimum instead of the global minimum
z∗. To avoid this situation, we can use variance injection introduced in [4]. The idea
is to occasionally increase the variance of the distribution f(z; θ) to ensure that more
realisations of this distribution leave the neighborhood of the local minimum. Usually,
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the variance injection is applied when the cost function c does not decrease significantly
for a chosen number of iterations τ , more precisely, when∣∣∣∣∣c

(k)
min −maxt∈{k−τ,...,k−1} c

(t)
min

c
(k)
min

∣∣∣∣∣ < δinject,

where δinject > 0 is a chosen boundary and c
(k)
min = mini=1,...,n c(z

(i)) for the sample
(z(1), ..., z(n)) of the k-th step. The size of the variance increment may depend on the
current value of the cost function. If the cost function c(z) =

∑m
i=1 cloc(zi), then the

increment of the standard deviation σi can be proportional to the value cloc(zi). If the
effect of variance injection become negligible, i.e.∣∣∣∣∣c(k)

min

c
(k′)
min

∣∣∣∣∣ > γ,

where γ ∈ (0, 1) and c
(k′)
min is the minimal cost function prior to the previous variance

injection, we stop using variance injection.

The CE algorithm is terminated when∣∣∣∣∣c
(k)
min −maxt∈{k−τ,...,k−1} c

(t)
min

c
(k)
min

∣∣∣∣∣ < δterm, (2.4.2)

where δinject > δterm > 0.
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Chapter 3

Statistical methods for random sets
in 2D

3.1 Quermass-interaction process with convex compact
grains

A generalisation of the random disc Quermass-interaction process from Section 2.2.3 is
studied in [22]. Here, we focus on the Quermass-interaction process with convex compact
grains. We follow up the papers [27] and [40], which provide some theoretical results,
especially several stability properties. A simulation algorithm is moreover suggested in
[40]. In [22], we add some new theoretical results, modify the simulation method and
moreover, we correct some flaws which appear in [27]. The summary of [22] follows.

Definition 3.1 The Quermass-interaction process with convex compact grains is a germ-
grain model X, which is absolutely continuous with respect to a reference germ-grain model
Y and given by the density f(x) with respect to Y, where the density is of the form

fθ(x) = c−1
θ exp{θ1A(Ux) + θ2L(Ux)}+ θ3χ(Ux)}. (3.1.1)

The germs lie in a bounded set S ⊂ Rd and the grains of Y, as well as the grains
{x1, . . . , xn} of each configuration x, are realisations of a random planar convex compact
set.

First, we wonder whether the Quermass-interaction process from Definition 3.1 is well
defined, i.e. whether the density (3.1.1) is measurable and integrable. While the measur-
ability is ensured by Lemma 2.2 from [27], we focus only on the Ruelle stability, which

23



is sufficient condition for integrability of the density (3.1.1), see [27]. The following two
propositions are the first theoretical results in [22]. Note that it is a corrected version of
the results from [27], in which we remove the mistakes as mentioned above.

Proposition 3.1 1. Consider the (A,L)-interaction process, i.e. the process with

fθ(x) = c−1
θ exp{θ1A(Ux) + θ2L(Ux)}.

Then the density fθ is Ruelle stable if one of the following conditions holds:

(a) θ1 ≤ 0 and θ2 ≤ 0,

(b) θ1 > 0, θ2 > 0 and A(x) and L(x) are bounded above for all grains x from the
support of the distribution of the grains.

2. Consider the χ-interaction process, i.e. the process with

fθ(x) = c−1
θ exp{θ3χ(Ux)},

whose grains are random discs. Then the density fθ is Ruelle stable for all θ3 ∈ R.

3. Consider the χ-interaction process, i.e. the process with

fθ(x) = c−1
θ exp{θ3χ(Ux)},

whose grains are random polygons satisfying the following conditions:

(a) There exists an angle φ > 0 and a radius r > 0 such that for all grains x (i.e.
realisations of the random polygon forming the grains) and for all vertices vx
of each x, the intersection b(vx, r)∩Ux is a circular sector of angle at least φ.

(b) There exists a constant K ∈ R such that x ⊂ [−K,K]2 for all realisations of
the grains x.

Then the density fθ is Ruelle stable.

The proof can be found in [22]. Note that the parts 1. and 2. are slight modifications of
the proof in [27] while the point 3. requires more detailed analysis.

In the following proposition, we provide the conditions for the Ruelle stability of the
χ-interaction process with a different type of grains, namely for grains with smooth
boundary and bounded curvature (e.g. ellipses with bounded ratios of the main axes,
several ovoid shapes etc.). The proof can be again found in [22].

Proposition 3.2 Consider a convex compact grain x satisfying the following conditions:
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1. There exists a constant K > 0 such that x ⊂ [−K,K]2.

2. For each grain x, it holds that its boundary ∂x ∈ C1, i.e. there exists a tangent of
the grain in each point on its boundary.

3. Denote T xv , T xw the tangents of ∂x in the points v, w ∈ ∂x and αxv,w the smaller angle
between T xv and T xw. Then there exists a constant L such that

αxv,w ≤ L||v − w||.

Just note that for a grain x such that ∂x ∈ C2, it means that the curvature of ∂x is
bounded.

4. There exists r̃ > 0 such that for any two grains xi, xj, i 6= j, it holds that

n(∂xi ∩ ∂xj ∩ b(u, r̃)) ≤ 2, ∀u ∈ R2,

Then the χ-interaction process with convex compact grains satisfying the conditions (1)–
(4) above is Ruelle stable.

Then, we study the attractiveness and the repulsiveness. These properties for the random
disc Quermass-interaction process are introduced in [40]. In [22], they are generalised and
formulated as follows.

Proposition 3.3 For the Quermass-interaction process with convex compact grains, it
holds:

1. The process with θ2 = θ3 = 0 and θ1 6= 0, i.e. the A-interaction process, is attractive
for θ1 < 0 and repulsive for θ1 > 0.

2. The process with θ1 = θ3 = 0 and θ2 6= 0, i.e. the L-interaction process, is

(a) both attractive and repulsive, if L(UX) = 0,

(b) attractive for θ2 < 0 and repulsive for θ2 > 0, if A(UX) = 0 and P (L(UX) >
0) > 0,

(c) neither attractive nor repulsive, if P (A(UX) > 0) > 0.

3. The process with θ1 = θ2 = 0 and θ3 6= 0, i.e. the χ-interaction process, is

(a) both attractive and repulsive, if L(UX) = 0,

(b) neither attractive nor repulsive, if P (L(UX) > 0) > 0.
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Further contribution of the paper [22] is the suggestion of an easy algorithm for program-
ming simulation of the process. The simulation procedure uses the basic Metropolis-
Hastings birth-death algorithm, see [42], described above in Section 2.2.3. Several sig-
nificant advantages of this procedure, described in [40] for the random disc Quermass-
interaction process, are used here as well. Let us name e.g. the advantage of the Pa-
pangelou conditional intensity being independent on the normalising constant, which
is explicitly inexpressible, or simplification of calculation of the Papangelou conditional
intensity using local calculations of the increments of the characteristics in the den-
sity (3.1.1).

In [40], the authors uses the power tessellation of the union of discs to calculate the
characteristics increments. It is enabled due to properties of intersections of discs.. Un-
fortunately, this is not possible in case of general convex compact grains. At least for the
process with the grains being ellipses with random axes, we could use a generalisation of
the Laguerre tessellation, see e.g. [2]. Nevertheless, in this case, we face to the problem
that the cells of the tessellation are not convex, so it does not allow us to work with the
tessellation in the same way as done in [40]. Therefore, we leave the idea of using tessel-
lations and we base the calculation of the increments of the geometrical characteristics
on discretisation, i.e. on a division of the observation window to a grid of pixels, which
keep the needed values. Namely, each pixel has the information about

• the area, i.e. 1 or 0, when the pixel forms the set or not, respectively,

• the perimeter whereby the pixel contributes to the perimeter of the union,

• the information about the surround of the pixel in order to use the classical algo-
rithm for calculation of the Euler-Poincaré characteristic based on local patterns,

• list of grains overlapping the pixel.

Then in case when a grain is added or deleted, the geometrical characteristics are recal-
culated only in the pixels overlapped by this grain.

In [22], we show several examples of simulated realisations, while we focus on the process
with the grains being random rectangles or ellipses with random axes and rotations (for
other grains, only slight modifications are needed). Moreover, we provide a comparison
to the simulation method of the random disc process using the power tessellation from
[40]. We obtain natural conclusion that our method depends on resolution of realisation
images, while in case of higher resolution, the geometrical characteristics of the simulated
realisations are close to the realisations obtained by the method from [40], but the time
consumption grows quadratically as the grid refines, of course. Therefore, we recommend
to use the method from [40] for simulations of the random disc Quermass-interaction
process, while for the Quermass-interaction process with non circular grains, our method
is suitable option since it works reliably as well.
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3.2 Assessing similarity of realisations of random sets

Although it is beneficial to know a particular model of a given random set, it is not
always necessary to find it. One can be interested only in distinguishing between two
realisations in the sense to decide whether they come from the same or different models,
or at least whether they are similar in some specific way. In case of parametric models,
we can estimate the parameters and apply several statistical tests of their equality. For
non-parametric models or when the model is unknown, different characteristics, e.g. the
covariance function, the contact distribution function, see [7], or functions on morpho-
logical operations can be employed. Unfortunately, these methods are not sufficient in
many cases. Moreover, we get only one estimation of the given characteristic from one
realisation, so it can be difficult to formulate the task of comparing two random sets when
only one realisation from each random set is available.

Some methods of comparing random sets, when only one realisation of each set is avail-
able, has been recently presented in [17], [18] and [20]. Although the methods have very
satisfactory results, they have many disadvantages or are unusable in some situations.
Some of them work only with approximations of the given realisations or require many
choices of free parameters. All of them moreover focus only on shapes of components
in the realisations but not on their mutual positions, which may also play an important
role for assessing similarity in some practical cases. The papers [10] and [19], which are
summarised in this section, improve some weaknesses of the above-mentioned papers.

3.2.1 Assessing similarity of random sets via morphological skele-
tons of their realisations

The method presented in [10] is based on using morphological skeletons and the corre-
sponding maximal discs introduced in Section 2.1.2, which uniquely describe realisations
of random sets. We consider each realisation as a binary image, so the skeleton together
with the radii of the corresponding maximal discs can be identified with a realisation of a
marked point process on a grid. For this process, we define a function, which is analogous
to the mark-weighted K-function, see [25], with the difference that we evaluate the func-
tion in each point of the skeleton. Then, we sample a group of the functions from each
realisation and compare their distributions using the envelope test and the N -distance
test described in Section 2.3.

More precisely, we first define similarity of random sets in the following way. Consider a
stationary random set X in the form of a random binary image observed in a bounded
window W ⊂ Z2, we randomly choose a realisation x of X and from its skeleton SK(x),
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we randomly choose a point x. Then for X, we define the random function

tX(u) =
∞∑
r=1

∑
y∈W grid

r1(||x− y|| < u)1(B(y, r) ∈ Imaxx ) u ∈ N, (3.2.1)

where Imaxx is the set of all maximal discs of the realisation x and W grid denotes the set
of all pixels of the observation window W . The pixels play the role of units in the sequel.

Definition 3.2 Random sets (binary images) X and Y are said to be similar if the
distributions of the corresponding functions tX(u) and tY(u) defined by (3.2.1) are equal.

Note that the similarity of random sets is here generally defined through the probabil-
ity distribution of a random function describing increases of mass around points of the
skeletons corresponding to the realisations of the random sets. It means that we take
into account mutual positions of the components.

As mentioned above, we focus on the situations when only two realisations of random
sets available and our aim is to decide whether they come from similar random sets.
We address the problem to testing the equality of distributions of the corresponding
functions t(u) based on samples of the functions obtained from the realisations (called
testing functions in the sequel). The approach is as follows.

Consider a realisation x of a stationary random set as a binary image and let SK(x) be
its skeleton. For each xi ∈ SK(x), denote ri the radius of the corresponding maximal
disc and approximate the testing function (3.2.1) at the point xi by

ti(u) =
∑
j 6=i

rj1(||xi − xj|| < u), u = 1, 2, . . . , Umax, Umax ∈ N. (3.2.2)

Comparing to the pure estimate of the K-function for classical point processes, a com-
plication occurs in our case. Since the skeletons basically form curves of the centres of
the maximal discs, there are many pairs of the points xi and xj very close to each other,
and the testing functions ti and tj are very similar when xi is too close to xj. This phe-
nomenon can significantly effect the results, because the tests require exchangeability of
the inputs, which is not satisfied for the functions whose reference points are too close.
Therefore, we set a minimal distance Dmin of the points in which the test functions are
evaluated. The setM of such testing points is constructed using the second Matérn point
process thinning method, see [7], applied to the set SK(x). Then, we use only the test
functions ti corresponding to the points xi ∈M (called testing points) for further statis-
tical inference. A comprehensive discussion on appropriate choices of Umax and Dmin is
provided in [10].
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After we set the above-mentioned parameters, we compare two realisations x(1) and x(2).
We make a sample of the testing points, evaluate the corresponding testing functions
t
(1)
1 (u), . . . , t

(1)
m1(u) and t(2)

1 (u), . . . , t
(2)
m2(u), and apply the envelope test from Section 2.3.1

and the test based on N -distance from Section 2.3.2.

At the end of [10], we show a simulation study including three types of simulated re-
alisations and compare both the realisations of the same models and the realisations of
different models. From 100 pairs of realisations, we evaluate the p-values and study their
distributions, expecting their values close to zero for pairs of realisations of different mod-
els and uniformly distributed on the interval (0, 1〉 for pairs of realisations of the same
model. The method gives excellent results in the simulation study both for assessing
similarity of the same models and for distinguishing between different models.

3.2.2 Two-step method for assessing similarity of random sets

In [19], we come back to the similarity of two realisations of random sets based only
on the shape of their components and not on their mutual positions as described in the
subsection above. However, instead of the heuristic approximation of realisations used in
[20] and [18], we describe geometrical characteristics of the components uniquely.

The characteristics we work with are the curvature of boundaries of the components
and the ratio of the perimeter and the area of each component. The idea is that the
boundary of a (connected) planar set X is given by a curve c whose theoretical curvature
κ(z) evaluated in a given point z ∈ c can be approximated as follows. For a disc b(z, r)
with the center in z and a radius r small enough, it holds that

κ(z) ≈
3A∗b(z,r)
r3

− 3π

2r
=

3π

r

(
A∗b(z,r),X
Ab(z,r)

− 1

2

)
,

where Ab(z,r) is the area of the disc b(z, r) and A∗b(z,r),X is the area of b(z, r) ∩X. Thus,
considering a connected random set X, we focus only on the ratio A∗b(z,r),X/Ab(z,r). Denote
BX the boundary of X, and define

κ̃X,r(u) = |BX|−1

∫
BX

1

{
A∗b(z,r),X
Ab(z,r)

≤ u

}
dz, u ∈ [ 0, 1],

which is basically an analogy of the distribution function of the (shifted and rescaled)
curvature at points on the boundary. The main difference is that it is evaluated for
all boundary points, so it describes the distribution for strongly dependent values. The
object of our interest is the function analogous to the corresponding density function, i.e.

tX,r(u) = κ̃′X,r(u).

29



Finally, denote RX the random variable describing the ratio of the perimeter and the area
of the random set X, and define the similarity of random sets in the following way.

Definition 3.3 Two connected random sets X and Y are considered to be similar if the
distributions of limr→0 tX,r and limr→0 tY,r as well as the distributions of RX and RY are
equal.

Since in practice, we observe realisations of the random sets in the form of binary images,
we adjust the task of assessing dissimilarity of the realisations consisting of black and
white pixels as in the previous subsection. The pixels again play the role of units. The
ratio of the perimeter and the area is simply given by the number of boundary pixels
divided by the number of all pixels of the component. For evaluating the function de-
scribing the curvature, fix a radius r ∈ N, denote P the set of all pixels of given realisation
(binary image) x, further denote z1, . . . , zn all boundary pixels, and for each boundary
pixel zi, define

K(zi) =
]{p ∈ P : p ∈ b(zi, r) ∩ x}
]{p ∈ P : p ∈ b(zi, r)}

.

Then, the approximation of the function tX,r(u) is

t(u) =
]{i ∈ {1, . . . , n} : K(zi) ∈ [u− 1/l, u)}

n
, u =

1

l
,
2

l
, . . . , 1.

Moreover, we suppose that in practice, the realisations consist of more than one compo-
nent. If we can suppose that the components are independent and come from the same
distribution, then we can define similarity of two random sets it the way that they are
considered to be similar, if their components are similar in the meaning of Definition 3.3.
In this way, we obtain two samples of components from two realisations x(1) and x(2),
respectively, which are then used as the input samples x(1)

1 , . . . ,x
(1)
m1 and x

(2)
1 , . . . ,x

(2)
m2 , and

apply the permutation test based on N -distance from Section 2.3.2 to both geometrical
characteristics. The final p-value is then given by

p =
]{i ∈ {2, . . . , s+ 1} : N̂R

i ≥ N̂R
1 ∧ N̂ t

i ≥ N̂ t
1}+ 1

s+ 1
,

where NR and N t are the N -distances of the corresponding perimeter/area ratios and
t functions, respectively.

The procedure in [19] is justified by an extensive simulation study, similar to that one in
[10], which is summarised above in Section 3.2.1. Except very good results, it also provides
a discussion on the influence of the mutual dependence of individual components together
with suggestions on how to solve complications caused by this dependence. Finally, the
procedure is equipped by an application to real data from the medical environment,
namely it is used to distinguish between mastopathic tissue and tissue affected by breast
cancer.
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Chapter 4

Stochastic modelling in 3D and
statistics in materials sciences

4.1 Geodesic tortuosity and constrictivity

Geodesic tortuosity and constrictivity are structural characteristics, which describe trans-
port properties in porous or composite materials. Briefly said, the tortuosity measures
the windedness of paths through a given material and the constrictivity measures the
bottleneck effects in the material. Although these characteristics are widely used, they
were not analysed from a mathematical point of view before study in [47]. This sec-
tion summarises the results published in [47], where we present tools for mathematical
modelling and statistical analysis of these two characteristics.

An empirical estimator of the tortuosity τ , see [16], [49], [58] or [60], and the constrictivity
β, see [24] or [60], has been already introduced, nevertheless, a precise definition of τ and
β for random closed sets allows us not only to introduce the appropriate estimators of
these two characteristics, but also to derive their properties which has not been studied
yet.

Consider a stationary random closed set X in Rd. Then, the mean geodesic tortuosity τ
is defined as the expected length of the shortest path from the origin o to a predefined
hyperplane through the interior of X under the condition that at least one such a path
exists. For the precise definition of τ , we use the following notation. Let F, F0 ∈ F (the
family of closed subsets of Rd), then

• H1 = {x ∈ Rd : xd = 1} denotes the hyperplane orthogonal to the d-th standard
unit vector ed) at the distance 1 to the origin o.
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• PF0(x, F ) = {f : [0, 1] → intF0 Lipschitz : f(0) = x, f(1) ∈ F} denotes the set of
all paths from x ∈ Rd to F through the interior of the set F0.

• CF0(F ) = {x ∈ Rd : PF0(x, F ) 6= ∅} denotes the set of all points connected to the
set F through the interior of the set F0.

• γFo(x, F ) = inf
f∈PF0 (x,F )

H1(f [0, 1]) denotes the length of the shortest path from x to

the set F through the interior of the set F0.

The tortuosity τ is defined in [47] in the following way.

Definition 4.1 The mean geodesic tortuosity of X is defined by

τ =

{
E[γX(o,H1)|o ∈ CX(H1)], if P (o ∈ CX(H1)) > 0,

−∞, otherwise.

Further in [47], we introduce a general definition of the constrictivity β. So far, the
term constrictivity has been used mainly in 3-dimensional case. It has been defined as

β =
(
rmin
rmax

)2

, where rmin is the maximum radius r such that in expectation, at least
half of the set X ∩ [0, 1]3 can be filled by an intrusion of balls with radius r in transport
direction, and rmax is the maximum radius r such that in expectation at least half of
the set X ∩ [0, 1]3 can be covered by balls of radius r, where these balls are completely
contained in X. For the precise definition of β, we use following notation:

• M	r = Eb(o,r)(M) the erosion of the set M ⊂ Rd by the closed ball b(o, r).

• Ho = {x ∈ Rd : xd = 0} denotes the hyperplane orthogonal to the d−th standard
unit vector ed) containing the origin o.

The general and mathematically precise definition of the constrictivity from [47] follows.

Definition 4.2 Let X be a stationary random closed set, and define

rmin = sup{r ≥ 0 : E[vd((CX	r(Ho)⊕ b(0, r)) ∩ [0, 1]d)] ≥ 1

2
E[vd(X ∩ [0, 1]d)]}

rmax = sup{r ≥ 0 : E[vd(Ob(o,r)(X) ∩ [0, 1]d)] ≥ 1

2
E[vd(X ∩ [0, 1]d)]}.

Then, the constrictivity β of X is defined by

β =

(
rmin
rmax

)d−1

.
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From Definition 4.2 of rmin and rmax, we immediately have rmin ≤ rmax, hence 0 ≤ β ≤ 1.
The interpretation of β is such that β close to 0 corresponds to many narrow constrictions
in X, while there are no constrictions at all in the case β = 1.

In the next part, we establish estimators of τ , rmin and rmax and show the sufficient
conditions which ensure the strong consistence of these estimators.

Denote WN = [−N
2
, N

2
]d−1 × [0, 1] and Ho,N = Ho ∩ WN . The estimator of the mean

geodesic tortuosity is defined by

τ̂N =
1

Hd−1(CX(H1) ∩Ho,N)

∫
CX(H1)∩Ho,N

γX(x,H1)Hd−1(dx).

Under some mild conditions on a random closed set X introduced in [47], the following
theorem holds.

Theorem 4.1 Let E[γX(o,H1)Io∈CX(H1)] <∞. Then τ̂N is a strongly consistent estimator
of τ .

To evaluate τ̂N , we have to know the lengths of all shortest paths from Ho,N to H1. How-
ever, this information may not be available, because we usually observe the random set X
only in a bounded sampling window. Therefore, a new estimator τ̂αN of the mean geodesic
tortuosity based on a bounded window is establish in [47] and sufficient conditions for
strong and weak consistency of the estimator are shown.

The estimators of rmin and rmax from data observed in the window WN are defined by

r̂min,N = sup{r ≥ 0 : 2vd((CX	r(Ho)⊕ b(o, r)) ∩WN) ≥ vd(X ∩WN)},
r̂max,N = sup{r ≥ 0 : 2vd(Ob(o,r)(X) ∩WN) ≥ vd(X ∩WN)}.

For a stationary random closed set X, the following theorems are introduced and proved
in [47].

Theorem 4.2 If there exists at most one r0 ≥ 0 such that

2E[vd((CX	r0 (Ho)⊕ b(o, r0)) ∩W1)] = E[vd(X ∩W1)],

then the estimator r̂min,N is strongly consistent as N →∞.

Theorem 4.3 If there exists at most one r0 ≥ 0 such that

2E[vd(Ob(o,r0)(X) ∩W1)] = E[vd(X ∩W1)],

then the estimator r̂max,N is strongly consistent as N →∞.
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Similarly as in case of the tortuosity τ , using the estimator r̂min,N also requires information
which may not be available from a bounded sampling window, therefore an estimator
r̂αmin,N of rmin based on a bounded window is defined and the results about its consistency
are presented in [47].

Further in [47], edge effects of the estimators of τ and rmin are studied for a model for
multi-phase material that is incorporated in solid oxid fuel cells. This model is presented
in [46], which is discussed in the next section.

Finally in [47], we show a simulation study of dependence of the estimates on N with
focus on stabilisation of the estimates for the model introduced in the next section. As a
part of this simulation study, we also introduce estimates from discretised data, i.e. from
data in the form of voxels, which is common in practice.

4.2 Stochastic modelling of three-phase microstructures
with completely connected phases

In this section, a stochastic 3D model for description of a three-phase materials is pre-
sented. The model is introduced in [46]. It is a parametric model of three phases in
a material, where each phase forms a connected component. Such a material occurs
e.g. in anodes of solid oxide fuel cells (SOFC). It consists of pores, nickel (Ni) and
yttria-stabilized zirconia (YSZ). Although several models of SOFC electrode have been
presented during the last decade, see [6], [8], [15], [28], [37] or [50], none of them can
form connected phases, which can be observed in data, see e.g. [23]. The data from [23]
has become our main motivation and also the experimental data for the study in [46],
where three random connected graphs are used as a back-bone of three phases, which
guarantees the connectivity of these phases.

The model is constructed in the following way. Let X1, X2 and X3 be independent
homogeneous Poisson point processes with intensities λ1, λ2, λ3 > 0. Further a1, a2, a3 ≥ 1
and Gi = Gai(Xi), i = 1, 2, 3, are the beta-skeletons with the parameters ai and set of
vertices Xi. Let Xi be random sets defined as

Xi = {x ∈ Rd : d(x,Gi) ≤ min
j=1,2,3

d(x,Gj)}, (4.2.1)

where d(x,G) = min
e∈E

min
y∈e
|x− y| is a minimal Euclidean distance from the point x to the

graph G = (X,E). The i−th phase is defined by the corresponding random set Xi.

Proposition 4.4 Let d = 3, 1 ≤ a ≤ 2, X be a homogeneous Poisson point process
with intensity λ and Ga(X) the beta-skeleton on X with the parameter a. Denote eλ,a the
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expected total edge length of Ga(X) in [0, 1]3. Then

eλ,a = 8Γ

(
4

3

)
3

√
12λ2

π(3a− 1)4
, (4.2.2)

where Γ denotes the gamma function.

Note that in [46], the proposition is formulated and proved for a general dimension d.

It is shown by a simulation study that there is a strong correlation between the total
edge length of each graph and the empirical volume fraction of the corresponding phase.
Namely, denote Vi =

eλi,ai
eλ1,a1+eλ2,a2+eλ3,a3

, then the relationship is described by the linear
regression model

p̂i = 0.9132Vi + 0.0292 + εi, (4.2.3)

where εi ∼ N(0, 0.013). The relationship allows us to reduce the number of free pa-
rameters λ1, λ2, λ3, a1, a2, a3 of the model when the volume fractions p1, p2 and p3 are
given. Using the equations (4.2.2) and (4.2.3), for given volume fractions and parameters
λ1, a1, a2, a3, we get the approximation

λi ≈ λ1

(
pi
p1

)3/2(
3bi − 1

3b1 − 1

)2

, i = 2, 3.

The simulation study also reveals the relationship between the volume fraction and the
constrictivity, and between the volume fraction and the specific area of interfaces, where
the specific area of the interfaces between the phases Xi and Xj is defined by Iij =
EH2(Xi ∩Xj ∩ [0, 1]d). The relationships are described by

Iij + Iik
Iij + Ijk

≈ pi(pj + pk)

pj(pi + pk)
,

β̂i = 0.35 log p̂i + 0.8 + εi,

where β̂i as an estimator of constrictivity of the phase Xi, see Section 4.1, and εi ∼
N(0, 0.028).

The strong correlation between the volume fraction and the constrictivity shows us a lack
of flexibility of the model. To increase the flexibility of the model, we replace the distance
d(x,G) from (4.2.1) by parametric distance measure d′γ(x,G) = min{γd(x,G), d(x,X)},
where γ ≥ 1 and d(x,X) = min

y∈X
|x− y|. This generalisation give us a more flexible model

with respect to the constrictivity.
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For an application of the model to anode of SOFC, the specific length of the triple phase
boundary (TPB) defined by

δ = EH1(X1 ∩X2 ∩X3 ∩ [0, 1]3)

is one of crucial characteristics, because in TPB the chemical reaction resulting the free
electrons take place. The importance of this characteristic lead us to the last generali-
sation of the model, where the Gaussian smoothing is used. The possibility of changing
the parameter during Gaussian smoothing gives us the required flexibility of the model
with respect to the characteristic δ. On the other hand, after Gaussian smoothing, the
connectivity of the components of Xi is not guaranteed.

Finally in [46], the generalised model is fitted to data obtained by FIB-tomography by
the Nelden-Mead method [45] with the cost function

3
3∑
i=2

|p̂i,sim − pi|
pi

+ 2
3∑
i=2

|β̂i,sim − βi|
βi

+
3∑
i=2

|τ̂i,sim − τi|
τi

+
|δ̂sim − δ|

δ
,

where pi, βi and τi denote the volume fraction, the constrictivity and the tortuosity,
respectively, for the i−th phase, δ is the length of TPB obtained from image data and
p̂i,sim, β̂i,sim, τ̂i,sim and δ̂sim denote the estimators of the same characteristics obtained from
model realisations. Note that X2 and X3 denote the YSZ- and the Ni-phase, respectively.
The study in [46] is equipped by a verification of the model.

4.3 Reconstruction of grains in polycrystalline materi-
als

Three-dimesional X-ray diffraction (3DXRD) microscopy [51] is one of the methods which
allow us to investigate internal structure of polycrystalline materials in three dimensions.
The method has been developed during the last two decades, see [1], [26] or [34]. It allows
us to measure the centre of mass, volumes, crystal lattice orientations and internal stress
of a large number (>10 000) of grains of a polycrystalline material. Unfortunately, this
method is not able to determine grain boundary, hence the information about individual
grain shapes in not available. However, knowledge of data boundaries can be key in many
applications, e.g. in analysis of mechanic behaviour of polycrystalline microstructure by
the mean of the finite-element (FE) method.

This section concerns a method of reconstruction grain boundaries based on incomplete
3DXRD data. The method is introduced and studied in details in [48] summarised in
this section. The basic tool for the reconstruction is the Laguerre tessellation, see Sec-
tion 2.1.1. Alternative ways of reconstruction of 3DXRD data based on Laguerre tessel-
lation can be found e.g. in [35] and [52].
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Consider a 3DXRD dataset D = {si, vi}i∈I , where si = (si,1, si,2, si,3) ∈ R3 is the location
of the centre of mass and vi > 0 is the volume of the i-th grain, I denotes an index
set and N is the number of measured grains. To reconstruct the grain structure of the
data by the Laguerre tessellation, we have to find a set of weighted generating points
GT = {xi = (xi,1, xi,2, xi,3), ri} of the Laguerre tessellation T such that the i−th cell of
T approximates the grain with the centre of mass si and the volume vi. More precisely,
we want to find the center of mass ŝi and the volume v̂i of the i-th cell Ci of T so that
(ŝi, v̂i) is close enough to (si, vi).

To obtain the set of generating points GT , we use the CE method described in Section
2.4. Here z = (x1,1, x1,2, x1,3, r1, ..., xN,1, xN,2, xN,3, rN) and the cost function

c(z) = c(x1,1, x1,2, x1,3, r1, ..., xN,1, xN,2, xN,3, rN)

=
1

N

N∑
i=1

(
3

4
min

(
|si − ŝi|
r′i

, 1

)
+

1

4
min

(
|vi − v̂i|
vi

, 1

))
,

where r′i = 3
√

3vi/4π is the radius of a ball with volume vi. As an initial tessellation (set
of generating points) used by CE algorithm, we choose the Laguerre tessellation obtained
by the procedure from [35], which is a heuristic two-step method providing quite a short
running time of the procedure.

The conclusion in [48] is that the presented algorithm is highly parallel, so it can be used
to a large dataset (>10 000 grains). Moreover, it is shown in a simulation study that it fits
the simulated data well. The simulation study also shows good stability of the method.
Finally, the reconstruction method is applied to two experimental datasets, namely to an
aluminium-copper (AlCu) sample with known grain boundaries and to a nickle-titanium
(NiTi) sample without the information about grain boundaries. We observe a good fit of
the AlCu sample, while we get worse result for the NiTi sample, especially when looking
at errors in the volume. Comparing our approach to other known methods, we get the
following conclusions. The two-step method proposed in [35] is very fast, but our method
gives a better fit of the data. The method from [52] fits the centers of mass better,
but the relative errors of the volumes are again smaller in our method. Moreover, our
procedure has a big advantage in computer solution. It can be well divided into multiple
computational cores, which significantly reduces the time-consumption.

4.4 Analysis of polycrystalline microstructure

The three-dimensional electron backscattered diffraction method (3D-EBSD) is one of
scanning techniques which allow us to measure crystal orientation of a crystalline or
polycrystalline microstructure. The method provides data in the form of 2D slices. The
slices can be subsequently joined into 3D image, hence by application of segmentation
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methods to the 3D image, we get the information about the data grain structure. Tools
for the processing are implemented e.g. in the software DREAM.3D [21]. The processed
data can be further analysed by using methods of descriptive spatial statistic.

The papers [32] and [33], summarised in this section, show statistical analyses of samples
of pollycrystalline material measured by 3D-EBSD and processed in the way described
above.

4.4.1 AlMgSc alloy

The material investigated in [33] is the aluminium alloy, denoted here as Al-3Mg-0.2Sc.
The 3D-EBSD data are processed in DREAM.3D, where the grains are detected by using
the ’Segment Features (Misorientations)’ filter with a misorientation threshold of 2◦.
After removing noise and very small grains, we get a specimen of 74 579 grains in the
material.

The statistical analysis is divided into two parts. In the first part, the individual grain
characteristics are statistically analysed. Namely, we analyse the equivalent diameter
(i.e. diameter of a ball with the volume equal to the volume of the grain), the number
of neighbours, the sphericity, the volume and the surface area. In the second part, the
characteristics of individual grain faces are analysed. One of the analysed characteristic
is the volume neighbour ratio (VNR), which is defined by

V NR =

√
max{v3(C1), v3(C2)}
min{v3(C1), v3(C2)}

− 1,

where C1 and C2 denote two neighbouring grains. For each face, its location is represented
by the point

[x1 +
ed1(x2 − x1)

ed1 + ed2

, y1 +
ed1(y2 − y1)

ed1 + ed2

, z1 +
ed1(z2 − z1)

ed1 + ed2

],

where [xi, yi, zi] is the centroid of the grain Ci and edi is the volume-equivalent diameter
of the i-th grain, i = 1, 2. The derived point pattern is then split into three classes,
namely the class of low angle grain boundary (LAGB) including the points with the
misorientation 10◦±5◦, high angle grain boundary (HAGB) consisting of the points with
the misorientation 55◦ ± 5◦) and the remaining points. The LAGB and HABG samples
are further statistically analysed separately. For both samples, the empty space function,
the nearest neighbor distribution function and the pair correlation function, see [7], are
estimated and compared to the corresponding functions for the homogeneous Poisson
process.
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4.4.2 Ultrafine-grained copper

A statistical analysis of microstructure of ultrafine-grained copper specimen is presented
in [32]. The analysed material was processed by 10 resolutions of high-pressure torsion
and subsequently annealed at room temperature for 6 years. It is a similar processing way
as that one applied to the specimen from the previous section. The processed specimen
consists of 2265 grains and 11513 faces. The characteristic of the grains as well as the
characteristics of the grain faces are analysed in a similar way as done in [33]. The spatial
distribution of the special boundaries Σ3 and Σ9, see [13], are again investigated using the
empty space function, the nearest neighbor distribution function and the pair correlation
function, analogously as above.

4.5 Comparison of segmentation of 2D and 3D EBSD
measurements in polycrystalline materials

The electron backscattered diffraction method (EBSD), already discussed in the previous
section, is a powerful tool for studying microstructure of crystalline or polycrystalline
materials. The EBSD method provides datasets in the form of a set of points with
their positions and crystalline orientations (called measured points in the sequel). The
crystalline orientation is described by Euler angles, see [13]. The reconstruction of the
grain structure of the dataset is based on the following assumptions. Grain interiors have
the same or very similar properties, namely the crystalline orientation, i.e. we construct
grains by collecting the measured points with similar orientation. In other words, the
EBSD method considers a grain to be the set of all points surrounded by a boundary of
a given misorientation threshold (MT). It is obvious that the choice of the misorientation
threshold may significantly affect the reconstructed grain structure and therefore, the
whole analysis of the microstructure as well. Note that the choice of MT in 3D-EBSD
usually comes from the experience with 2D-EBSD, because the 2D-EBSD method has
been used since nineties, but the 3D-EBSD method is still quite new.

In this section, we summarise the study introduced in [59], which compares the results
of segmentation procedure in 2D and 3D with the same choice of MT. The discrepancy
between segmentation in 2D and 3D has been discussed theoretically and the problem is
demonstrated by a simulation study, where a generalised Laguerre tessellation modelling
of polycrystalline microstructure measured by EBSD, see [56], is used. Finally, the dis-
crepancy between segmentation in 2D and 3D is shown for two real datasets. For this
purpose, we use the real data discussed in the Section 4.4.

In [59], it is shown that the segmentation in 2D is more sensitive to a noise, especially
when the low MT is chosen. The segmentation in 3D has stronger tendency to join
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more real grains into one grain than the segmentation in 2D. It means that after 3D
segmentation, we may observe large grains, which are in fact created by joining of more
real grains, but in 2D case, we still observe these grains separately. It is quite a natural
result, but it is often disregarded. This effect has significant impact when at least 10% -
15% of the boundaries of the real grains have the misorientation smaller than the chosen
MT. It is also shown that the thickness of the specimen affect the discrepancy between
segmentation in 2D and 3D. On the other hand, the effect of the morphology of the grains
is negligible in this sense.
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