
Charles University

Faculty of Mathematics and Physics

HABILITATION THESIS

Erin Claire Carson

Mixed Precision Matrix
Computations:

Analysis and Algorithms

Department of Numerical Mathematics

Prague 2023

WWW: http://www.karlin.mff.cuni.cz/~carson/
e-mail: carson@karlin.mff.cuni.cz
Copyright © Erin Claire Carson, 2023, Typeset by LATEX2e.

2

Contents

Preface 5

1 Mixed precision matrix computations 11
1.1 Numerical stability . 11
1.2 Floating point arithmetic . 12
1.3 History of mixed precision iterative refinement 13
1.4 Summary of other related work in mixed precision numerical linear algebra 15
1.5 Outlook . 17

2 Introduction to iterative methods for linear systems 19
2.1 Preconditioning . 19

2.1.1 Algebraic preconditioners . 20
2.1.2 Randomized preconditioners . 20

2.2 Stationary iterative methods . 22
2.2.1 Preconditioned Richardson iteration/iterative refinement 23

2.3 Krylov subspace methods . 24
2.3.1 Lanczos and CG . 24
2.3.2 GMRES . 28
2.3.3 s-step variants . 30

3 Introduction to least squares problems 33
3.1 Standard least squares problems . 33

3.1.1 Iterative refinement . 34
3.2 Total least squares problems . 35

3.2.1 Rayleigh quotient iteration for TLS problems 36

Bibliography 38

3

4

Preface

This thesis studies the topic of mixed precision matrix computations. In recent years,
there has been a resurgence of interest in this topic due to the emerging commercial
availability of low and mixed precision hardware, largely motivated by machine learning
applications.

Computing with and moving fewer bits has obvious performance advantages. Com-
pared to the standard IEEE double precision (64 bits), using IEEE half precision (16
bits) is up to 4× faster, and up to 16× faster using the specialized TensorCore instruc-
tions on NVIDIA V100 and A100 architectures, which perform a 4× 4 matrix multiply
in one clock cycle. In addition to computation time benefits, the use of lower precision
can also speed up communication time, particularly in bandwidth-bound computations,
as significantly fewer bits are being moved between nodes of the machine or levels of
the memory hierarchy. Significant speedups are realized in practice [57].

At the time of writing, more than 1/3 of the machines on the TOP500 list [121]
contain graphical processing units (GPUs) with mixed precision capabilities. This has
motivated the development of a new supercomputing benchmark, HPL-MxP [71], which
captures the performance gains possible when mixed precision is exploited. The HPL
benchmark, traditionally used to rank the supercomputers in the TOP500 list, solves
a dense linear system Ax = b via Gaussian elimination with partial pivoting in double
precision. In contrast, the HPL-MxP benchmark still solves a dense linear system to
double precision accuracy, but instead accomplishes this by combining a low precision
execution of Gaussian elimination with partial pivoting with an iterative refinement
scheme. This benchmark and the underlying algorithm are based on the mixed precision
algorithms developed in this thesis. In the most recent TOP500 results, the HPL-MxP
benchmark obtains effective speedups of up to 9.5× versus the uniform precision HPL
benchmark, demonstrating the benefits of mixed precision computation.

While low precision computation offers significant opportunities to improve perfor-
mance, it must not be used blindly. One obvious drawback of using lower precision is
that with fewer bits, we have greater roundoff error. Whereas a single computation in
double precision gives a relative roundoff error bounded by approximately 10−16, for
half precision this bound is around 10−4. Further, the range of representable numbers
is smaller. This means that computations are more likely to encounter overflow and
underflow.

The key idea behind the use of mixed precision in matrix computations is that we
want to selectively use lower precision in the most computationally expensive parts of
an algorithm while using higher precision parts in others, in order to enable both per-
formance gains and an acceptable attainable accuracy. This venture requires rigorous
mathematical analysis of finite precision matrix computations, which is the topic of

5

this thesis. Our goal will be to develop finite precision error analyses in a way that
allows the elucidation of both potential dangers of and also opportunities for the use
of mixed precision.

This thesis is comprised of 10 articles, 8 of which are published in high-impact
journals, and 2 of which are currently under review, co-authored by Erin Carson in
various collaborations, in particular with N. J. Higham (University of Manchester) and
I. Yamazaki (Sandia National Laboratories). Other co-authors include S. Pranesh (V-
Labs), B. Kelley (Sandia National Laboratories), and current and former postdoctoral
researchers and Ph.D. students working under the direction of Erin Carson, including
I. Daužickaitė, T. Gergelits, E. Oktay, and N. Khan.

We note that the present thesis represents a selected subset of the post-PhD work
of the author. The author has also worked on other topics including the analysis and
development of synchronization-reducing and communication-avoiding algorithms ([30]
[28], [31], [29], and [119]), the stability of block orthogonalization methods ([24] and
[25]), the mathematical and computational properties of Krylov subspace methods ([26]
and [23]), as well as important survey articles [1].

We first present an overview of background material on mixed precision algorithms
and numerical stability, iterative methods for solving linear systems, and least squares
problems. This is followed by the technical portion of the thesis, which is divided into
three parts. The first part of the thesis focuses on the development of mixed precision
iterative refinement-based approaches for solving linear systems Ax = b. It includes
the articles:

[C1] E. Carson and N. J. Higham, A new analysis of iterative refinement and
its application to accurate solution of ill-conditioned sparse linear systems, SIAM
Journal on Scientific Computing, 39 (2017), pp. A2834–A2856.
DOI: 10.1137/17M1122918

[C2] E. Carson and N. J. Higham, Accelerating the solution of linear systems by
iterative refinement in three precisions, SIAM Journal on Scientific Computing, 40
(2018), pp. A817–A847.
DOI: 10.1137/17M1140819

[C3] E. Oktay and E. Carson, Multistage mixed precision iterative refinement, Nu-
merical Linear Algebra with Applications, 29 (2022), e2434.
DOI: 10.1002/nla.2434

In iterative refinement, traditionally, an LU factorization of the matrix A is used
to compute the initial approximate solution x0, which is then refined in each itera-
tion by solving for a correction term; this solve is typically perfomed by reusing the
already-computed LU factors. The paper [C1] develops a new two-precision iterative
refinement approach based on the use of preconditioned Krylov subspace methods for
the inner solve routine; the approach instead uses the already-computed LU factors as
preconditioners for the GMRES method. In [C1], it is proved that this approach allows
for the convergence of iterative refinement for more ill-conditioned matrices A than the
traditional approach.

Motivated by the inclusion of three or more hardware precisions in modern GPUs,
the work [C2] developed and analyzed a general three-precision iterative refinement

6

scheme. The main idea is to use a potentially lower precision for the LU factoriza-
tion (the most expensive part of the computation), a high precision for the residual
computation, and a middle-ground precision as the working precision. This can result
in substantial performance improvements while still obtaining forward and backward
errors to the level of the working precision. This highly-cited work, together with [C1],
significantly expanded and renewed interest in mixed precision numerical linear alge-
bra. The works [C1] and [C2] also form the basis for the new HPL-MxP benchmark
[71], which complements the TOP500 list [121].

Finally, it was observed experimentally that as an effect of the worst-case round-
ing error analysis in [C1], [C2], and related works (which is typical of finite precision
error analyses), the resulting constraints on condition number were often too tight in
practice. That is, iterative refinement often converges for more ill-conditioned matri-
ces than guaranteed by the theory. Practically, this could result in one using a more
costly variant of iterative refinement than necessary. As a solution to this problem, the
work [C3] develops a multistage approach to mixed precision iterative refinement. The
method begins with the least expensive variant and if slow convergence or divergence
is detected using inexpensive monitoring, the algorithm switches to a more robust but
more costly approach.

The second part of the thesis focuses on mixed precision iterative approaches for
solving least squares problems. It includes the articles:

[C4] E. Carson, N. J. Higham, and S. Pranesh, Three-precision GMRES-based
iterative refinement for least squares problems, SIAM Journal on Scientific Com-
puting, 42 (2020), pp. A4063–A4083.
DOI: 10.1137/20M131682

[C5] E. Oktay and E. Carson, Mixed precision Rayleigh quotient iteration for total
least squares problems, Numerical Algorithms, (2023).
DOI: 10.1007/s11075-023-01665-z

As for linear systems, it may also be desirable to perform iterative refinement in least
squares problems to obtain a more accurate solution. In the case of highly incompatible
least squares problems (i.e., when the residual b − Ax is large), it becomes necessary
to simultaneously refine the approximate solution and the residual. It was observed
by Åke Björck that this can be achieved using what he calls the augmented system
approach, which involves performing iterative refinement on a larger linear system
equivalent to the normal equations [15]. In the article [C4], the approach of Björck is
extended to the three-precision, Krylov subspace-based iterative refinement approaches
developed in [C1] and [C2]. A key innovation is the development of a left-preconditioner
for the augmented system composed of low-precision QR factors of A and associated
constraints under which GMRES-based iterative refinement is guaranteed to converge.

Unlike standard least squares problems, which are based on the standard linear
model Ax = b + r, total least squares problems allow for errors in the matrix A as
well. That is, the total least squares problem is to solve minE,r ∥[E, r]∥F subject to
(A+ E)x = b+ r. This is commonly used in applications where the matrix A itself is
also subject to modeling or sampling errors. One approach appropriate for the case of

7

large, sparse problems is based on Rayleigh quotient iteration coupled with precondi-
tioned conjugate gradient as an inner solver [17]. The article [C5] develops and analyzes
a mixed precision variant of this approach, in which the expensive parts of the compu-
tation are performed in a precision potentially lower than the working precision. The
experimental results indicate that while this can cause a slight delay in convergence
rate of the Rayleigh quotient iteration, the mixed precision approach can achieve the
same solution accuracy as the standard uniform precision approach.

The third part of the thesis focuses on mixed precision variants of Krylov subspace
methods and the mixed precision construction and application of preconditioners within
Krylov subspace methods. It includes the articles:

[C6] E. Carson and N. Khan, Mixed precision iterative refinement with sparse ap-
proximate inverse preconditioning, SIAM Journal on Scientific Computing, 48
(2023), pp. C131–C153.
DOI: 10.1137/22M148770

[C7] E. Carson and I. Daužitkaitė, Single-pass Nyström approximation in mixed
precision, arXiv preprint arXiv:2205.13355, (2023).
DOI: 10.48550/arXiv.2205.13355

[C8] E. Carson and I. Daužitkaitė, The stability of split-preconditioned FGMRES
in four precisions, arXiv preprint arXiv:2303.11901, (2023).
DOI: 10.48550/arXiv.2303.11901

[C9] E. Carson, T. Gergelits, and I. Yamazaki, Mixed precision s-step Lanczos
and conjugate gradient algorithms, Numerical Linear Algebra with Applications,
29 (2022), e2425.
DOI: 10.1002/nla.2425

[C10] I. Yamazaki, E. Carson, and B. Kelley, Mixed precision s-step conjugate
gradient with residual replacement on GPUs, In Proceedings of the 36th IEEE
International Parallel and Distributed Processing Symposium (IPDPS) (2022),
pp. 886–896.
DOI: 10.1109/IPDPS53621.2022.00091

In [C6], we develop a finite precision analysis of the construction of sparse approxi-
mate inverse (SPAI) preconditioners and show how the unit roundoff should be chosen
based on the tolerance parameter ε, which controls the quality of the approximation in
terms of sparsity. The conclusions are largely intuitive: the larger the threshold ε, the
larger the unit roundoff can be without preconditioner degradation. These results are
also used to develop and analyze a variant of mixed precision GMRES-based iterative
refinement which uses SPAI preconditioning, called SPAI-GMRES-IR.

Randomized preconditioners are another class of approximate preconditioners which
are attractive in practical scenarios. In [C7], we develop a full finite precision analysis
of a two-precision single-pass Nyström method, where the potentially lower precision
is used for the costly matrix product. We develop a heuristic to estimate how to set
this lower precision and demonstrate the use of our mixed precision variant in the
preconditioned conjugate gradient method.

8

The work [C8] analyzes the forward and backward errors in a finite precision split
preconditioned Flexible GMRES (FGMRES) method. Four potentially different pre-
cisions are used: For the application of the left preconditioner, for the application of
the matrix A to a vector, for the application of the right preconditioner, and a general
working precision. Our analysis and experimental results show the (perhaps counter-
intuitive result) that the precision with which the left preconditioner is applied has
a significant affect on the magnitude of the achievable forward and backward errors,
whereas this is not the case for the right preconditioner.

The so-called s-step variants of Krylov subspace methods can theoretically reduce
synchronization cost per iteration by a factor of O(s). However, this comes at the
cost of potentially increased convergence delay, which can overshadow any potential
per-iteration performance improvement. In the work [C9], we show, theoretically and
experimentally, that the selective use of higher precision within s-step conjugate gradi-
ent and Lanczos algorithms can significantly improve their numerical behavior without
a drastic increase in cost.

The work [C10] expands upon the work [C9], presenting a performance study of the
mixed precision s-step conjugate gradient algorithm studied in [C9] in a multi-GPU
environment. The primary conclusion is that the selective use of higher precision as
advocated in [C9] has no significant overhead as long as the precisions used are imple-
mented in hardware.

Mixed precision hardware is now an integral part of supercomputing technology,
and this trend is expected to continue in the future. In the coming decade following
exascale, it is expected that we will see increasing specialization and extreme hetero-
geneity in a “Cambrian explosion of novel computer architectures” in the words of
Hennessey and Patterson [60], which includes novel precision formats. Whereas these
trends have thus far resulted in many mixed precision analyses of basic numerical linear
algebra computations, the combination of mixed precision computation with algorith-
mic approximation techniques (including low-rank approximation, sparsification, etc.)
remains a largely unexplored area. This thesis provides a preliminary push toward the
rigorous mathematical analysis of the combination of different forms of inexactness in
matrix computations.

9

10

Chapter 1

Mixed precision matrix
computations

In developing numerical algorithms, it is critical to understand how an algorithm be-
haves and how the solution is ultimately affected due to the presence of errors. In some
cases, errors are due to intentional approximations, made in order to render the prob-
lem computationally feasible on the available computing hardware. Some errors arise
at the point of data collection, for example, measurement errors or human input errors.
Finally, rounding errors due to the use of finite precision computation are an inherent
part of computing. Because we have a finite number of bits with which to store data
and perform computations, rounding errors are potentially made every time we store a
real number in memory and every time we execute a floating point operation.

As mentioned in the preface, a key aspect of modern hardware, in particular GPUs,
is the inclusion of low- and mixed-precision capabilities. Originally motivated by low-
precision neural network training, these devices have also seen application in broader
areas of matrix computations; see, e.g., [57, 59].

The coexistence of many different precision formats within one computing ecosystem
offers significant opportunities for developing mixed precision algorithms, where higher
precision is used in some parts of the computation and lower precision in others. The
idea is to use lower precisions in the most expensive parts of an algorithm in order
to improve performance and selectively use higher precisions in relatively inexpensive
parts of the algorithm in order to maintain acceptable numerical behavior.

A central theme of this thesis is the analysis of the stability of algorithms when they
are executed in mixed precision arithmetic. In this chapter, we give a brief background
on notions of stability in numerical algorithms, finite precision arithmetic, and mixed
precision matrix computations.

1.1 Numerical stability

Suppose we have an input z and the exact execution of an algorithm produces the
output y = f(z). Due to errors made during the computation, the answer output by
the algorithm will not be y but instead some ˆ︁y = y+∆y. The difference ∆y between y
and ˆ︁y is called the forward error. In other words, the forward error indicates how close
the computed output is to the true, desired output.

11

A powerful technique in numerical analysis, pioneered by James Wilkinson and
others, is to analyze computations in terms of what is called the backward error. The
backward error is the quantity ∆z such that if one were to execute the algorithm
exactly (i.e., without errors) on the perturbed input z +∆z, one would obtain exactly
the output ˆ︁y. In other words, we have solved the perturbed problem z + ∆z exactly.
Given a bound on the backward error, we can easily obtain a bound on the forward
error as well using standard perturbation theory.

The condition number of a problem is defined as the ratio of the relative change in
the output to the relative change in the input, indicating the sensitivity of a problem to
changes in the input. The condition number is useful because it governs the relationship
between the forward and backward errors. As a rule of thumb, the forward error is
bounded by the product of the condition number and the backward error. This means
that even if the backward error (i.e., perturbation to the input) is very small, we might
still have a very large forward error and thus a very inaccurate solution if the problem
itself is ill conditioned, even if the perturbed problem is solved exactly. In contrast, for
a well-conditioned problem, a small backward error guarantees that we will also have
a small forward error as long as the problem is solved via a backward stable algorithm
(see below). We stress that the condition number is a property of the problem rather
than the algorithm used to solve the problem. For example, for linear systems Ax = b,
the condition number is defined as κ(A) = ∥A−1∥∥A∥ for a given norm. Note that in
this thesis, a subscript on κ(A) is used to indicate the particular norm when relevant.

Bounding the backward and forward errors for any potential input allows us to
define whether an algorithm is (conditionally) forward stable, backward stable, or both.
We say that an algorithm for computing f(z) is backward stable if for all possible inputs
z, the algorithm returns f(z +∆z) where ∆z is small (usually relative to the machine
precision). In this case, we can say that the algorithm produces the right answer to a
slightly wrong question. In contrast, we can view a small forward error as obtaining a
slightly wrong answer to the right question. We call an algorithm forward stable if it
produces an answer with a forward error of similar magnitude to that produced by some
backward stable algorithm. Note that this implies that a backward stable algorithm
is also forward stable, although the converse does not hold. Notions of forward and
backward stability are often combined in what is called mixed stability. We can think
of an algorithm that is stable in a mixed sense as one that gives a slightly wrong answer
to a slightly wrong question.

1.2 Floating point arithmetic

As mentioned, computers have only a finite number of bits with which to store real
numbers. The standard is to store real numbers as approximations called floating point
numbers. The idea of floating point numbers is that they provide a tradeoff between
the range of values that can be stored and the precision with which they are stored.
The current IEEE 754 standard defines a number of interchange formats with varying
numbers of total bits, distributed between a sign bit, a number of exponent bits (which
determines the numerical range), and a number of significand bits (which determines
the unit roundoff). Base 2 formats are summarized in Table 1.1, which gives the
total number of bits, the number of exponent bits, the number of significand bits, the
resulting normalized range, which gives the thresholds for underflow/overflow, and the

12

Table 1.1: IEEE 754 floating point format parameters
Format Size Exponent Significand Range Unit Roundoff (u)

quadruple (fp128) 128 bits 15 113 10±4932 2−113 ≈ 9.6× 10−35

double (fp64) 64 bits 11 52 10±308 2−53 ≈ 1.1× 10−16

single (fp32) 32 bits 8 23 10±38 2−24 ≈ 6.0× 10−8

half (fp16) 16 bits 5 10 10±5 2−11 ≈ 4.9× 10−4

unit roundoff u (also called machine epsilon).

Within the works in this thesis, we will generally use the notation fl(·) to denote
a computation performed in floating point arithmetic. We use a standard model of
floating point arithmetic: for scalars a, b, we have

fl(a op b) = (a op b)(1 + δ), |δ| ≤ u,

where op = +,−,×, or /. Note that this model assumes that no overflow or underflow
occurs, which may no longer be a reasonable assumption in case very low precision is
used. Using this simple model, we can bound roundoff errors in computations with
matrices and vectors, which consist of a sequence of scalar operations. We direct the
unfamiliar reader to, e.g., [63, Chapters 1-3] for further background on finite precision
computation and floating point arithmetic.

Historically, supercomputer hardware has typically been limited to at most single
and double precision capabilities. As mentioned, modern computer hardware includes
capabilities for half and even quarter (8-bit) precision storage and computation as
well. We note that there is also recent work in developing new, non-IEEE compliant
number formats. One popular example is the bfloat16 number format [14], used in many
emerging processors designed for artificial intelligence applications, including Google’s
tensor processing units and Intel’s Nervana Neural Network Processor.

1.3 History of mixed precision iterative refine-

ment

The classical example of an algorithm in numerical linear algebra which has histori-
cally used mixed precision is iterative refinement. We discuss the basics of iterative
refinement for linear systems Ax = b in Chapter 2.2.1 and for least squares problems
in Chapter 3.1.1. In short, in the linear system case, given a starting approximate
solution x0, step k = 1, 2, . . . of iterative refinement consists of computing the residual
b−Axk−1, solving Aek = rk−1 for the error ek, and updating the approximate solution
via xk = xk−1+ek. The particular way in which these computations are performed and
the precisions used in various parts has given rise to many different variants of iterative
refinement, all of which were motivated by the available hardware of the time. Because
mixed precision iterative refinement is featured in many of the included works in this
thesis, we give a brief overview of historical references here. We direct the reader to
[131, Chapter 3] for a longer and more thorough exposition.

In what we call “traditional” iterative refinement, an LU factorization is used to
solve for the error term in each iteration and double the working precision is used
to compute the residuals (i.e., if the working precision has unit roundoff u, we use

13

a precision with unit roundoff u2 to compute the residuals). This results in relative
forward and backward errors on the order of the working precision as long as κ∞(A) ≤
u−1. This style of iterative refinement was popular up to the late 1960s, largely due
to the available hardware at the time, on which the accumulation of inner products in
double the working precision was essentially free. Traditional iterative refinement was
used quite early on by Wilkinson in his experiments with Turing on the Pilot Automatic
Computing Engine in the 1940s [132]. Error analyses of traditional iterative refinement
were presented by Wilkinson for fixed point arithmetic [133] and Moler for floating
point arithmetic [89]. Björck extended these ideas, providing an analysis of traditional
iterative refinement for least squares problems using what he called an “augmented
system” approach [15].

Again in the 1970s and 1980s, hardware developments motivated the study of new
variants of iterative refinement. Due to the disappearance of the ability to cheaply
accumulate inner products extra precisely from available hardware, work began on
the study of fixed precision iterative refinement, in which a uniform precision is used
throughout the process. Although this type of iterative refinement was typically seen
as not very effective, Jankowski and Woźniakowski proved that fixed precision iterative
refinement can provide normwise backward stability for a general linear solver under
certain constraints [72]. This was thus the first work that allowed a general linear solver
to be used in solving for the error correction. Skeel [109] also provided an analysis of
fixed precision iterative refinement for the case of LU factorization, which Higham
later extended to a general solver [62]. Shortly, when the refinement is performed
entirely in working precision u and an LU factorization is used, this guarantees a relative
backward error on the order u and a relative forward error on the order u · cond(A, x),
where cond(A, x) = ∥|A||A−1||x|∥∞/∥x∥∞, as long as κ∞(A) ≤ u−1. Fixed precision
iterative refinement is still used frequently today, with implementations in popular
solver packages for both dense and sparse problems including LAPACK, MUMPS,
PaStiX, and SuperLU.

In the 2000s, there were two main hardware trends which again motivated the de-
velopment of different iterative refinement variants. First, communication (data move-
ment) was growing increasingly expensive relative to floating point operations. Second,
SIMD (single instruction, multiple data) instructions became available in CPUs. The
latter meant that single precision floating point operations could be accomplished at
twice the rate of double precision. The former meant that there was a significant per-
formance benefit to moving fewer bits between levels of the memory hierarchy. This
motivated researchers to develop what we call “low-precision factorization” variants of
iterative refinement, in which the LU factorization (the most expensive part of itera-
tive refinement) was performed in a lower (i.e., single) precision, and double working
precision was used in other parts in order to recover accuracy. Here, the resulting
guarantees on relative forward and backward error are the same as in fixed precision
iterative refinement, but now the constraint for convergence becomes κ∞(A) ≤ u−1/2.
This approach was used in the work of Langou et al. [78], Buttari et al. [20], Hogg and
Scott [70], Arioli and Duff [7], and many others around this time.

Today, hardware is again changing. Motivated by the potential for low precision
training and inference in neural network applications, emerging hardware features mul-
tiple different precisions, from quarter precision to double precision. This has motivated
the work on the development and analysis of the new mixed precision iterative refine-

14

ment variants included in this thesis; see [C1], [C2], [C4], [C3], and [C6]. We note that,
in particular, the works [C1] and [C2] have inspired a flurry of recent work in this area.
See, for example, the related work of Amestoy et al. [4], Vieublé [131], Haidar et al.
[57], Higham and Pranesh [65], Amestoy et al. [5], and Abdelfattah et al. [2].

1.4 Summary of other related work in mixed

precision numerical linear algebra

Efforts in mixed precision numerical linear algebra and matrix computations have a
long history, and of course go beyond iterative refinement for linear systems and least
squares problems. We do not attempt to give a complete survey of references here, but
aim to merely point out key works. For more complete surveys, we refer the reader to
[1] and [64], where we note that the present author is a co-author of the former.

Newton’s method is a method for iteratively finding a zero x of a continuously dif-
ferentiable function f(x). Iterative refinement can be seen as a special case of Newton’s
method in which f(x) = b−Ax. Thus it is natural that mixed precision approaches are
also useful in Newton’s method. Motivated by iterative refinement for the generalized
eigenvalue problem, Tisseur [120] provided an analysis of the limiting error and residual
in a mixed precision Newton iteration in which extra precision is used in computing
the residuals and the linear system in each iteration may be solved in a lower precision
(or using a less stable solver). The resulting convergence behavior when the Jacobian
is stored and factored in lower precisions (including half precision) has been recently
investigated by Kelley [74].

We can view the computation of an eigenvalue λ and eigenvector x as the solu-
tion of the nonlinear system of equations (A − λI)x = 0. Thus Newton’s method
can also be used for the refinement of eigenvalues and eigenvectors. This connection
was exploited in the 1980s by Dongarra [34] and Dongarra, Moler, and Wilkinson [35]
to develop a mixed precision algorithm for the iterative refinement of eigenvalues and
eigenvectors. The approach of [34] has recently been revisited by Tsai et al. [123], who
replaced the Givens rotations with a Sherman-Morrison update to make the algorithm
more parallelizable. Petschow et al. [101] developed a mixed precision variant of the
multiple relatively robust representations (MRRR) algorithm for symmetric tridiagonal
eigenproblems. By using higher precision in select computations, the method becomes
as accurate as competing approaches without sacrificing its performance advantages.
Ogita and Aishima [91, 92] developed a mixed precision iterative refinement approach
for symmetric eigenvalue problems, which they later extended to singular value prob-
lems [93]. Kressner et al. [75] proposed a mixed precision variant of the locally optimal
block preconditioned conjugate gradient method (LOBPCG) for finding a small number
of eigenvalue/eigenvector pairs. They provide a rounding error and convergence analy-
sis for a simplied variant of LOBPCG, called PINVIT. Also exploiting connections with
Newton iteration, Bujanović et al. [18] recently developed a mixed precision iterative
refinement approach for updating a Schur decomposition, which has applications in
eigenvalue problems as well as matrix functions and matrix equations.

Mixed precision has also been used successfully in orthogonalization routines. In
[135], Yamazaki et al. provide an analysis of a mixed precision Cholesky QR algo-
rithm, in which intermediate quantities are selectively computed in double the working

15

precision. They prove that this reduces the loss of orthogonality from quadratic depen-
dence on condition number to only linear dependence. This mixed precision Cholesky
QR was subsequently used by Yamazaki et al. as the panel factorization routine in a
block modified Gram-Schmidt algorithm [137]. Yamazaki et al. [136] also developed
an adaptive mixed precision singular value QR (SVQR) algorithm, which adaptively
determines whether low precision can be used for the triangular solves (the most com-
putationally expensive part) without affecting the loss of orthogonality. Yang et al.
[138] have recently developed a rounding error analysis of mixed precision Householder
QR and its block variant in which inner products are computed in high precision and
subsequently rounded to lower precision, which is applicable to block fused multiply
add operations (FMAs).

Mixed precision approaches to the multigrid method usually involve an outer itera-
tive refinement scheme with multigrid used as the inner solver for the correction vector.
In 2014, Sumiyoshi et al. [114] provided performance results for such an approach, in
which the correction equation is solved via algebraic multigrid (AMG) in single preci-
sion and double precision is used elsewhere. Similar approaches have also been used by
Göddeke et al. [46], Göddeke and Strzodka [45], and Kronbichler and Ljungkvist [76].
In [86] and [117], McCormick, Benzaken, and Tamstorf provide a theoretical rounding
error analysis of mixed precision multigrid solvers using the framework of iterative re-
finement framework. Their work shows that the coarser the grid, the lower the precision
that can be used.

Mixed precision has been used in various ways within Krylov subspace methods;
for details on various Krylov subspace methods, see Chapter 2.3. One possibility is to
use mixed precision within a restarted generalized minimal residual method (GMRES),
which is equivalent to iterative refinement without a preconditioner; see the 1992 work
of Turner and Walker [124] and the more recent approach of Lindquist et al. [81].
Another general possibility is to use a mixed or low precision preconditioner within a
Krylov subspace method. There are many variations on this which have appeared in
the literature, including the work of Arioli and Duff [7], who used a flexible GMRES
method preconditioned by a single precision LU factorization, Giraud et al. [42], who
used a single precision domain decomposition preconditioner within a double precision
conjugate gradient (CG) method, Emans and van der Meer [38], who used a single
precision AMG method within CG, Anzt and Fleger et al. [6, 39], who used a mixed
precision Jacobi preconditioner within CG, and Göbel et al. [44], who used a mixed
precision sparse approximate inverse preconditioner for the stabilized biconjugate gra-
dient method (BiCGStab). The included works [C6], [C5], and [C8] in this thesis also
fit into this category. Another possible technique is to selectively use extra precision in
order to stabilize communication-avoiding variants of Krylov subspace methods. This
idea was used by Yamazaki et al. [134, 135] and is also used in the included works [C9]
and [C10]. Finally, we mention the related work on “relaxed” and “inexact” Krylov
subspace methods, which show that in some cases, the accuracy of the matrix vec-
tor products or inner products can be relaxed at a rate inversely proportional to the
convergence of the residual norm without affecting attainable accuracy; see, e.g., [41],
[108], [125], and [50].

16

1.5 Outlook

In the current exascale era, hardware trends indicate that the prevalence of machines
with mixed precision capabilities will only increase. We thus expect the emphasis on
the study of finite precision matrix computations, and especially mixed precision matrix
computations, to continue in the coming years.

In addition to increasingly low precision IEEE formats, with increasing hardware
heterogeneity, we expect new non-IEEE arithmetics to gain traction as well [82]. In-
deed, many domain-specific alternatives have emerged, such as bfloat16 format [14]
and NVIDIA’s 19-bit TensorFloat format [118], although these still use a fixed number
of bits for the exponent and significand. Another alternative is “posit” arithmetic, in
which the number of exponent and fraction bits can vary [55]. This can have advan-
tages from both a numerical and a performance standpoint, but analysis is difficult, as
the relative error can’t be bounded even for simple computations [19].

We believe that developing algorithms for mixed precision matrix computations and
analyzing the numerical stability under these new novel arithmetic formats, especially
when combined with the analysis of other algorithmic sources of inexactness, will be a
fruitful area of research, leading to new high-performance implementations.

17

18

Chapter 2

Introduction to iterative methods
for linear systems

A main focus of this thesis is on the solution of nonsingular n × n linear systems
Ax = b. In the realm of large-scale computational and data science applications, many
problems give rise to a matrix A that is naturally sparse, meaning that the underlying
computational graph has only nearest neighbor connections. Iterative solvers are often
the methods of choice for solving large, sparse linear systems (as well as least squares
problems and eigenvalue problems). The advantages over direct methods are that
iterative methods often only require sparse matrix-vector products (and do not even
require an explicitly-stored matrix), and can be stopped once the required accuracy
is attained. Among the considered iterative methods, we distinguish two subclasses:
stationary iterative methods and Krylov subspace methods.

2.1 Preconditioning

Iterative methods, in particular Krylov subspace methods, almost always use a precon-
ditioner in practical applications. In the case of linear systems, preconditioning means
that we transform the system Ax = b into the equivalent system M−1

1 AM−1
2 x̃ = M−1

1 b,
with M2x = x̃, where M−1

1 AM−1
2 is not formed explicitly. The nonsingular matrices

M1 and M2 are referred to as preconditioners.

There are two goals in designing a preconditioner; first, convergence should be faster
for the preconditioned system, and second, the preconditioner should be inexpensive
to compute and apply. The design of a good preconditioner is almost always problem-
specific and often involves insights from the domain of the particular application. This
alone is an area of deep research.

Depending on the context, it may make sense to precondition only on the left (i.e.,
M2 = I), only on the right (i.e., M1 = I), or to use a split preconditioner with both M1

and M2 differing from the identity. Note that when left preconditioning is used, the
solution x̃ to the preconditioned system is the same as the solution x to the original
system, but the residuals differ. In contrast, for the case of right preconditioning,
the residual is the same for both the preconditioned and the original system, but the
solutions differ. This will naturally have consequences on the considered forward and
backward errors, as well as the stopping criteria used.

19

2.1.1 Algebraic preconditioners

Algebraic preconditioning refers to the construction and use of preconditioners based
solely on the numerical entries in a matrix A, rather than the underlying problem
itself (for example, the solution of a partial differential equation). Preconditioning
approaches that fall into this class include, for example, Jacobi, Gauss-Seidel, (incom-
plete) LU factorization, sparse approximate inverse (SPAI) preconditioners, and alge-
braic multigrid. While such preconditioners can sometimes perform poorly compared
to those that take into account the underlying problem to be solved, such as operator
preconditioning approaches (see, e.g., [83]), they are more versatile and applicable to
a diverse set of problems. We focus on this class of preconditioners in this work, since
our perspective is that of a developer of general algorithms and software for solving
problems given an input matrix.

One example of an algebraic preconditioning technique that we use within this
thesis is SPAI preconditioning. Here, we seek to construct a sparse matrix M such
that M ≈ A−1, where A,M ∈ Rn×n. Such preconditioners are attractive for use within
Krylov subspace methods since their application involves only a sparse matrix-vector
product. There are a wide variety of strategies for constructing such an M ; see, for
example, Chapter 11 of the recent book [107].

In particular, in [C6], we consider the popular variant of SPAI construction due to
Grote and Huckle [54]. Here M is constructed based on Frobenius norm minimization,
where M is the solution to

min
J∈S

∥I −AM∥F ,

where J ∈ Bn×n is a prescribed binary sparsity pattern chosen from the set of all
binary sparsity patterns S ∈ Bn×n. A key property of the Frobenius norm minimization
approach is that we can write

min
J∈S

∥I −AM∥2F =
n∑︂

k=1

min
Jk∈Sk

∥ek −Amk∥22,

where ek is the kth column of the identity and Jk, Sk, and mk are the kth columns
of J , S, and M , respectively. In other words, the computation can be decoupled into
the solution of n independent linear least squares problems, which can theoretically be
solved in a highly parallel manner.

Whereas early works used a fixed sparsity pattern J , a key innovation of Grote and
Huckle [54] was to use an adaptive iterative approach that, in each iteration, determines
some number of “most important” nonzero indices to add to the sparsity pattern J .
Nonzeros are added to the pattern until the constraint ∥ek −Amk∥2 ≤ ε is satified for
each column, where ε is a user-specified tolerance parameter. For further details, see
[54].

Many other works included in this thesis touch on aspects involving algebraic pre-
conditioners, including the use of LU-based preconditioners ([C1], [C2], [C3], and [C8]),
and QR-based preconditioners ([C4] and [C5]).

2.1.2 Randomized preconditioners

Randomized preconditioners, which generally fall into the class of algebraic precondi-
tioners, are a relatively new development; while randomized algorithms have historically

20

been viewed as somewhat of a last resort in scientific computing, the last decade has
seen exciting work on the use of randomization in matrix computations and numer-
ical linear algebra. The potential benefits of randomized algorithms include a faster
runtime, potentially better stability, and a greater level of interpretability [36]. Ran-
domized matrix computations have since gained momentum and a randomized BLAS
(Basic Linear Algebra Subroutines) library is currently in early stages of development.

A random “sketch” of a matrix (a matrix of reduced size, but which retains some
numerical properties of the original matrix) can be obtained via row/column sampling
or projection methods. In this regime, there are three major paradigms for solving
matrix problems (see, e.g., [85, Section 10]):

1. sketch-and-solve, in which the problem is mapped to a smaller space, and the
solution for the reduced problem is used as an approximate solution to the original
problem;

2. iterative sketching, which applies the sketch-and-solve paradigm iteratively to
reduce the error; and

3. sketch-and-precondition, which uses random embeddings to create a sketch of the
input matrix and then uses this as a preconditioner within a iterative method.

There is deep theory underlying randomized numerical linear algebra and there has
been significant work in analyzing how much approximation error is introduced through
randomized sketching and how this affects solutions; see, e.g, the surveys [58, 85] and
references therein. However, nearly ubiquitously, inexactness due to finite precision
computation is not traditionally taken into account in such analyses.

Perhaps the most typical example of randomized preconditioners are those for
overdetermined least squares problems developed by Rokhlin and Tygert [103] and
further developed by the authors in [10]. The main idea is to use a randomized ap-
proach for computing the R factor from the QR factorization of A, and to use this as a
right preconditioner in the least squares QR (LSQR) algorithm. In short, we first create
a sketch of the m× n matrix A by premultiplying by an s× n random matrix G. The
sketched version of A will be much smaller than the original matrix. We then compute
the QR factorization of this smaller matrix, and the obtained n × n R factor is used
as an approximation of the true R factor of A. It is provable that the preconditioned
matrix AR−1 has a small condition number [103, 10]. Note that the authors in [87]
have recently provided an analysis of this process accounting for finite precision error.

Another example of the use of randomized preconditioners is in the development of
limited memory preconditioners for problems arising in data assimilation. In general,
we can consider solving the shifted system of linear equations

(2.1) (A+ µI)x = b,

where A ∈ Rn×n is symmetric positive semidefinite, µ ≥ 0 is chosen so that A + µI is
positive definite, and x, b ∈ Rn. One can solve this system using the preconditioned
conjugate gradient (CG) method with a limited memory preconditioner of the form

(2.2) P = I − UUT +
1

α+ µ
U(Θ + µI)UT ,

where UΘUT ≈ A is a low-rank approximation of the eigendecomposition of A and α
is a shift parameter.

21

The quantities U and Θ can be obtained via a randomized Nyström approxima-
tion. The randomized Nyström approximation AN of a symmetric positive semidefinite
matrix A ∈ Rn×n is of the form

(2.3) AN = (AX)(XTAX)†(AX)T ,

where X ∈ Rn×k is a random matrix and † denotes the Moore-Penrose pseudoinverse;
see, e.g., [43]. In the work [C7], we provide a full finite precision analysis of a mixed
precision single-pass variant of the Nyström method, first described in [122], which
shows that in many practical cases the most expensive part of the computation can
be performed in lower precision without degradation of preconditioner quality. See,
e.g., [3, 32, 40] for further examples of the use of the Nyström method in developing
preconditioners.

2.2 Stationary iterative methods

Stationary iterative methods are the simplest approach for iteratively solving linear
systems. In such methods, the solution to a linear system is expressed as finding the
stationary point of a fixed-point iteration. Methods in this class include Richardson
iteration, Jacobi, Gauss-Seidel, and the symmetric successive overrelaxation method.
Convergence of these methods is usually very slow; in practice, stationary methods
are often used as preconditioners for Krylov subspace methods and as smoothers in
multilevel methods rather than as standalone solvers.

A general technique for developing such methods is based on a splitting of the
coefficient matrix A. We can write such a splitting A = M − N , where M should be
close to the matrix A and solving linear systems with M should be efficient. Then the
linear system Ax = b can be rewritten Mx = Nx+ b.

Given an initial approximate solution x0, we can then use this splitting to define
an iterative method given by the update formula

(2.4) Mxk = Nxk−1 + b,

which, using N = M −A, can be written

xk = xk−1 +M−1(b−Axk−1)

for k = 1, 2, Let ek = x − xk denote the error in the kth iteration. Via simple
algebraic manipulation, we can obtain the formula

ek = (M−1N)ke0,

and taking norms, we have
∥ek∥ ≤ ∥M−1N∥k∥e0∥.

Thus whether the iteration converges for any starting vector and the resulting rate
of convergence depends on the spectral radius of M−1N . In particular, if the spec-
tral radius (the largest eigenvalue in absolute value) is less than one, the method is
convergent.

The particular choices of M and N define various iterative methods. In the Jacobi
method, for example, we takeM = D and N = −(L+U), whereD is the diagonal of the

22

matrix, and L and U are the strictly lower and upper triangular entries, respectively.
The Gauss-Seidel method uses M = D+L and N = −U . For successive overrelaxation
(SOR), we take M = (1/ω)D + L and N = ((1/ω)− 1)D − U ; ω > 1 is the relaxation
factor and should be chosen to minimize the spectral radius of M−1N . For more details
on these and related methods, see, e.g., Chapter 4 of [105].

2.2.1 Preconditioned Richardson iteration/iterative refine-
ment

A particular stationary method which we will use extensively in this work is precondi-
tioned Richardson iteration, which is more frequently in the literature called iterative
refinement. For unpreconditioned Richardson iteration, we take M = I and N = I−A.
We then obtain the iteration

xk = xk−1 + rk−1,

where rk−1 = b− Axk−1 is called the residual. We know that this is convergent if the
spectral radius of I −A is less than one.

This condition can be improved by the use of preconditioning. Instead of solving
Ax = b, we will solve BAx = Bb for some preconditioner B. Note that application of
this preconditioner does not change the solution x. The hope is that the spectral radius
of I −BA is smaller than that of I − A. For the preconditioned Richardson iteration,
we then have M = I and N = I−BA, which, substituting into (2.4) gives the iteration

xk = (I −BA)xk−1 +Bb,

which we rewrite as
xk = xk−1 +Brk−1.

Taking B = A−1 gives the scheme referred to as iterative refinement. Given an initial
approximate solution x0, each iteration k = 1, 2, . . . of iterative refinement takes the
following form:

1. Compute the residual rk−1 = b−Axk−1.

2. Solve the linear system Aek = rk−1.

3. Update the approximate solution xk = xk−1 + ek.

Note that if the linear system in step 2 were to be solved exactly, we would converge
within a single iteration. Of course in practice, this solution is not exact due to finite
precision error. Traditionally, the solve in step 2 is performed by using an LU factor-
ization of the matrix A (which may already be computed during the computation of
the initial approximate solution x0). Alternatively, the linear system in step 2 can be
solved using a preconditioned Krylov subspace method, where the LU factors are used
as preconditioners; this is the topic of the included work [C1].

Iterative refinement is a classical example of an algorithm in numerical linear alge-
bra that can benefit from mixed precision computation. The ideas of mixed precision
iterative refinement go back to Wilkinson in 1948 [132]. A key point is that it may
be beneficial to use a precision higher than the working precision in the residual com-
putation (step 1). For convergent methods, this results in removing the effects of the

23

conditioning of the matrix A on the resulting attainable error xk−x. Later, other works
showed that it is often possible to use a precision lower than the working precision in
computing the LU factorization of A used in step 2 in each iteration; see the historical
description in Chapter 1.3. The combination of these two ideas into a three-precision
approach is the topic of the work [C2] included in this thesis.

Note also that iterative refinement requires some choice of stopping criteria. Po-
tential stopping criteria are discussed in [33] and are also developed in [C3] for the case
of three-precision iterative refinement.

2.3 Krylov subspace methods

Krylov subspace methods are a popular class of general iterative solvers for linear sys-
tems, least squares problems, and eigenvalue/singular value problems. Methods in this
category include the Lanczos method, the CG method, the Arnoldi method, the gen-
eralized minimum residual method (GMRES), and LSQR, among others. The benefit
of Krylov subspace methods versus stationary iterative methods is their potential for
superlinear convergence. This nonlinear convergence behavior is what gives Krylov
subspace methods power, but also what makes them inherently difficult to analyze.
While much progress has been made towards their analysis, there are still a number of
open problems; see, for example, [79].

In general, we can think of a Krylov subspace method as a projection process onto
an expanding Krylov subspace, denoted in terms of a dimension i, matrix A, and
starting vector r0 as

Ki(A, r0) = span{r0, Ar0, A2r0, . . . , A
i−1r0}.

In the case of solving linear systems, an approximate solution xi is chosen from the
subspace x0 +Ki according to the Petrov-Galerkin condition b−Axi ⊥ Li, where x0 is
an initial approximate solution and the choice of Li distinguishes the various types of
Krylov subspace methods.

All works included in this thesis involve Krylov subspace methods in some way,
namely, in the development of mixed precision variants of s-step Lanczos and CG
algorithms ([C9] and [C10]), in the analysis and application of mixed precision left-
preconditioned GMRES ([C1], [C2], [C3], [C4], and [C6]), in the development and
use of mixed precision preconditioners for CG ([C5] and [C7]), and in the analysis of
a mixed precision split-preconditioned Flexible GMRES (FGMRES) method ([C8]).
We therefore give brief overviews of Lanczos, CG, GMRES, and FGMRES methods
and their preconditioned variants, with a focus on their behavior in finite precision
arithmetic. We then also present a brief derivation and details on the s-step variants
of Lanczos and CG.

2.3.1 Lanczos and CG

The Lanczos method, introduced by Cornelius Lanczos [77], is a popular approach for
finding a few eigenvalues/eigenvectors of a symmetric sparse matrix. Given a symmet-
ric n × n matrix and a starting vector v1 with ∥v1∥2 = 1, the algorithm iteratively
constructs an orthonormal basis for the Krylov subspace Ki(A, v1) via Gram-Schmidt

24

orthogonalization. We show a particular variant of the Lanczos algorithm in Algo-
rithm 1, which is based on the use of 2-term recurrences. In matrix notation, in exact
arithmetic the Lanczos iteration can be expressed as

(2.5) AVi = ViTi + ηi+1vi+1e
T
i ,

where Vi = [v1, . . . , vi] is an orthonormal basis for the Krylov subspace Ki(A, v1) and
Ti denotes the tridiagonal matrix

Ti =

⎡⎢⎢⎢⎢⎢⎣
γ1 η2
η2 γ2 η3

. . .
. . .

. . .

ηi−1 γi−1 ηi
ηi γi

⎤⎥⎥⎥⎥⎥⎦ ,

the entries of which are inner products computed during the Lanczos procedure.

Algorithm 1 Lanczos (2-term recurrence variant)

Require: Real symmetric matrix A ∈ Rn×n; length n starting vector v1 such
that ∥v1∥2 = 1; maximum number of iterations nmax.

1: u1 = Av1
2: for i = 1, 2, . . . , nmax do
3: γi = vTi ui

4: wi = ui − γivi
5: ηi+1 = ∥wi∥2
6: vi+1 = wi/ηi+1

7: ui+1 = Avi+1 − ηi+1vi
8: end for

In exact arithmetic, there must exist some k ≤ n for which AVk = VkTk (since we
cannot have a set of more than n orthonormal vectors in Rn), at which point we know
that the eigenvalues of Tk must be a subset of those of A. We note that in practice, the
Lanczos algorithm is often stopped before the point of reaching an invariant subspace.

Because the Lanczos algorithm can be seen as a Rayleigh-Ritz procedure, the eigen-

values θ
(i)
1 , . . . , θ

(i)
i of Ti, which give estimates of the eigenvalues of A, are referred to as

the Ritz values. From the eigenvectors z
(i)
1 , . . . , z

(i)
i of Ti, we can obtain the associated

Ritz vectors x
(i)
j = Viz

(i)
k , which are approximations of the eigenvectors of A. We note

that there are other possible mathematically equivalent implementations of the Lanczos
method than that presented in Algorithm 1, e.g., one could use a 3-term recurrence for
updating the vectors vi+1. It has been found that the variant presented in Algorithm
1 is preferable numerically; see, e.g., [94].

The CG method, which is closely related to the Lanczos method, was developed
independently by Hestenes and Stiefel which resulted in the joint 1952 paper [61]. Let
A now be a symmetric positive definite (SPD) matrix, let b be the right-hand side of the
linear system Ax = b, and let x0 be an initial approximate solution. In each iteration
i = 1, 2, . . . of CG, we update the approximate solution using the formula xi = x0+Viyi,
where Vi is the matrix generated by the Lanczos procedure with starting vector v1 =

25

r0/∥r0∥2, where r0 = b− Ax0. In iteration i we can write the residual ri = b− Axi =
b−A(x0+Viyi) = r0−AViyi. If we enforce that the residual ri is orthogonal to Vi (taking
Li = Ki(A, r0) in the Petrov-Galerkin condition), then by premultiplying by V T

i and
using (2.5), we have Tiyi = ∥r0∥2e1, and so the coordinates yi can be found by solving
this small linear system with Ti. Note that the enforcement of the Petrov-Galerkin
orthogonality condition also implies that ∥x − xi∥A = minz∈x0+Ki(A,r0) ∥x − z∥A, i.e.,
the approximate solution xi that is chosen in iteration i is that which minimizes the
A-norm of the error. This also implies that rn+1 = 0, so we will solve the linear system
exactly in at most n iterations.

As stated, the advantage of Krylov subspace methods over stationary iterative
methods is their nonlinear behavior, i.e., CG and other Krylov subspace methods adapt
to the data and can exhibit superlinear convergence behavior. This thesis is not centered
on the convergence behavior of CG in exact arithmetic and thus we do not discuss
this in detail here; the interested reader is directed to the work [23]. In short, the
convergence behavior of CG depends on the distribution of eigenvalues and the sizes of
the components of the initial residual in the eigenbasis of A. While convergence bounds
based on the condition number are frequently given in the literature, these are linear
bounds which cannot capture the nonlinear behavior of CG. They do, however, tell us
that when A is well-conditioned, we can expect CG to converge quickly.

In Algorithm 2, we give one possible algorithm which realizes the conjugate gradient
method. This variant, presented in the original paper [61], has also been found to be
preferable numerically; see, e.g., [102], [56].

There are many interesting deep theoretical connections of the Lanczos and CG
methods with, for example, orthogonal polynomials, the Stieljes moment problem, and
Gauss quadrature. These connections are not the central topic of this thesis and thus
we do not discuss the details here. We refer the interested reader to the works [79,
Section 3.5], [84, Section 5.2], and [88]. We note also that there are many potential
choices for the stopping criterion used in line 7 of Algorithm 2, and we cannot expect
that the residual norm gives an indication of the A-norm of the error; see, e.g., [113]
for a thorough discussion.

Algorithm 2 Conjugate Gradient (CG; 2-term recurrence variant)

Require: Symmetric positive definite matrix A ∈ Rn×n; right-hand side b; initial
approximation x0; given stopping criterion; maximum number of iterations
nmax.

1: r0 = b− Ax0

2: p0 = r0
3: for i = 1, 2, . . . , nmax do
4: αi−1 = (rTi−1ri−1)/(p

T
i−1Api−1)

5: xi = xi−1 + αi−1pi−1

6: ri = ri−1 − αi−1Api−1

7: Test stopping criterion. If satisfied, then return xi and stop.
8: βi = (rTi ri)/(r

T
i−1ri−1)

9: pi = ri + βipi−1

10: end for

26

Preconditioning As mentioned in Section 2.1, preconditioning is almost always
in practice used in conjunction with Krylov subspace methods in order to accelerate
convergence. In the case of CG, since A is SPD, we assume that the preconditioner
M is also SPD. We can thus write M = LLT where L is the Cholesky factor of M .
Although left and right preconditioned variants of CG are also possible (see, e.g., [105,
Chapter 9.2]), a natural way to precondition CG is to use a split preconditioner so that
the preconditioned system becomes L−1AL−T x̃ = L−1b, with x = L−T x̃. In this thesis,
we use split preconditioned CG in [C5] and [C7].

Finite precision behavior In finite precision arithmetic, the mathematical prop-
erties of Lanczos and CG no longer hold. This was known even in very early works;
see [77] and [61]. The computed basis for the Krylov subspace is no longer perfectly
orthonormal, and thus for CG, the A-norm of the error is not minimized in each itera-
tion. We are thus no longer guaranteed that we will find the exact solution to Ax = b
within n iterations. The effects of finite precision errors manifest in Krylov subspace
methods in two main ways: delayed convergence and a loss of attainable accuracy.

The most important treatment of the finite precision behavior of Lanczos was ac-
complished by Chris Paige. In a series of papers, Paige gave a complete rounding error
analysis of the Lanczos algorithm and showed that the loss of orthogonality in Lanczos
follows a pattern and actually implies the convergence of Ritz values to eigenvalues of
A [94, 95, 96]. A number of other important fundamental results are also included; for
example, Paige proved that the computed Ritz values always lie between the extreme
eigenvalues of A to within a small multiple of the unit roundoff. The present author
has previously extended the work of Paige to the s-step Lanczos algorithm [22, 27],
and extends the work of Paige to a mixed precision variant of the s-step Lanczos al-
gorithm in the included work [C9]; see also Chapter 2.3.3. Greenbaum [51] used the
analysis of Paige to subsequently prove an important result. In short, the finite preci-
sion Lanczos and CG algorithms can be viewed as the exact algorithms run on a larger
matrix Ã whose eigenvalues lie in tight clusters around those of A. It is also known
that the sensitivity of CG to convergence delay caused by rounding errors depends on
the distribution of eigenvalues, with large outlying eigenvalues causing CG to be more
susceptible to these effects; see [73], [112], and [23, Section 2.6].

The mechanism by which accuracy is lost within the CG algorithm is related to
the difference between the recursively updated residual ri and the true residual b −
Axi. Notice that there is no “self-correction” mechanism which would keep these two
quantities close, and thus local rounding errors cause them to grow further and further
apart as the iterations proceed. It can be shown that the size of the true residual is
limited by the quantity ∥b − Axi − ri∥, which is often called the “residual gap”. For
CG, this bound can be written as a simple accumulation of local rounding errors; see,
e.g., [52], [127], and [110]. The author has previously extended these analyses of the
maximum attainable accuracy to the s-step CG method [21, 27].

For further details and references related to the finite precision behavior of Lanczos
and CG, see [88, Sections 4 & 5].

27

2.3.2 GMRES

GMRES [106] is a Krylov subspace method for solving general linear systems. GMRES
iteratively constructs an orthonormal basis for the Krylov subspace Ki(A, v1) where
v1 = r0/∥r0∥2 via the Arnoldi method and enforces the Petrov-Galerkin condition with
Li = AKi in choosing the next approximate solution. As the name suggests, this results
in the selection of an approximate solution in each iteration that minimizes the 2-norm
of the residual.

Similar to Lanczos, the Arnoldi process in matrix form can be written

AVi = ViHi + hi+1,ivi+1e
T
i = Vi+1Hi+1,i.

The primary difference with Lanczos is that since A is now nonsymmetric, we have
an upper Hessenberg matrix Hi instead of the tridiagonal Ti. Within the Arnoldi
method, one can choose various orthogonalization routines to construct the orthonormal
basis. Common choices include classical Gram-Schmidt (CGS), reorthogonalized CGS,
modified Gram-Schmidt (MGS), and Householder orthogonalization.

The choice of orthogonalization scheme will determine both performance and back-
ward stability of the resulting GMRES method. While Householder, MGS, and re-
orthogonalized CGS are suitable choices to ensure the backward stability of GMRES
(see [37] and [97]), CGS does not guarantee a sufficient level of orthogonality for the
resulting GMRES algorithm to be backward stable. By backward stable we mean that
a backward stable solution to Ax = b is produced within n iterations; see Chapter 1.1.
Note that this implies that there is no convergence delay in finite precision GMRES as
long as sufficient orthogonality of the Krylov basis is maintained.

Because MGS and reorthogonalized CGS are more suitable than Householder in
high-performance settings due to communication cost, these algorithms are often used
in practice. We note that there is also much recent work in developing stable, low-
synchronization orthogonalization routines for use within high-performance variants
of GMRES; see, e.g., [12], [115], and [119], the last of which was co-authored by the
present author. In the included works [C1] and [C2], we extend the analysis of the
backward stability of MGS-GMRES in [97] to the case where we use mixed precision
and left preconditioning.

As in CG, in GMRES we search for an approximate solution in the affine subspace
x0 +Ki, which we can write as xi = x0 + Viyi. We can write the residual as

b−Axi = b−A(x0 + Viyi)

= r0 −AViyi

= ∥r0∥2v1 − Vi+1Hi+1,iyi

= Vi+1(∥r0∥2e1 −Hi+1,iyi).

Since the columns of Vi+1 are orthonormal, the 2-norm of the residual can be minimized
by selecting yi to be argminy ∥∥r0∥2e1−Hi+1,iy∥2. In other words, in order to select the
update to xi that minimizes the 2-norm of the residual in each iteration, we must solve
an (i+1)× i least squares problem. This can be accomplished efficiently by updating a
QR factorization of the matrix Hi+1,i using Givens rotations, from which we can obtain
an estimate of the residual 2-norm without explicitly forming the approximate solution.
The resulting GMRES algorithm (in which MGS orthogonalization is used) is shown
in Algorithm 3.

28

We note that because, unlike for a symmetric matrix, the Arnoldi relation requires
full recurrences (i.e., we must orthogonalize each new vector against all previous vec-
tors), the cost of Arnoldi/GMRES grows with the iteration number i. For this reason,
a restarted variant of GMRES is often used in practice, although we cannot in general
guarantee that restarted GMRES will produce a backward stable solution within n
iterations.

In contrast to CG, in which the convergence behavior depends heavily on the eigen-
value distribution, for GMRES, any nonincreasing convergence curve is possible for a
matrix (which is nonnormal in general) having any prescribed set of eigenvalues [53].
See [9] for a complete parametrization of all pairs {A, b} for which GMRES generates
a prescribed convergence curve. In the case of normal matrices, the location of its
eigenvalues does give information about the worst-case GMRES behavior. For exam-
ple, complete stagnation until the final iteration can be observed for cases where the
eigenvalues form a cluster about the origin. For details, see, e.g., [80].

Algorithm 3 Generalized Minimal Residual Method (GMRES)

Require: Nonsingular matrix A ∈ RN×N , right-hand side b, initial approxima-
tion x0; convergence tolerance τ ; maximum number of iterations nmax.

1: r0 = b− Ax0, β = ∥r0∥2, v1 = r0/β
2: for i = 1, 2, . . . , nmax do
3: wi = Avi
4: for j = 1, . . . , i do
5: hji = vTj wi

6: wi = wi − hjivj
7: end for
8: hi+1,i = ∥wi∥2
9: Let Vi = [v1, . . . , vi] and Hi+1,i = {hkℓ}1≤k≤i+1,1≤ℓ≤i.
10: Update the QR factorization of Hi+1,i and compute ∥ri∥2 = |eTi+1Qe1|.
11: if ∥ri∥2 ≤ τ or hi+1,i = 0 then break
12: vi+1 = wi/hi+1,i

13: end for
14: yi = argminy∈Ri ∥b− A(x0 + Viy)∥2 = argminy∈Ri ∥βe1 −Hi+1,iy∥2
15: Return xi = x0 + Viyi.

Preconditioning and Flexible GMRES As for CG, for GMRES we can use
left, right, or split preconditioning. In some cases, which of these options we choose
can result in significantly different convergence behavior. Our primary concern here is
not with the resulting convergence behavior, but with the implications of the choice of
left or right preconditioning on backward stability guarantees.

The first analysis for a left-preconditioned GMRES method was given in [C1], where
the preconditioner is constructed from LU factors computed in a potentially lower
precision. It is shown that under the assumption that the preconditioned matrix is
applied to a vector extra precisely (in double the working precision), the algorithm
produces a solution to the preconditioned system with relative backward error on the
order of the unit roundoff. Since the preconditioned system and the original system

29

have the same solution, this means that the relative forward error can be bounded
in terms of the unit roundoff and the condition number of the preconditioned matrix,
which we expect to be small. Note that in [C1] (and [C2] and other included works),
it is important that preconditioned GMRES produce a small relative forward error
since this is necessary for proving the convergence of the outer iterative refinement
scheme. We also note that the work in [C1] has since been improved upon; see [4] for
backward and forward error bounds for a variant which uses two general precisions, and
see [131] for an analysis of mixed precision left-preconditioned GMRES with a general
preconditioner.

In contrast with left-preconditioned GMRES, right-preconditioned GMRES poses
a challenge if we wish to guarantee a small relative forward error. Even if we can prove
that right-preconditioned GMRES produces a backward stable solution to the precon-
ditioned linear system, we cannot bound the forward error in terms of the backward
error times the condition number of the preconditioned matrix because the solutions
to the preconditioned linear system and the original system are different. However,
it is often desirable to use right or split preconditioning in practice. In the included
work [C8], we present a complete analysis of the backward and forward errors in a
four-precision split-preconditioned FGMRES method.

The FGMRES method is inherently a right-preconditioned method. Let zi represent
the preconditioned basis vectors vi, i.e., zi = M−1vi. The name “flexible” comes
because one can allow the preconditioner M to change in each iteration, i.e., zi =
M−1

i vi. In FGMRES, these preconditioned basis vectors are stored in addition to the
vi’s, and the approximate solution is computed as xi = x0+Ziyi where Zi = [z1, . . . , zi]
(instead of xi = x0 +M−1Viyi, as would be the case in right-preconditioned GMRES).
For mathematical details, see, e.g., [105, Chapter 9.4]. The work [8] showed that in
finite precision, FGMRES with a particular right-preconditioner is backward stable,
while this is not true for GMRES, and that FGMRES is in general more robust than
GMRES. The subsequent work [7] presented an analysis of the backward error in a
two-precision FGMRES variant.

2.3.3 s-step variants

Krylov subspace methods, including Lanczos/CG and GMRES, are often limited by
the cost of communication (i.e., data movement) at scale. This is because they of-
ten suffer from low computational intensity (the number of floating point operations
performed per word moved) and require one or more global synchronizations in each
iteration, requiring a collective communication between all processes involved in the
computation in distributed memory settings. This has motivated the design of new
algorithm variants which overcome these bottlenecks. In the class of Krylov subspace
methods, examples include s-step (also called communication-avoiding) and pipelined
variants, which are mathematically equivalent to their classical counterparts, meaning
that in absence of errors, they would compute the exact same quantities. We give a
brief overview of the derivation of s-step CG for illustration purposes. A full deriva-
tion of the Lanczos method can be found in the included work [C9]. For other s-step
variants of Krylov subspace methods including historical references, see, e.g., [11] and
[27].

The key idea of s-step CG (and s-step Krylov subspace methods in general) is to

30

compute a block s ≥ 1 iterations at a time by expanding the Krylov subspace by s
dimensions and then performing a block orthogonalization. From Algorithm 2, notice
that after iteration i, for j = 0, . . . , s, the vectors xi+j − xi, ri+j , and pi+j all lie in
the subspace Ks+1(A, pi) + Ks(A, ri). Thus we will compute, up front, a basis matrix
Y such that span(Y) = Ks+1(A, pi) +Ks(A, ri). Then, for iterations i+ j, j = 0, . . . , s,
rather than updating the length-n vectors xi+j−xi, ri+j , and pi+j , we can update their
length-(2s + 1) coordinates x′j , r

′
j , and p′j in the basis encoded in the columns of Y.

That is, we have

xi+j − xi = Yx′j , ri+j = Yr′j , pi+j = Yp′j ,

where x′0 = 02s+1, r
′
0 = [0s+1; 1; 0s−1], and p′0 = [1; 02s].

The basis vectors can be generated according to any polynomial basis desired;
monomial, Newton, and Chebyshev polynomials are common choices. Let B denote
the (s + 1) × (s + 1) matrix that stores the polynomial coefficients, and let Y be the
same as Y but with columns s+1 and 2s replaced with zeros. We then have the relation
AY = YB. We can therefore write the sparse matrix-vector product in each iteration
of CG as

Api+j = AYp′j = Y(Bp′j).

Further, denoting the Gram matrix G = YTY, the inner products can all be replaced
by much smaller operations, e.g.,

rTi+jri+j = r′Tj Gr′j .

The resulting s-step CG algorithm is shown in Algorithm 4. We now discuss how
this approach may reduce the communication cost in parallel settings (for a discussion
of the sequential setting, see [11, Section 8]). Under certain assumptions on s and the
sparsity of A, the computation of the 2s+1 basis vectors in line 4 can be accomplished
for the same asymptotic communication cost of O(1) sparse matrix-vector product using
the communication-avoiding matrix powers kernel; see [11, Section 7]. Similarly, the
computation of the Gram matrix in line 5 requires only a single global synchronization
per s iterations rather than the O(s) that are required in CG. The inner loop (lines
8-12) can be performed locally by each processor without communication.

Unfortunately, the modifications made to improve performance in s-step Krylov
subspace methods can also cause an algorithmic amplification of errors, including finite
precision errors. This can result in both reduced attainable accuracy and significant
convergence delays, which can potentially negate any performance advantage. This has
been studied extensively by the present author for Lanczos/CG-based algorithms; see,
e.g., [27, 30]. In short, the effects of finite precision errors on convergence delay and
attainable accuracy grow worse as the s-step basis becomes more ill-conditioned.

In [C9] we show, theoretically and experimentally, that the undesirable convergence
delay caused by the s-step formulation can be mitigated by the use of extra precision
in certain computations involving the Gram matrices Gk. Since these matrices are
small, the extra computational cost is expected to be minimal, and the asymptotic
communication cost is not affected. This was confirmed experimentally under certain
scenarios in [C10], where a residual replacement strategy adapted from [21] was used in
combination with the mixed precision approach to also improve the attainable accuracy
in a multi-GPU environment.

31

Algorithm 4 s-step Conjugate Gradient (s-step CG)

Require: Symmetric positive definite matrix A ∈ Rn×n; right-hand side b; initial
approximation x0; given stopping criterion; maximum number of iterations
nmax, block size s.

1: r0 = b− Ax0

2: p0 = r0
3: for k = 0, . . . , nmax/s do
4: Compute Yk and Bk such that AY

k
= YkBk and span(Yk) = Ks+1(A, psk)+

Ks(A, rsk).
5: Gk = YT

k Yk

6: x′
0 = 02s+1, r

′
0 = [0s+1; 1; 0s−1], p

′
0 = [1; 02s]

7: for j = 1 : s do
8: αsk+j−1 = (r′Tj−1Gkr

′
j−1)/(p

′T
j−1GkBkp

′
j−1)

9: x′
j = x′

j−1 + αsk+j−1p
′
j−1

10: r′j = r′j−1 − αsk+j−1Bkp
′
j−1

11: βsk+j = (r′Tj Gkr
′
j)/(r

′T
j−1Gkr

′
j−1)

12: p′j = r′j + βsk+jp
′
j−1

13: end for
14: [xs(k+1) − xsk, rs(k+1), ps(k+1)] = Yk[x

′
s, r

′
s, p

′
s]

15: end for

32

Chapter 3

Introduction to least squares
problems

Included works on mixed precision algorithms in this thesis involve the solution of
standard least squares problems ([C4] and [C6]) as well as total least squares problems
([C5]). Here we give a brief overview of these topics with regard to the content of this
thesis. This chapter should not be considered a comprehensive overview; many topics,
including perturbation theory, a survey of algorithms, and other types of least squares
problems such as generalized least squares problems and constrained least squares prob-
lems, are omitted. For a comprehensive overview of the numerical solution of least
squares problems, we direct the reader to [16].

3.1 Standard least squares problems

Here we consider the standard least squares problem

(3.1) min
x

∥b−Ax∥2,

where A is an m× n matrix, where m ≥ n and A has rank n. One method for solving
this problem is via the QR factorization of A. Let

A = Q

[︃
R
0

]︃
be the QR factorization of A, where Q = [Q1, Q2] ∈ Rm×m is an orthogonal matrix with
Q1 ∈ Rm×n and Q2 ∈ R(m−n)×n, and R is n× n upper triangular. The solution to the
standard least squares problem is then given by x = R−1QT

1 b and ∥b−Ax∥2 = ∥QT
2 b∥2.

For an overview of the numerical stability of this and other approaches to solving the
standard least squares problem, see, e.g., [63, Chapter 20].

Least squares problems arise within two contexts in this thesis. The first is in the
development of a mixed precision Krylov subspace-based iterative refinement approach
[C4]. The second is in the construction of low-precision sparse approximate inverse
preconditioners [C6]. In the following subsection, we discuss the iterative refinement of
least squares problems.

33

3.1.1 Iterative refinement

As for linear systems, if the matrix A is ill-conditioned, it may be desirable to perform
iterative refinement for least squares problems in order to improve the accuracy. If the
least squares problem is nearly consistent (i.e., the residual b − Ax is very close to 0
for the least squares solution x), then it is possible to use the refinement procedure
rk−1 = b − Axk−1, ek = R−1QT rk−1, xk = xk−1 + ek. This refinement procedure
has been studied by Golub [47] and was also used by Bauer [13]. That this strategy
only works in the case of nearly consistent systems was first pointed out by Golub and
Wilkinson [49]. For inconsistent systems, the residual may not converge to the working
precision and the forward error may be arbitrarily large. The issue is that when the
residual is not close to zero, it is necessary to refine both the approximate least squares
solution x and the residual r.

A clever way of accomplishing this was developed by Björck [15]. The insight is
that the least squares problem (3.1) can be written as the augmented system

(3.2)

[︃
I A
AT 0

]︃ [︃
r
x

]︃
=

[︃
b
0

]︃
.

Notice that the above is equivalent to the normal equations ATAx = AT b, the solution
of which gives the solution to (3.1). This is an (m+n)×(m+n) linear system, and thus
the usual iterative refinement scheme for linear systems can be applied; see Chapter
2.2.1. Of course, we do not want to explicitly compute an LU factorization of the
augmented matrix as in standard iterative refinement for linear systems. Björck has
shown that in each step of iterative refinement, one can solve linear systems with the
augmented matrix using a QR factorization of A; see [15, Section 5] for a full finite
precision analysis of a two-precision based approach, in which extra precision is used
in computing the residuals. Björck [15] also gives details on how a simple scaling can
be applied to the linear system (3.2) in order to minimize the condition number of the
augmented matrix.

In the included work [C4], we extend the analysis of Björck to the three-precision
case, in which a third, potentially lower precision may be used to compute the QR
factorization. We then develop a new GMRES-based approach to iterative refinement
for least squares problems. The primary difference with the general linear system case
is that we now wish to use the computed QR factors of A in constructing a suitable left
preconditioner for the augmented system. We present one possibility and prove con-
straints under which forward and backward stability of the refinement process can be
attained. Note that the augmented matrix in (3.2) is a saddle point matrix, and there is
a wealth of work on developing preconditioners for saddle point systems; see, e.g., [104].
In [C4], we also show experimentally that the commonly-used block diagonal precon-
ditioner for saddle point systems [90] works well within three-precision GMRES-based
iterative refinement in practice. We note that another approach to Krylov subspace
method-based iterative refinement for least squares problems is presented in [65], which
uses a Cholesky factorization of ATA and performs iterative refinement on the normal
equations.

34

3.2 Total least squares problems

Standard least squares problems are based on the assumption of a standard linear
model, in which the linear relation

Ax = b+ r

holds, where A is a given m × n matrix, b is a length-m vector, and r is a length-
m vector of random, uncorrelated errors with zero mean and identical variance. In
practical applications, such assumptions may not be realistic. In particular, the matrix
A itself may also be subject to errors, including modeling errors, sampling errors, etc.
The total least squares (TLS) problem arises from considering this case. Under what
is frequently called the error-in-variables model, we now assume the model

(A+ E)x = b+ r.

The matrix [E, r] is called the error matrix, and we now assume that the rows of
this matrix are independently and identically distributed, again with zero mean and
identical variance. The total least squares problem can thus be formulated as

min
E,r

∥[E, r]∥F , subject to (A+ E)x = b+ r.

Any x which satisfies the above is a solution to the TLS problem.
Notice that in order for the solution to be unique, the matrix [A+E, b+r] must have

exactly n linearly independent columns. In other words, we want to find the matrix
[E, r] of smallest Frobenius norm such that [A+E, b+ r] becomes rank deficient. The
exact solution to the TLS problem can thus be stated in terms of the SVD of the
matrix [A, b]. Let [A, b] = UΣV T where U is m × (n + 1) with orthonormal columns,
V = [v1, . . . , vn+1] is an (n+1)×(n+1) orthogonal matrix, and Σ = diag(σ1, . . . , σn+1)
with σ1 ≥ · · · ≥ σn+1. If σn+1 = 0, then we know that [E, r] = 0. Otherwise, we have
the solution

[E, r] = −σn+1vn+1v
T
n+1,

for which ∥[E, r]∥F = σn+1, and the solution to the TLS problem is given by

xTLS = − 1

vn+1,n+1
[v1,n+1, vn,n+1]

T .

Notice that if vn+1,n+1 = 0, the TLS solution does not exist; see also the examples and
exposition in [48] and [16, Chapter 4.6]. Letting the singular values of A be denoted
by σ′

1 ≥ · · · ≥ σ′
n, this condition will not occur as long as σ′

n > σn+1.
The first analysis of a numerically stable approach for solving the TLS problem

was given by Golub and Van Loan [48]. See, e.g., [111] and [126] for other early works.
Expositions on the TLS problem can be found in [129] and [16, Chapter 4.6]. Paige
and Strakoš have also studied (scaled) total least squares problems [98, 99]. The latter
of these works involves the development of an elegant theory for scaled TLS problems
based on the so-called “core problem”. The core problem formulation allows one to
decompose a TLS problem into two independent parts, separating out the necessary
and sufficient information from the data, such that one of these parts contains the
unique TLS solution. Further developments involving the core problem formulation as
it relates to TLS problems can be found in, e.g., [100], [68], [66], [67], and [69].

35

3.2.1 Rayleigh quotient iteration for TLS problems

Although the SVD is the classic approach to solving TLS problems, it can be computa-
tionally expensive. One potential alternative due to Van Huffel and Zha is based on a
rank-revealing complete orthogonal decomposition [130]. Various iterative approaches
are also possible, such as inverse iteration and inverse Chebyshev iteration [128].

A particular iterative approach suitable for large-scale problems is due to Björck et
al. [17]. This approach, called RQI-PCGTLS, is based on Rayleigh quotient iteration
(RQI) with preconditioned conjugate gradient (PCG) as the inner solver. In the in-
cluded work [C5] we develop a three-precision variant of this approach. We thus briefly
introduce the RQI-PCGTLS algorithm.

The Rayleigh quotient of a Hermitian matrix B and a vector x is the scalar quantity

ρ(x) =
xTBx

xTx
.

If x is an eigenvector of B, then ρ(x) is the corresponding eigenvalue. Rayleigh quotient
iteration is an algorithm for finding the smallest eigenvalue and eigenvector of a given
matrix B. It is equivalent to inverse iteration (the power method with B−1) with a shift
equal to the Rayleigh quotient. It is known that this method is cubically convergent.

Rayleigh quotient iteration can be used to solve the total least squares problem as
follows. The value λ = σ2

n+1 and x = xTLS satisfy

(3.3)

[︃
ATA Ab

bTA bT b

]︃ [︃
x
−1

]︃
= λ

[︃
x
−1

]︃
,

and thus we can use RQI to solve this eigenvalue problem. In order to ensure that RQI
converges to the smallest eigenvalue and thus to the TLS solution, one or more steps
of inverse iteration can be used to find a suitable starting vector [116].

Iteration k of Rayleigh quotient iteration on the augmented matrix in (3.3) requires
solving two linear systems with the coefficient matrix ATA − σkI, where σk is the
Rayleigh quotient computed in iteration k. Under the assumption that a solution to
the TLS problem exists, this matrix is symmetric positive definite, and thus a precon-
ditioned conjugate gradient algorithm can be used to solve these linear systems. This
results in the RQI-PCGTLS algorithm of Björck et al. [17], in which they advocate
using a fixed number of PCG iterations and using the Cholesky factor of ATA as a
preconditioner. For details, see [17].

The structure of the RQI-PCGTLS algorithm bears resemblance to the Krylov
subspace method-based iterative refinement approaches discussed in Chapter 2.2.1.
Namely, we have an iterative outer-inner solve approach, in which the inner solve is
performed via a preconditioned Krylov subspace method. This leads to the intuition
that lower precision can likely be used in parts of the RQI-PCGTLS algorithm. In
particular, depending on the size of A and the relative dimensions m and n, the most
expensive computation is likely the computation of the preconditioner for the system
with the coefficient matrix ATA− σkI. In the included work [C5], we develop a mixed
precision variant of the algorithm, which we call RQI-PCGLTS-MP. Here we advocate
for the use of the R factor from a low-precision QR factorization of A as the precon-
ditioner within the PCG inner solve. Our analysis provides theoretical constraints on
how the precision used for the QR factorization should be chosen to ensure stability.

36

Perhaps unsurprisingly, in contrast with the standard least squares case, for TLS, a suit-
able choice of precision depends not only on the matrix A but also on the right-hand
side b.

37

38

Bibliography

[1] A. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Don-
garra, M. Gates, T. Grützmacher, N. J. Higham, S. Li, N. Lindquist,
Y. Liu, J. Loe, P. Luszczek, P. Nayak, S. Pranesh, S. Rajamanickam,
T. Ribizel, B. Smith, K. Świrydowicz, S. Thomas, S. Tomov, Y. M.
Tsai, I. Yamazaki, and U. M. Yang, A survey of numerical methods utiliz-
ing mixed precision arithmetic, The International Journal of High Performance
Computing Applications, 35 (2021), pp. 344–369.

[2] A. Abdelfattah, S. Tomov, and J. Dongarra, Investigating the benefit
of FP16-enabled mixed-precision solvers for symmetric positive definite matrices
using GPUs, in International Conference on Computational Science, Springer,
2020, pp. 237–250.

[3] H. Al Daas, T. Rees, and J. Scott, Two-level Nyström-Schur preconditioner
for sparse symmetric positive definite matrices, SIAM Journal on Scientific Com-
puting, 43 (2021), pp. A3837 – A3861.

[4] P. Amestoy, A. Buttari, N. J. Higham, J.-Y. L’Excellent, T. Mary,
and B. Vieublé, Five-precision GMRES-based iterative refinement, MIMS
EPrint 2021.5, Manchester Institute for Mathematical Sciences, The University
of Manchester, UK, April 2021. Revised April 2022.

[5] P. Amestoy, A. Buttari, N. J. Higham, J.-Y. L’Excellent, T. Mary,
and B. Vieublé, Combining sparse approximate factorizations with mixed-
precision iterative refinement, ACM Transactions on Mathematical Software, 49
(2023), pp. 1–29.

[6] H. Anzt, J. Dongarra, G. Flegar, N. J. Higham, and E. S. Quintana-
Ort́ı, Adaptive precision in block-Jacobi preconditioning for iterative sparse lin-
ear system solvers, Concurrency and Computation: Practice and Experience, 31
(2019), p. e4460.

[7] M. Arioli and I. S. Duff, Using FGMRES to obtain backward stability in mixed
precision, Electronic Transactions on Numerical Analysis, 33 (2009), pp. 31–44.

[8] M. Arioli, I. S. Duff, S. Gratton, and S. Pralet, A note on GMRES
preconditioned by a perturbed LDLT decomposition with static pivoting, SIAM
Journal on Scientific Computing, 29 (2007), pp. 2024–2044.

[9] M. Arioli, V. Pták, and Z. Strakoš, Krylov sequences of maximal length and
convergence of GMRES, BIT Numerical Mathematics, 38 (1998), pp. 636–643.

39

[10] H. Avron, P. Maymounkov, and S. Toledo, Blendenpik: Supercharging LA-
PACK’s least-squares solver, SIAM Journal on Scientific Computing, 32 (2010),
pp. 1217–1236.

[11] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and
O. Schwartz, Communication lower bounds and optimal algorithms for nu-
merical linear algebra, Acta Numerica, 23 (2014), pp. 1–155.

[12] J. L. Barlow, Block modified Gram–Schmidt algorithms and their analysis,
SIAM Journal on Matrix Analysis and Applications, 40 (2019), pp. 1257–1290.

[13] F. L. Bauer, Elimination with weighted row combinations for solving linear
equations and least squares problems, Numerische Mathematik, 7 (1965), pp. 338–
352.

[14] Bfloat16 – hardware numerics definition, Tech. Rep. 338302-001US, Revision 1.0,
Intel, November 2018.

[15] Å. Björck, Iterative refinement of linear least squares solutions I, BIT Numer-
ical Mathematics, 7 (1967), pp. 257–278.

[16] , Numerical methods for least squares problems, SIAM, 1996.

[17] Å. Björck, P. Heggernes, and P. Matstoms, Methods for large scale total
least squares problems, SIAM Journal on Matrix Analysis and Applications, 22
(2000), pp. 413–429.

[18] Z. Bujanović, D. Kressner, and C. Schröder, Iterative refinement of Schur
decompositions, Numerical Algorithms, 92 (2023), pp. 247–267.

[19] N. Buoncristiani, S. Shah, D. Donofrio, and J. Shalf, Evaluating the
numerical stability of posit arithmetic, in Proceedings of the 2020 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), IEEE, 2020,
pp. 612–621.

[20] A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek, and
J. Kurzak, Mixed precision iterative refinement techniques for the solution of
dense linear systems, The International Journal of High Performance Computing
Applications, 21 (2007), pp. 457–466.

[21] E. Carson and J. Demmel, A residual replacement strategy for improving the
maximum attainable accuracy of s-step Krylov subspace methods, SIAM Journal
on Matrix Analysis and Applications, 35 (2014), pp. 22–43.

[22] E. Carson and J. W. Demmel, Accuracy of the s-step Lanczos method for the
symmetric eigenproblem in finite precision, SIAM Journal on Matrix Analysis
and Applications, 36 (2015), pp. 793–819.

[23] E. Carson, J. Liesen, and Z. Strakoš, Solving linear algebraic equations with
Krylov subspace methods is still interesting!, arXiv preprint arXiv:2211.00953,
(2023).

40

[24] E. Carson, K. Lund, and M. Rozložńık, The stability of block variants of
classical Gram–Schmidt, SIAM Journal on Matrix Analysis and Applications, 42
(2021), pp. 1365–1380.

[25] E. Carson, K. Lund, M. Rozložńık, and S. Thomas, Block Gram-Schmidt
algorithms and their stability properties, Linear Algebra and its Applications, 638
(2022), pp. 150–195.

[26] E. Carson and Z. Strakoš, On the cost of iterative computations, Philosoph-
ical Transactions of the Royal Society A, 378 (2020), p. 20190050.

[27] E. C. Carson, Communication-Avoiding Krylov Subspace Methods in Theory
and Practice, PhD thesis, University of California - Berkeley, 2015.

[28] E. C. Carson, The adaptive s-step conjugate gradient method, SIAM Journal
on Matrix Analysis and Applications, 39 (2018), pp. 1318–1338.

[29] E. C. Carson, An adaptive s-step conjugate gradient algorithm with dynamic
basis updating, Applications of Mathematics, 65 (2020), pp. 123–151.

[30] E. C. Carson, M. Rozložńık, Z. Strakoš, P. Tichý, and M. Tůma,
The numerical stability analysis of pipelined conjugate gradient methods: Histor-
ical context and methodology, SIAM Journal on Scientific Computing, 40 (2018),
pp. A3549–A3580.

[31] T. Chen and E. Carson, Predict-and-recompute conjugate gradient variants,
SIAM Journal on Scientific Computing, 42 (2020), pp. A3084–A3108.

[32] I. Daužickaitė, A. S. Lawless, J. A. Scott, and P. J. van Leeuwen,
Randomised preconditioning for the forcing formulation of weak constraint 4D-
Var, Quarterly Journal of the Royal Meteorological Society, 147 (2021), pp. 3719
– 3734.

[33] J. Demmel, Y. Hida, W. Kahan, X. S. Li, S. Mukherjee, and E. J.
Riedy, Error bounds from extra-precise iterative refinement, ACM Transactions
on Mathematical Software, 32 (2006), pp. 325–351.

[34] J. J. Dongarra, Algorithm 589: SICEDR: A FORTRAN subroutine for improv-
ing the accuracy of computed matrix eigenvalues, ACM Transactions on Mathe-
matical Software, 8 (1982), pp. 371–375.

[35] J. J. Dongarra, C. B. Moler, and J. H. Wilkinson, Improving the accuracy
of computed eigenvalues and eigenvectors, SIAM Journal on Numerical Analysis,
20 (1983), pp. 23–45.

[36] P. Drineas and M. W. Mahoney, RandNLA: Randomized numerical linear
algebra, Communications of the ACM, 59 (2016), pp. 80–90.

[37] J. Drkošová, A. Greenbaum, M. Rozložńık, and Z. Strakoš, Numerical
stability of GMRES, BIT Numerical Mathematics, 35 (1995), pp. 309–330.

[38] M. Emans and A. van der Meer, Mixed-precision AMG as linear equation
solver for definite systems, Procedia Computer Science, 1 (2010), pp. 175–183.

41

[39] G. Flegar, H. Anzt, T. Cojean, and E. S. Quintana-Orti, Adaptive
precision block-Jacobi for high performance preconditioning in the Ginkgo linear
algebra software, ACM Transactions on Mathematical Software, 47 (2021), pp. 1–
28.

[40] Z. Frangella, J. A. Tropp, and M. Udell, Randomized Nyström precondi-
tioning, SIAM J. Matrix Anal. Appl., 44 (2023), pp. 718–752.

[41] L. Giraud, S. Gratton, and J. Langou, Convergence in backward error of
relaxed GMRES, SIAM Journal on Scientific Computing, 29 (2007), pp. 710–728.

[42] L. Giraud, A. Haidar, and L. T. Watson, Mixed-precision preconditioners
in parallel domain decomposition solvers, in Domain decomposition methods in
science and engineering XVII, Springer, 2008, pp. 357–364.

[43] A. Gittens and M. W. Mahoney, Revisiting the Nyström method for improved
large-scale machine learning, J. Mach. Learn. Res., 17 (2016), pp. 3977 – 4041.

[44] F. Göbel, T. Grützmacher, T. Ribizel, and H. Anzt, Mixed precision
incomplete and factorized sparse approximate inverse preconditioning on GPUs,
in Euro-Par 2021: Parallel Processing, Springer, 2021, pp. 550–564.

[45] D. Göddeke and R. Strzodka, Cyclic reduction tridiagonal solvers on GPUs
applied to mixed-precision multigrid, IEEE Transactions on Parallel and Dis-
tributed Systems, 22 (2010), pp. 22–32.

[46] D. Göddeke, R. Strzodka, and S. Turek, Performance and accuracy of
hardware-oriented native-, emulated- and mixed-precision solvers in FEM simu-
lations, International Journal of Parallel, Emergent, and Distributed Systems, 22
(2007), pp. 221–256.

[47] G. Golub, Numerical methods for solving linear least squares problems, Nu-
merische Mathematik, 7 (1965), pp. 206–216.

[48] G. H. Golub and C. F. Van Loan, An analysis of the total least squares
problem, SIAM Journal on Numerical Analysis, 17 (1980), pp. 883–893.

[49] G. H. Golub and J. H. Wilkinson, Note on the iterative refinement of least
squares solution, Numerische Mathematik, 9 (1966), pp. 139–148.

[50] S. Gratton, E. Simon, D. Titley-Peloquin, and P. Toint, Exploiting
variable precision in GMRES, arXiv preprint arXiv:1907.10550, (2019).

[51] A. Greenbaum, Behavior of slightly perturbed Lanczos and conjugate-gradient
recurrences, Linear Algebra and its Applications, 113 (1989), pp. 7–63.

[52] , Estimating the attainable accuracy of recursively computed residual meth-
ods, SIAM Journal on Matrix Analysis and Applications, 18 (1997), pp. 535–551.

[53] A. Greenbaum, V. Pták, and Z. Strakoš, Any nonincreasing convergence
curve is possible for GMRES, SIAM Journal on Matrix Analysis and Applications,
17 (1996), pp. 465–469.

42

[54] M. J. Grote and T. Huckle, Parallel preconditioning with sparse approximate
inverses, SIAM Journal on Scientific Computing, 18 (1997), pp. 838–853.

[55] J. L. Gustafson and I. T. Yonemoto, Beating floating point at its own game:
Posit arithmetic, Supercomputing Frontiers and Innovations, 4 (2017), pp. 71–86.

[56] M. H. Gutknecht and Z. Strakoš, Accuracy of two three-term and three
two-term recurrences for Krylov space solvers, SIAM Journal on Matrix Analysis
and Applications, 22 (2000), pp. 213–229.

[57] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU
tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative re-
finement solvers, in Proceedings of the 2018 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC18), IEEE, 2018,
pp. 603–613.

[58] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix decompo-
sitions, SIAM Review, 53 (2011), pp. 217–288.

[59] S. Hatfield, P. Düben, M. Chantry, K. Kondo, T. Miyoshi, and
T. Palmer, Choosing the optimal numerical precision for data assimilation in
the presence of model error, Journal of Advances in Modeling Earth Systems, 10
(2018), pp. 2177–2191.

[60] J. L. Hennessy and D. A. Patterson, A new golden age for computer archi-
tecture, Communications of the ACM, 62 (2019), pp. 48–60.

[61] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving
linear systems, Journal of Research of the National Bureau of Standards, 49
(1952), pp. 409–436.

[62] N. J. Higham, Iterative refinement enhances the stability of QR factorization
methods for solving linear equations, BIT Numerical Mathematics, 31 (1991),
pp. 447–468.

[63] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, sec-
ond ed., 2002.

[64] N. J. Higham and T. Mary, Mixed precision algorithms in numerical linear
algebra, Acta Numerica, 31 (2022), pp. 347–414.

[65] N. J. Higham and S. Pranesh, Exploiting lower precision arithmetic in solv-
ing symmetric positive definite linear systems and least squares problems, SIAM
Journal on Scientific Computing, 43 (2021), pp. A258–A277.

[66] I. Hnětynková, M. Plešinger, D. M. Sima, Z. Strakoš, and S. Van Huf-
fel, The total least squares problem in AX ≈ B: a new classification with the
relationship to the classical works, SIAM Journal on Matrix Analysis and Appli-
cations, 32 (2011), pp. 748–770.

43

[67] I. Hnětynková, M. Plešinger, and Z. Strakoš, The core problem within
a linear approximation problem AX ≈ B with multiple right-hand sides, SIAM
Journal on Matrix Analysis and Applications, 34 (2013), pp. 917–931.

[68] I. Hnětynková and Z. Strakoš, Lanczos tridiagonalization and core problems,
Linear Algebra and its Applications, 421 (2007), pp. 243–251.

[69] I. Hnětynková, M. Plešinger, and Z. Strakoš, Band generalization of the
Golub–Kahan bidiagonalization, generalized Jacobi matrices, and the core prob-
lem, SIAM Journal on Matrix Analysis and Applications, 36 (2015), pp. 417–434.

[70] J. D. Hogg and J. A. Scott, A fast and robust mixed-precision solver for the
solution of sparse symmetric linear systems, ACM Transactions on Mathematical
Software, 37 (2010), pp. 17:1–17:24.

[71] HPL-MxP mixed-precision benchmark. https://hpl-mxp.org/, 2023.

[72] M. Jankowski and H. Woźniakowski, Iterative refinement implies numerical
stability, BIT Numerical Mathematics, 17 (1977), pp. 303–311.

[73] A. Jennings, Influence of the eigenvalue spectrum on the convergence rate of
the conjugate gradient method, IMA Journal of Applied Mathematics, 20 (1977),
pp. 61–72.

[74] C. T. Kelley, Newton’s method in mixed precision, SIAM Review, 64 (2022),
pp. 191–211.

[75] D. Kressner, Y. Ma, and M. Shao, A mixed precision LOBPCG algorithm,
Numerical Algorithms, (2023), pp. 1–19.

[76] M. Kronbichler and K. Ljungkvist, Multigrid for matrix-free high-order
finite element computations on graphics processors, ACM Transactions on Parallel
Computing, 6 (2019), pp. 1–32.

[77] C. Lanczos, An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators, Journal of Research of the National
Bureau of Standards, 45 (1950), pp. 255–282.

[78] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Don-
garra, Exploiting the performance of 32 bit floating point arithmetic in obtaining
64 bit accuracy (revisiting iterative refinement for linear systems), in Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing, 2006.

[79] J. Liesen and Z. Strakoš, Krylov subspace methods: Principles and analysis,
Oxford University Press, 2013.

[80] J. Liesen and P. Tichý, The worst-case GMRES for normal matrices, BIT
Numerical Mathematics, 44 (2004), pp. 79–98.

[81] N. Lindquist, P. Luszczek, and J. Dongarra, Accelerating restarted GM-
RES with mixed precision arithmetic, IEEE Transactions on Parallel and Dis-
tributed Systems, 33 (2021), pp. 1027–1037.

44

https://hpl-mxp.org/

[82] P. Lindstrom, S. Lloyd, and J. Hittinger, Universal coding of the reals:
Alternatives to IEEE floating point, in Proceedings of the Conference for Next
Generation Arithmetic, 2018, pp. 1–14.

[83] J. Málek and Z. Strakoš, Preconditioning and the conjugate gradient method
in the context of solving PDEs, SIAM Spotlights, SIAM, 2015.

[84] J. Málek and Z. Strakoš, Preconditioning and the conjugate gradient method
in the context of solving PDEs, vol. 1 of SIAM Spotlights, Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2015.

[85] P.-G. Martinsson and J. Tropp, Randomized numerical linear algebra: Foun-
dations and algorithms, Acta Numerica, 29 (2020), pp. 403–572.

[86] S. F. McCormick, J. Benzaken, and R. Tamstorf, Algebraic error analysis
for mixed-precision multigrid solvers, SIAM Journal on Scientific Computing, 43
(2021), pp. S392–S419.

[87] M. Meier, Y. Nakatsukasa, A. Townsend, and M. Webb, Are
sketch-and-precondition least squares solvers numerically stable?, arXiv preprint
arXiv:2302.07202, (2023).

[88] G. Meurant and Z. Strakoš, The Lanczos and conjugate gradient algorithms
in finite precision arithmetic, Acta Numerica, 15 (2006), pp. 471–542.

[89] C. B. Moler, Iterative refinement in floating point, Journal of the ACM, 14
(1967), pp. 316–321.

[90] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning
for indefinite linear systems, SIAM Journal on Scientific Computing, 21 (2000),
pp. 1969–1972.

[91] T. Ogita and K. Aishima, Iterative refinement for symmetric eigenvalue de-
composition, Japan Journal of Industrial and Applied Mathematics, 35 (2018),
pp. 1007–1035.

[92] , Iterative refinement for symmetric eigenvalue decomposition II: clustered
eigenvalues, Japan Journal of Industrial and Applied Mathematics, 36 (2019),
pp. 435–459.

[93] , Iterative refinement for singular value decomposition based on matrix mul-
tiplication, Journal of Computational and Applied Mathematics, 369 (2020),
p. 112512.

[94] C. C. Paige, Computational variants of the Lanczos method for the eigenprob-
lem, IMA Journal of Applied Mathematics, 10 (1972), pp. 373–381.

[95] , Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric
matrix, IMA Journal of Applied Mathematics, 18 (1976), pp. 341–349.

[96] C. C. Paige, Accuracy and effectiveness of the Lanczos algorithm for the sym-
metric eigenproblem, Linear Algebra and its Applications, 34 (1980), pp. 235–258.

45

[97] C. C. Paige, M. Rozložńık, and Z. Strakoš, Modified Gram-Schmidt
(MGS), least squares, and backward stability of MGS-GMRES, SIAM Journal
on Matrix Analysis and Applications, 28 (2006), pp. 264–284.

[98] C. C. Paige and Z. Strakoš, Bounds for the least squares distance using scaled
total least squares, Numerische Mathematik, 91 (2002), pp. 93–115.

[99] , Scaled total least squares fundamentals, Numerische Mathematik, 91 (2002),
pp. 117–146.

[100] C. C. Paige and Z. Strakoš, Core problems in linear algebraic systems, SIAM
Journal on Matrix Analysis and Applications, 27 (2005), pp. 861–875.

[101] M. Petschow, E. S. Quintana-Ort́ı, and P. Bientinesi, Improved accuracy
and parallelism for MRRR-based eigensolvers—a mixed precision approach, SIAM
Journal on Scientific Computing, 36 (2014), pp. C240–C263.

[102] J. K. Reid, On the method of conjugate gradients for the solution of large sparse
systems of linear equations, in Large Sparse Sets of Linear Equations (Proc. Conf.
St. Catherine’s Coll., Oxford, 1970), 1971, pp. 231–254.

[103] V. Rokhlin and M. Tygert, A fast randomized algorithm for overdetermined
linear least-squares regression, Proceedings of the National Academy of Sciences,
105 (2008), pp. 13212–13217.

[104] M. Rozložńık, Saddle-point problems and their iterative solution, Springer,
2018.

[105] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.

[106] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algo-
rithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and
Statistical Computing, 7 (1986), pp. 856–869.

[107] J. Scott and M. Tůma, Algorithms for Sparse Linear Systems, Springer Na-
ture, 2023.

[108] V. Simoncini and D. B. Szyld, Theory of inexact Krylov subspace methods
and applications to scientific computing, SIAM Journal on Scientific Computing,
25 (2003), pp. 454–477.

[109] R. D. Skeel, Iterative refinement implies numerical stability for Gaussian elim-
ination, Mathematics of Computation, 35 (1980), pp. 817–832.

[110] G. L. Sleijpen and H. A. Van der Vorst,Maintaining convergence properties
of BiCGstab methods in finite precision arithmetic, Numerical Algorithms, 10
(1995), pp. 203–223.

[111] G. W. Stewart, On the invariance of perturbed null vectors under column scal-
ing, Numerische Mathematik, 44 (1984), pp. 61–65.

[112] Z. Strakoš, On the real convergence rate of the conjugate gradient method,
Linear Algebra and its Applications, 154 (1991), pp. 535–549.

46

[113] Z. Strakoš and P. Tichý, On error estimation in the conjugate gradient
method and why it works in finite precision computations, Electronic Transac-
tions on Numerical Analysis, 13 (2002), pp. 56–80.

[114] Y. Sumiyoshi, A. Fujii, A. Nukada, and T. Tanaka, Mixed-precision AMG
method for many core accelerators, in Proceedings of the 21st European MPI
Users’ Group Meeting, 2014, pp. 127–132.

[115] K. Świrydowicz, J. Langou, S. Ananthan, U. Yang, and S. Thomas,
Low synchronization Gram–Schmidt and generalized minimal residual algorithms,
Numerical Linear Algebra with Applications, 28 (2021), p. e2343.

[116] D. B. Szyld, Criteria for combining inverse and Rayleigh quotient iteration,
SIAM Journal on Numerical Analysis, 25 (1988), pp. 1369–1375.

[117] R. Tamstorf, J. Benzaken, and S. F. McCormick, Discretization-error-
accurate mixed-precision multigrid solvers, SIAM Journal on Scientific Comput-
ing, 43 (2021), pp. S420–S447.

[118] TensorFloat-32 in the A100 GPU accelerates AI training, HPC up
to 20x. NVIDIA, https://blogs.nvidia.com/blog/2020/05/14/

tensorfloat-32-precision-format/, May 2020.

[119] S. Thomas, E. Carson, M. Rozložńık, A. Carr, and K. Świrydowicz,
Iterated Gauss–Seidel GMRES, SIAM Journal on Scientific Computing, (2023),
pp. S254–S279.

[120] F. Tisseur, Newton’s method in floating point arithmetic and iterative refine-
ment of generalized eigenvalue problems, SIAM Journal on Matrix Analysis and
Applications, 22 (2001), pp. 1038–1057.

[121] TOP500 list. https://www.top500.org/lists/top500/, June 2023.

[122] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Fixed-rank ap-
proximation of a positive-semidefinite matrix from streaming data, Advances in
Neural Information Processing Systems, 30 (2017).

[123] Y. M. Tsai, P. Luszczek, and J. Dongarra, Mixed-precision algorithm for
finding selected eigenvalues and eigenvectors of symmetric and Hermitian matri-
ces, in 2022 IEEE/ACM Workshop on Latest Advances in Scalable Algorithms
for Large-Scale Heterogeneous Systems (ScalAH), IEEE, 2022, pp. 43–50.

[124] K. Turner and H. F. Walker, Efficient high accuracy solutions with GM-
RES(m), SIAM Journal on Scientific and Statistical Computing, 13 (1992),
pp. 815–825.

[125] J. Van Den Eshof and G. L. Sleijpen, Inexact Krylov subspace methods for
linear systems, SIAM Journal on Matrix Analysis and Applications, 26 (2004),
pp. 125–153.

[126] A. Van Der Sluis and G. W. Veltkamp, Restoring rank and consistency by
orthogonal projection, Linear Algebra and its Applications, 28 (1979), pp. 257–
278.

47

https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://www.top500.org/lists/top500/

[127] H. A. Van Der Vorst and Q. Ye, Residual replacement strategies for Krylov
subspace iterative methods for the convergence of true residuals, SIAM Journal
on Scientific Computing, 22 (2000), pp. 835–852.

[128] S. Van Huffel, Iterative algorithms for computing the singular subspace of a
matrix associated with its smallest singular values, Linear Algebra and its Appli-
cations, 154 (1991), pp. 675–709.

[129] S. Van Huffel and J. Vandewalle, The Total Least Squares Problem: Com-
putational Aspects and Analysis, SIAM, 1991.

[130] S. Van Huffel and H. Zha, An efficient total least squares algorithm based
on a rank-revealing two-sided orthogonal decomposition, Numerical Algorithms,
4 (1993), pp. 101–133.

[131] B. Vieublé, Mixed precision iterative refinement for the solution of large sparse
linear systems, PhD thesis, INP Toulouse, 2022.

[132] J. H. Wilkinson, Progress report on the automatic computing engine, Tech.
Rep. MA/17/1024, Mathematics Division, Department of Scientific and Indus-
trial Research, National Physical Laboratory, Teddington, UK, 1948.

[133] J. H. Wilkinson, Rounding errors in algebraic processes, Notes Appl. Sci., 32
(1963). Her Majesty’s Stationery Office, London; also published by Prentice-Hall,
Englewood Cliffs, NJ, reprinted by Dover, NewYork, 1994.

[134] I. Yamazaki, S. Tomov, T. Dong, and J. Dongarra, Mixed-precision or-
thogonalization scheme and adaptive step size for improving the stability and
performance of CA-GMRES on GPUs, in International Conference on High Per-
formance Computing for Computational Science, Springer, 2015, pp. 17–30.

[135] I. Yamazaki, S. Tomov, and J. Dongarra, Mixed-precision Cholesky QR
factorization and its case studies on multicore CPU with multiple GPUs, SIAM
Journal on Scientific Computing, 37 (2015), pp. C307–C330.

[136] , Stability and performance of various singular value QR implementations
on multicore CPU with a GPU, ACM Transactions on Mathematical Software,
43 (2016), pp. 1–18.

[137] I. Yamazaki, S. Tomov, J. Kurzak, J. Dongarra, and J. Barlow, Mixed-
precision block Gram Schmidt orthogonalization, in Proceedings of the 6th Work-
shop on Latest Advances in Scalable Algorithms for Large-Scale Systems, 2015,
pp. 1–8.

[138] L. M. Yang, A. Fox, and G. Sanders, Rounding error analysis of mixed pre-
cision block Householder QR algorithms, SIAM Journal on Scientific Computing,
43 (2021), pp. A1723–A1753.

48

	Preface
	Mixed precision matrix computations
	Numerical stability
	Floating point arithmetic
	History of mixed precision iterative refinement
	Summary of other related work in mixed precision numerical linear algebra
	Outlook

	Introduction to iterative methods for linear systems
	Preconditioning
	Algebraic preconditioners
	Randomized preconditioners

	Stationary iterative methods
	Preconditioned Richardson iteration/iterative refinement

	Krylov subspace methods
	Lanczos and CG
	GMRES
	s-step variants

	Introduction to least squares problems
	Standard least squares problems
	Iterative refinement

	Total least squares problems
	Rayleigh quotient iteration for TLS problems

	Bibliography

