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1 Introduction

Motile active matter is a vibrant multidisciplinary field that brings together physicists,
biologists, and even social engineers. It uses tools from theoretical and experimental
physics to understand the dynamics of self-propelling particles in various environments,
interactions among them, and emergent behaviors in their large assemblies4–7. As shown
in Figure 1.1, systems of interest range from self-propelled colloids8–10, over motile cells,
filaments, tissues and bacteria11,12, flocking insects13–15 and birds16, and schools of fish17

to the coordinate motion of ants18 and the crowding of pedestrians19.
Active matter systems at all scales share three characteristic features. First, they are

driven out of equilibrium on the level of single particles, which irreversibly transform
some fuel into a directed motion. The nonequilibrium state is thus sustained by the

~ 10-6 – 10-3 m ~ 10-4 – 10-1 m ~ 10-2 m and larger

Kingdom Animalia (mensaforkids.org)

(Israel Defense Forces)

PTI

Figure 1.1: Motile active matter. Examples of natural (top) and artificial (bottom) active
matter systems across length scales. Except for the chemically propelled Janus
particles1, the optically steered symmetric active particles2 (both bottom left), and
the ‘vibrobots’3 (bottom middle), the sources are given inside the individual figures.
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inflow of the fuel or food into the system, rather than, e.g., heating and cooling the
walls as in a boundary-driven nonequilibrium system. The second important ingredi-
ent of active matter is that its effective dynamics can disobey standard thermodynamic
limitations, such as the fluctuation-dissipation theorem, or even more universal symme-
tries, such as reciprocity. This is because the ‘social’ or ‘feedback’ interactions result
from a complicated coarse-graining of the microscopic degrees of freedom far from ther-
modynamic equilibrium. The third characteristic feature of active matter is that the
interactions often involve a time delay. Intuitively, these delays result from limited
speeds of information transfer between and inside the individuals, decision-making, and
body transformation of the individuals. Mathematically, the delays derive from the
coarse-graining of time-local dynamics of the microscopic degrees of freedom.

The ultimate goal of the field of active matter is to provide an understanding of
evolutionary mechanisms which led to the variety of behaviors observed in nature. A
technical part of this task is to describe these behaviors theoretically by developing
suitable generalizations of the tools of equilibrium statistical physics. A more practical
objective is to create well-controlled (not necessarily artificial) counterparts of natural
active particles, able to, e.g., perform medical tasks on the level of individual cells20 or
to form distributed collectively communicating sensorial networks on the macroscale21.

This habilitation thesis is divided into two major parts summarizing the author’s con-
tributions to understanding the dynamics and energetics (or thermodynamics) of active
matter. Chapter 2 investigates how to utilize the activity of single active particles or
their ensembles to perform useful work or induce transport. Chapter 3 is devoted to
the study of the effects of time-delayed interactions in active matter systems. Both these
chapters are conceived as overviews of the corresponding parts of active matter research
with a summary of the author’s contributions, reprinted in the Chapter 7 of this thesis
in the same order in which they appear in the text.

Most of the papers discussed in the thesis were written or conceived during the post-
doctoral stay of the author in the group of Prof. Klaus Kroy at Uni. Leipzig. Therefore,
up to a few exceptions, the presented work aims to describe overdamped active particles,
such as bacteria or driven colloids, which are investigated experimentally in the group of
Prof. Frank Cichos from Uni. Leipzig. The thesis contains only works where the author’s
contribution was significant. With a single exception, it does not contain the authors’
contributions to the study of noise-induced coherence22,23, maximum efficiency at fixed
power24–28, unstable stochastic systems29–32, classical Brownian ratchets29–32, optimal
control of stochastic heat engines33,34, and work fluctuations in small systems35–46.
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2 Active matter engines

Microscopic active particles such as artificial active colloids or bacteria have been em-
ployed to perform useful work in two conceptually different ways. The first one, exem-
plified in Figure 2.1a, aims to treat the system of active particles as a non-equilibrium
heat bath and to transform the disordered energy from this bath into useful work via
so-called active Brownian heat engines47,51. The second approach, depicted in Figure
2.1b-d, aims to harvest the energy of the active motion more directly by rectifying the

c)

b)

a)

d)

Figure 2.1: Extracting energy from active matter. Panel a) shows a colloidal particle
confined by a harmonic potential in an active bath composed of living bacteria in
water47. In this setup, energy is extracted from the active bath by varying in time
the bath’s activity (e.g., by reducing food content in the solvent) and the stiffness of
the potential. The remaining panels show various ways to rectify (or directionalize)
erratic motion of bacteria. In panel b), the bacteria are trapped between a cog
wheel’s asymmetric tooth to rotate it48. In panel c), a similar asymmetry of channel
walls induces a directed (average) motion of bacteria49. Panel d) shows how to
create a likewise directed motion of active particles by making the particle speed
position-dependent instead of using potentials or walls50.
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direction of self-propulsion of otherwise randomly turning active Brownian particles via
obstacles48,49 or other ratchet-like mechanisms50.

Of course, in both these cases, the energy of the autonomous motion of the active
particles is transformed into work. Based on the mechanism underlying the autonomous
motion, this energy conversion can be identified as heat-to-work conversion (for ther-
mophoretically propelled swimmers) or as work-to-work conversion (for chemically pro-
pelled swimmers). The conceptual distinction between active heat engines and other
engines is thus motivated rather theoretically than practically. The energy extracted
from active matter systems can be identified as heat if one finds an equivalent setup
with an equilibrium bath that would yield the same engine’s performance. The temper-
ature of the equilibrium bath can then be interpreted as the active system’s effective
temperature that allows attributing the energy flux from the active bath with a valid
(second law) entropy production. The effective temperature then replaces thermody-
namic temperature in standard upper bounds on the engine performance, such as the

Engine
Active
matter
system

Equilibrium
heat

reservoir

Work
reservoir

q̇neq

q̇eq
q̇hk

q̇hk + q̇neq

ẇ

Figure 2.2: Energy fluxes during energy extraction from active matter. An engine
transforming the heat flux q̇ = q̇neq + q̇eq from a non-equilibrium active matter
system (neq) and perhaps also an equilibrium (eq) heat reservoir into usable power
ẇ. The corresponding energy fluxes relevant for the engine’s operation are depicted
by arrows. The dashed arrow depicts the housekeeping heat flux, q̇hk, flowing from
the active bath to the infinite equilibrium reservoir, which prevents the active bath
from overheating. This energy flux and also q̇neq are sustained by the energy influx
q̇hk+q̇neq into the non-equilibrium bath, which keeps it in a non-equilibrium “active”
steady state. Template for the figure was taken from Ref.51 (Publication 7.1).
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Carnot’s efficiency, which still limit active heat engines’ performance. When an effective
temperature does not exist, the active engines’ efficiency is limited only by the trivial
first law bound on the efficiency of work-to-work conversion, i.e., by one.

Figure 2.2 shows a diagram of energy fluxes involved in any energy extraction from
an active matter system in a steady state. To stay active or, in other words, alive, the
active matter system consumes per unit time the amount of energy q̇hk + q̇neq. If no
energy is extracted from the active matter system, all this power has to be dissipated
in a heat reservoir (or heat sink). Otherwise, the active matter system would overheat.
Assuming that the power q̇neq is extracted from the active matter system, the power
delivered to the heat sink is q̇hk. In general, the engine dissipates a heat flux q̇eq into
the equilibrium reservoir and transforms into work only the rest of its energy influx
ẇ = q̇neq − q̇eq. In majority of active matter engines, the energy influx q̇neq depends just
on the dynamics of the individual active particles, not on the type of their self-propelling
mechanism. In particular, q̇neq is usually independent of the efficiency with which the
engines in the individual active particles transform the overall energy influx q̇hk + q̇neq

into their activity. Hence, it is reasonable to characterise the engine performance by
the efficiency η = ẇ/q̇neq of conversion of q̇neq into the power ẇ, rather than the overall
efficiency ẇ/(q̇neq + q̇hk) of the engine and active matter system. The latter efficiency is
strongly system-dependent and usually tiny. For an active heat engine, η is in general
limited by the Carnot’s efficiency ηC = 1 − T eff

c /T eff
h with largest and smallest values of

the effective temperature T eff
c and T eff

h experienced by the engine. For an active engine,
where an effective temperature cannot be defined, η < 1.

In the rest of this section, I first briefly introduce periodically driven active heat engines
and review our results for them in Section 2.1. Next, in Section 2.2, I highlight
some of our general results, which hold both for active and standard periodically driven
(heat) engines. Finally, in Section 2.3, I present our results on active ratchets that
autonomously rectify the motion of active particles.

2.1 Active heat engines (Refs.51–56)

As described above, the main theoretical difficulty in deciding whether an active engine
can be treated as an active heat engine, and thus one can assess its performance using
results valid for heat engines in contact with equilibrium heat reservoirs, is to determine
if an effective temperature can describe the active bath. Motivated by the experimental
realization of the ‘Bacteria heat engine’47, depicted in Figure 2.1a, and the claims
made in this work that its efficiency can surpass the second law upper bound on the
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efficiency of the corresponding thermodynamic (Stirling) cycle, which is conceptually an
erroneous statement as that would mean that the engine investigated in this work is not
a heat engine ∗, my colleagues and I wrote two papers51,56 explaining when the effective
temperature exists.

2.1.1 Effective temperature in overdamped active heat engines (Ref.51)

In Publication 7.151 we have shown that effective temperature in general exists for
engines described by Hamiltonian of the form

H = k(t)f(x), (2.1)

where k(t) is an externally controlled parameter periodically varied in time, x denotes
degrees of freedom of the engine, and f stands for a confining potential (such that the
equilibrium partition function

∫
dx exp(−βH) is finite for any positive inverse tempera-

ture β). The Hamiltonian describes the engine part of the compound bath-engine system;
the existence of the effective temperature is, thus, in this case, independent of the details
of the bath and the bath-engine coupling. Furthermore, this result is valid regardless
of the details of the dynamics, which can thus be arbitrary, including non-Markovian,
quantum, or other dynamics (even though the calculation of the effective temperature
might sometimes be challenging). It thus proves that the efficiency analysis presented
in Ref.47 is unavoidably wrong not only conceptually but also numerically as the corre-
sponding Hamiltonian H = k(t)(x2 + y2) is of the form (2.1) and thus there certainly
exists an effective temperature that allows limiting the efficiency of the engine below the
ultimate second law bound. This illustrates how our result can serve as a simple sanity
check of measured or calculated efficiencies of active heat engines.

To understand why an effective temperature can be always found for Hamiltonians
of the form (2.1) but not for more general ones, e.g., containing also a kinetic energy
p2/2m, it is enough to write down expressions for average heat and work fluxes

q̇(t) = k(t)σ̇x(t) + σ̇p(t)/m (2.2)

ẇ(t) = k̇(t)σx(t), (2.3)

where σx(t) = ⟨f(x)⟩ and σp(t) = ⟨p2⟩/2 (⟨•⟩ denotes the ensemble average). These

∗Similar claims of surpassing second law efficiencies by using non-equilibrium ‘heat’ reservoirs (such as
various quantum squeezed baths57) fall into the very same category, pointing to authors’ desire to
sell their research well in high-impact journals rather than deep physics break troughs.
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expressions follow from the first law40 by identifying the changes of internal energy
U = ⟨H⟩ = ⟨k(t)f(x) + p2/2m⟩ of the system related to the variation of the control
parameter k(t) as work, and the rest of U̇ as heat. The work and heat fluxes are thus
determined by the ‘response’ functions σx(t) and σp(t). A non-equilibrium bath can
be prescribed an effective temperature Teff(t) if there is an equivalent setup with the
same time-dependent Hamiltonian H and equilibrium heat bath at a time-dependent
temperature Teff(t), which yields the same heat and work fluxes ẇ and q̇ (and thus the
response functions σx(t) and σp(t)) as the setup with non-equilibrium bath. In general,
the response functions are functionals of the driving parameters determined by details
of the engine and bath dynamics, and the time-dependent effective temperature has
to be such that the functionals for the two setups agree numerically. It is reasonable
to assume that finding such a mapping should always be possible when one needs to
match a single functional, e.g., σx(t). However, matching two or more functionals (such
as when considering momentum degrees of freedom) by modifying the single effective
temperature might not always be possible.

The simplest and most important situation demonstrating this conclusion is quasi-
static driving. Then the distribution for {x,p} at any time t has the Boltzmann form
p(x,p, t) = 1

Z exp
(
−k(t)f(x)

kBTeff

)
exp

(
− p2

2mkBTeff

)
(Z stands for partition function and kB

the Boltzmann constant). The averages σx(t) and σp(t) then follow as integrals over
p(x,p, t). It is always possible to tune the effective temperature Teff to match any
given value of one of these averages. However, the resulting Teff also automatically
determines the other average. Thus, it is generally impossible to find an equilibrium
setup that would match an arbitrary couple σx(t) and σp(t) resulting from the dynamics
with a non-equilibrium bath that defies restrictions imposed by equilibrium dynamics,
and similarly for more complicated settings. For an analysis when Teff exists in settings
with non-negligible momentum, see Subsection 2.1.2.

In Publication 7.151 we have also shown how to calculate the time dependent ef-
fective temperature for the specific dynamics considered in Ref.47 with arbitrary cycle
duration and arbitrary protocols for the potential stiffness k(t) and parameters of the
active bath. Concretely, we considered dynamics described by the overdamped Langevin
equation

ẋ(t) = −k(t)x(t)/γ + η(t), (2.4)

where −k(t)x(t) = −∂H(x, t)/∂x stands for the force exerted on the engine by the
optical trap, γ is friction coefficient, and η denotes a zero-mean noise describing effects
of the bacteria bath. For an equilibrium bath, the noise correlation function has to obey
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the fluctuation dissipation relation and thus it reads ⟨η(t)η(t′)⟩ = (2kBTeff(t)/γ)δ(t− t′).
The relevant response function σx(t) = ⟨x2⟩ obeys the dynamical equation

σ̇x(t) = 2k(t)/γσx(t) + 2⟨x(t)η(t)⟩ (2.5)

for a general noise η(t), which translates to

σ̇x(t) = 2k(t)/γσx(t) + 2kBTeff(t)/γ (2.6)

for the equilibrium bath. Comparing these two equations, one can conclude that the
active bath can be in the general situation described by the effective temperature

Teff(t) = γ/kB⟨x(t)η(t)⟩. (2.7)

When the non-equilibrium noise is exponentially correlated, Teff(t) can be calculated
explicitly. Interestingly, it strongly depends on the stiffness of the potential, k(t). This
dependence on the dynamics of the engine must be considered when assessing limits
on the engine’s performance using known results. For example, the efficiency can reach
Carnot’s bound with the effective temperature only if the engine is driven quasi-statically
and protocols for k(t) and bath parameters are fine-tuned to yield constant Teff(t) be-
tween the adiabatic strokes.

2.1.2 Effective temperature in underdamped active heat engines (Ref.56)

In Publication 7.256, we studied the existence of effective temperature for engines
with Hamiltonian of the form H = k(t)xn/n + p2/2m. We assumed that the dynamics
is described by the system of Langevin equations

ẋ(t) = p(t)/m (2.8)

ṗ(t) = −k(t)x(t)n + F (t) + η(t), (2.9)

where the ‘friction’ F (t) stands for the systematic force exerted on the particle by the
active bath and noise η(t) for the stochastic component of that force. Since the bath
is out of equilirbium, F (t) and η(t) are not interconnected by a fluctuation dissipation
relation. It turns out that in this setting the existence of effective temperature can be
proven for quasi-static drivings only. Under such conditions, the effective temperature
consistently describing both the work and heat fluxes in Eqs. (2.2) and (2.3) exists if
⟨x(t)(F (t)+η(t))⟩ = 0, i.e., if the total force exerted by the bath at time t is independent
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of the position x(t) of the engine at the same time. This condition can be broken if the
interaction between the engine and the active bath is strong enough to correlate the two
subsystems. For example, if the engine is based on a colloidal particle trapped in the
potential k(t)xn/n and the active particles in the bath interact with the colloid by a steric
repulsion, slowly rotating active particles will accumulate close to the colloid, leading to
nonzero ⟨x(t)(F (t)+η(t))⟩. This shows that when momentum is taken into account, the
existence of the effective temperature depends not only on the engine Hamiltonian but
also on the engine-bath coupling (cf the discussion in Subsection 2.1.1).

2.1.3 Results (in)valid when effective temperature exists (Refs.52,55)

As discussed above, when the active engine setup allows for describing the active bath
by an effective temperature, its finite-time and quasi-static performance are limited by
bounds for the corresponding heat engines with equilibrium reservoirs. While the quasi-
static limitations on efficiency, such as Carnot’s efficiency, are notorious, available limi-
tations on the finite-time performance of heat engines are much less known. To give one
specific example, when the active heat engine’s dynamics obeys an overdamped Langevin
equation, one can immediately write down limitations on the maximum efficiency of this
engine for any fixed value of its output power using results of Publication 7.352.

Let δP ≡ (P − P ∗)/P ∗ denote the deviation from the maximum power P ∗ attainable
in the given engine under the conditions that (i) the cycle with the effective temperature
comprises two (effective) isotherms and two adiabats and (ii) the driving is slow (but
not quasi-static) or the probability distributions for position at the ends of the isotherms
are fixed (this somewhat awkward condition is discussed in Publication 7.6 introduced
in Subsection 2.2.2). Then our results in Ref.52 shows that the maximum efficiency
attainable by the engine for given δP obeys the inequalities

ηC
2

(
1 +

√
−δP

)
≤ η ≤ ηC

1 +
√−δP

2 − (1 − √−δP )ηC
, (2.10)

where ηC = 1 − Tc/Th and Tc/Th is the ratio of ‘cold’ and ‘hot’ effective temperatures.
The main asset of active baths is that their hot effective temperature (achieved, e.g., by
providing bacteria with a lot of food) can be very large without any danger of evaporating
the lab, and thus ηC can be close to 1. Over the years, we have derived many similar
results for various thermodynamic machines24–28 all of which can find application also
in the field of active heat engines (or refrigerators, etc.), but this thesis contains only
Publication 7.352 as an example.
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As a warning, I stress that the existence of effective temperature means that there is a
setup with an equilibrium bath that has the same average thermodynamic performances
as the given setup with an active bath, nothing more. When one studies other features
of the active system, there is thus no guarantee of any further correspondence with the
equilibrium system. For example, even though average work and heat for the equilibrium
and active setups are equal, fluctuations of these quantities can be completely different.
Such differences can be studied using Brownian dynamics simulations. Nevertheless,
we have developed an alternative numerical method55 (Publication 7.4) which can, in
some cases, overperform these simulations, in particular, if one needs to determine with
high accuracy higher moments of fluctuating thermodynamic fluxes. The method can
be applied to systems with overdamped dynamics. It is based on approximating the real
dynamics by a thermodynamically consistent hopping process in the discretized state
space. It allows calculating the probability distribution to find the engine in a given
state (position) and characteristic functions for arbitrary stochastic functionals of that
position, such as work and heat. Details of this ‘Matrix numerical method’ are rather
technical and I invite the interested reader to read more in the attached Publication
7.455.

2.2 General results (Refs.53,54):

There are some results obtained for standard heat engines, which are also valid for
active engines even when the effective temperature does not exist. This generally holds
for results obtained without assuming equilibrium concepts such as detailed balance
or (equivalently) fluctuation-dissipation relation. Here, I present two examples of such
results from our kitchen.

2.2.1 Quasi-static efficiency at finite power (Ref.53)

Publication 7.553 shows that any cyclically driven microscopic engine can operate at
maximum quasi-static efficiency and simultaneously deliver nonzero power with vanish-
ing (or at least limited) fluctuations. For heat engines in contact with an equilibrium
heat bath, this result shows that they can be operated with Carnot’s efficiency while
delivering finite, stable power. This can be interpreted as a Holy Grail of engineers,
which was conjectured to be forbidden by recently discovered thermodynamic uncer-
tainty relations58 before our work was published. Nevertheless, we have shown that
thermodynamic uncertainty relations only limit the performance of steady-state heat
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engines, transforming a stationary heat flux from a hot to a cold reservoir into work.
The first main idea of our paper is that the work in cyclic heat engines (e.g., that

in Eq. (2.3)) represents a different stochastic process than work in steady state heat
engines40,53. Cyclic heat engines perform work when the engines’ energy is decreased
by externally modifying the potential. Variations in the engine’s energy due to changes
in its microstate are then related to heat interchanged with the bath. On the other
hand, in steady-state heat engines, both heat and work are associated with the motion
of particles in a fixed potential landscape, and thus both these quantities qualify as
heat from the point of view of cyclic setups. The heat and work in cyclic engines have
very different properties when the system is driven slowly. For very slow driving, the
individual microstates are occupied according to the quasi-static probability density
(Boltzmann distribution when the bath is in equilibrium), and the probability density
for work per cycle is δ(w−Wqs), where Wqs is the average quasi-static work. The work-
type variables, in other words, self-average with increasing cycle time. According to the
first law, heat plus work equals energy difference per cycle. With δ-distributed work,
this implies that heat fluctuations are those of internal energy, and thus they do not
vanish regardless of the driving speed40,53.

With this insight, the only question remains whether one can drive a system quasi-
statically in a finite time. For small systems, all relaxation times are under reason-
able control. Thus one can make them very short (definitely shorter than overdamped
timescales), for example, by increasing the stiffness in the potential (2.1). This is the
second main idea of Publication 7.654, to which I refer for more details.

2.2.2 Maximum efficiency protocol for constrained driving (Ref.54)

Our second general result on performance of cyclic engines is described in Publication
7.654, where we have derived maximum efficiency protocol for any heat engine described
by the Hamiltonian of the form (2.1) under the experimentally relevant conditions that
(i) the stiffness k(t) ∈ [k−, k+], (ii) Teff ∈ [T−, T+], (iii) cycle time is arbitrary but
fixed. Our derivation is based on the definition of heat flux (2.2) with m = 0, and
thus it is completely independent of the details of engine or bath dynamics. Results of
such generality are rare in the field of optimal finite-time control of (stochastic) heat
engines. In fact, this is the only optimal protocol that is valid for arbitrary dynamics
known to the author. All other optimal protocols described in the literature are derived
based on standard functional optimization techniques, such as Euler-Lagrange formalism
(see references in54 for more details), which cannot be applied without prescribing the
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dynamical equations.
Our derivation is based on the fact that, at second glance, the heat flux q̇(t) = k(t)σ̇x(t)

resembles the Clausius equality Q = TdS valid in equilibrium thermodynamics. In
equilibrium thermodynamics, the most efficient cycle operating between temperatures
T− and T+ is Carnot’s cycle, which forms a rectangle in the T − S diagram and has
efficiency ηC = 1 − T−/T+. Hence, the most efficient cycle under our conditions must
form a rectangle in the k− σx diagram and has efficiency η = 1 − k−/k+. An important
piece of the derivation is that the final formula for efficiency is independent of the
system response σx (which cancels out between the nominator and denominator in the
definition of efficiency). For power, this does not happen, and hence the piece-wise
constant protocol for k(t) is not always optimal. Nevertheless, one can prove that the
piece-wise constant k(t) maximizes power for slow enough driving and a small allowed
range k+ − k− for k. For more details, see Publication 7.654.

2.3 Active ratchets (Refs.50,59–61)

Qualitatively (and often even quantitatively), the motion of active Brownian particles
such as bacteria or various active colloids is well described by the so-called active Brow-
nian particle model. In two dimensions, it consists of the system of Langevin equations

ẋ(t) = v[x(t), y(t)] cos[θ(t)] +
√

2Dηx(t), (2.11a)

ẏ(t) = v[x(t), y(t)] sin[θ(t)] +
√

2Dηy(t), (2.11b)

θ̇(t) =
√

2Drηθ(t), (2.11c)

for position coordinates x(t) and y(t) and orientation θ(t) of the active particle, which
determines its swimming direction. The formulae above assume that the particle’s speed
v(x, y) can depend on its position. The mutually independent unbiased Gaussian white
noises ηi(t), i = x, y, θ of unit intensity (⟨ηi(t)ηj(t′)⟩ = δijδ(t − t′)) represent transla-
tional and rotational Brownian motion of the active particle, and D and Dr denote the
corresponding diffusion coefficients.

The most important ingredient of the model is that the particles move persistently
until their reorient due to the rotational diffusion. The average reorientation time of the
particles is given by 1/Dr. Thus the average distance a particle travels until it changes
its direction can be estimated as v(x, y)/Dr. Per the same time window, the particles’
average displacement due to the transnational diffusion is

√
D/Dr. The ratio of these
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two length scales, v
√
D/Dr, measures the importance of active motion over diffusion

and is often referred to as the Péclet number.
If confined by walls (or even potentials), the active particles slide along walls due to

their persistence until they get trapped for periods of duration 1/Dr in wedge-shaped
regions, or pockets, such as in Figure 2.1. The particles can then propel freely movable
objects in the active bath toward the pockets (Figure 2.1b). Alternatively, orienting
fixed pockets in one direction renders a global current of the active Brownian particles
in the opposite direction (Figure 2.1c).

One can ask whether active Brownian particles can render a macroscopic current by
themselves without a necessity for confinement or other complications such as time-
dependent activity62. We have positively answered this question in the series of papers
studying the motion of active particles with space-dependent activity50,59–61.

2.3.1 Active Brownian particles in activity landscapes (Refs.59–61)

We started this program by studying the dynamics of active particles in spatially varying
activity landscapes experimentally in Publication 7.760 and theoretically in Publica-
tion 7.861 for a simple one-dimensional setup and in Publication 7.959 for radially
symmetric two-dimensional geometry. Our main findings are summarized using a piece-
wise constant active-passive activity landscape in Figure 2.3.

Due to their persistence, active Brownian particles accumulate at the active-passive
interface, pointing from the active (v(x) > 0) to the passive (v(x) = 0) region. In the
steady state, this accumulation can be described by a simple approximate model that
reduces the complete Fokker-Planck equation for the probability density for position
and orientation, ρ̃(x, θ), corresponding to Eqs. (2.11), to equations for position density
ρ(x) =

∫
dθρ̃(x, θ) and polarization p(x) =

∫
dθ cos(θ)ρ̃(x, θ). Notably, the resulting

approximate equations

ρ′(x) = p(x)v(x)/D, (2.12a)

p′′(x) = D/Drp(x) + ρ(x)v′(x)/(2D), (2.12b)

can be exactly mapped to equations for density and polarization in a model where
the particle can have just two values of θ, so that it points either to the left or to the
right. That the approximate model describes a related model exactly implies that results
obtained by solving Eqs. (2.12) should be qualitatively correct regardless of the chosen
parameter regime. For more details concerning the polarization and density patterns
near active-passive interfaces, particularly for the properties of the corresponding decay
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lengths, we refer to Refs.59–61. The results presented above can be used to construct
an activity ratchet by imposing in the setup of Figure 2.3 instead of photon nudging
boundaries periodic boundaries and letting the activity landscape travel from right to
left. Such time-dependent ratchets have already been described in the literature62.

2.3.2 Activity ratchet (Ref.50)

In Publication 7.1050, we show how the insights described above can be used to con-
struct a ratchet just by a periodic spatial modulation of the particle activity. That such
a ratchet can be constructed is nontrivial because, at long time scales, active Brownian
particles usually behave like common (passive) ones, just with an increased diffusion co-

depletion

polarization
(c) 

passive active

Figure 2.3: Density and polarization at active-passive interface. Panel a) shows the
quasi-one-dimensional experimental setup with thermophoretically propelled Janus-
type active particles sketched in panel c. When irradiated by a laser, these particles
propel toward their polystyrene hemisphere. Naturally, the probability of finding
the active particle is much larger in the passive than in the active region. Upon
leaving the active-passive area, particles were steered back by photon nudging (they
were irradiated by the laser only when pointing into the active-passive area with
their polystyrene end). Panel b) shows the density in a) integrated over the y coor-
dinate, and panel d) depicts the corresponding polarization (average orientation at a
given position) of the active particle. Panel c) gives an intuitive explanation for the
depletion of the active region and behavior of the polarization at the active-passive
and passive-active interfaces. Symbols in b and d correspond to experimental data,
dashed lines are analytical predictions, and solid lines were computed numerically
using Ref.55 (Publication 7.4). The figure is reprinted from Ref.60 (Publication
7.7).
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efficient D + v2/(2Dr) (and thus also correspondingly increased effective temperature).
And one can show that Brownian particles traveling through a bath locally equilibrated
at a spatially modulated temperature can only induce thermophoretic flows from ‘hot
to cold’ but not a macroscopic transfer under spatially periodic conditions.

Furthermore, one-dimensional static activity landscapes can be proven to generally
fail to produce a global current as follows: (i) Eq. (2.11a) implies that the current
j(x) = ⟨ẋ(t)⟩ is proportional to the polarization. (ii) While activity landscapes can sort
active particles according to their orientations, they can never reorient them and, hence,
total orientation

∫
dxp(x) = 0. Physically, without external torques, polarization is a

continuous function of position. Thus p(x) must be zero at least at a single position to
make the overall polarization vanish. (iii) In a steady state where the ratchet operates,
the one-dimensional continuity condition ∂j(x)/∂x = 0 implies that j(x) is the same for
all positions and, hence, it must vanish for all x.

Even though points (i) and (ii) also hold in two spatial dimensions, this argument
does not apply here because the two-dimensional continuity condition ∂j(x, y)/∂x +
∂j(x, y)/∂y = 0 allows for nonzero global solutions with local zeros, corresponding to
inevitable points of vanishing polarization. Around these points, the two-dimensional
current forms vortices visible in Figure 2.1d. The piece-wise constant activity profile
utilized in the ratchet depicted in this figure (and analyzed in Ref.50) consists of an
asymmetric passive region surrounded by an active region, where the particles move
with a constant nonzero speed. The easiest way to understand the ratchet’s operation
is to consider the y dimension as a ‘periodic time modulation’ of the piece-wise constant
profile from the preceding section. An alternative explanation can be based on the
fact that particles get polarized along the whole active-passive interface; however, those
localized inside the wedge region can leave the passive region much harder than those on
the tip side. This leads to an overall ‘leakage’ of particles oriented to the left along the
two edges of the wedge-shaped passive domain and, thus, to a global current to the left.
For more details concerning the performance of this ratchet, we refer to Publication
7.1050.
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3 Effects of time delay

To perform a useful task or to interact with a neighbor, both living and artificial agents
must acquire and process information about their surroundings. This cannot be done
instantaneously and thus response of active particles is always delayed after the stimuli
(for delays of various animal specious to various stimuli, see Table 3.1). Consequently,
effects of time delay have already been thoroughly investigated from an engineering
point of view in control theory73, which is a general framework for feedback systems
with applications in life sciences, engineering, and sociology. The main insight is that
time delays may induce oscillations, instabilities, and poor control performances, which
should be familiar to everyone who experienced delayed hot water flow from a shower (see
Figure 3.1). On the other hand, time delays are deliberately used in control theory to
stabilize unstable periodic orbits in chaotic systems using, e.g., OGY or Pyragas control
methods74,75.

Even though active matter research shares some goals (and hence also issues) – such
as precise control of interacting self-propelling particles – with control theory, physical
theories of retarded active matter are scarce: As a notable exception, effects of time
delay are well understood for traffic models76. Besides, time delay was studied with
respect to stability and formation of dynamical patterns in the active Brownian dynamics
model77,78 and in several models of bird flocks, including the Vicsek model79–82 and
Cucker-Smale model83. All these studies suggest that moderate time delays foster order
in the dynamics, while large delays induce disorder. The current interest of the active
matter community in dynamics with time delay is mainly driven by the necessity to
describe experiments involving feedback2,84–86 and to adjust existing models to capture
natural instances of retarded dynamics more accurately13,80,87. This has spurred the
theoretical study of analytically tractable toy models capturing the main ingredients of
experiments, and more detailed models to plan and analyze specific measurements and
experiments.

In the rest of this section, I first briefly review stochastic delay differential equations,
which describe the dynamics of feedback-driven active matter systems, and review our
results for their solution in Section 3.1. Then, in Section 3.2, I review our results for
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Animal Stimulus/Response Reaction Time [ms] References
Human auditory 140 − 160 63

visual 180 − 200 63

touch ∼ 155 63

Fruit fly roll perturbation ∼ 5 64

pitch perturbation ∼ 12 65

yaw perturbation 10 − 25 66

Starling startling sound stimuli 64 − 80 67

startling light stimuli 38 − 76 67

Teleost fish startle response 5 − 10 68,69

Calanoida stirring water < 2.5 70

E. coli chemical stimuli ∼ 103 − 104 71

Table 3.1: Typical reaction times measured between a stimulus and the corresponding discrete
response strongly vary among species and the type of stimulus. Delay times com-
parable to the characteristic time scale of the stimulus may be expected to trigger
qualitatively new effects in the dynamical response, similar to those analyzed in the
present work. The table is taken from Ref.72.

feedback-driven systems of active Brownian particles. Finally, in Section 3.3, I review
our findings about the effects of time-delayed interactions in the Vicsek model.

Figure 3.1: Shower delay, a control problem from daily life. Due to the delayed hot
water flow, we usually open the hot water tap too much and get burned once the
hot water finally comes out of the shower. To reach a comfortable temperature,
we regulate the faucet up and down and induce the oscillating behavior typical for
delay systems. The figure was drawn by Daniel Geiss.
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3.1 Equilibrium delay (Ref.88)

The dynamics of most active matter systems considered in my work is strongly influ-
enced by environmental noises such as thermal noise. Therefore they are described by
stochastic delay differential equations89. These equations can be in general written in
the form

ẋ(t) = f [t,x(t),x(t− τ)] + g[t,x(t)]ξ(t), (3.1)

where τ stands for the delay time, x(t) describes the stochastic trajectory of the (possi-
bly many-body) system, f [t, x(t), x(t − τ)] and g[t, x(t)] are arbitrary real-valued func-
tions, and ξ(t) represents the noise, which is usually but not necessarily Gaussian and
white. For vanishing noise, stochastic delay differential equations become delay differen-
tial equations, which are notoriously difficult to treat analytically. In fact, up to a few
exceptions such as Eq. (3.7) in Subsection 3.2.1, exact solutions to them are known
only if they are linear (f [t,x(t),x(t− τ)] = a+ bx(t) + cx(t− τ)), where one can derive
the Green’s function for Eq. (3.1) using e.g., Laplace transform90. For the case when the
noise is additive with constant intensity (g[t,x(t)] = g), this result can then be used for
the derivation of exact expressions for the probability distribution for x(t), ρ1(x, t), and
also for all higher joint probability distributions, e.g., ρ2(x, t; x′, t′), etc. However, when
the dynamical equation is nonlinear, it is not even known how to write a closed Fokker-
Planck equation for ρ(x, t). Instead, one obtains an infinite hierarchy of equations for
ρn, n = 1, 2,= . . . 91. How to close this hierarchy is currently an open problem. In fact,
to the best of our knowledge, no exact solutions to nonlinear stochastic delay differential
equations have been known until recently, when we made a moderate breakthrough88 by
deriving a class of (to some extend) exactly solvable nonlinear stochastic delay differen-
tial equation by imposing fluctuation-dissipation relation in Eq. (3.1).

To be specific, in Publication 7.1188, we consider stochastic delay differential equa-
tions (3.1) that can be written in the form of a system of Langevin equations (for
simplicity in one dimension)

ẋ(t) = v(t), (3.2)

mv̇(t) = F (t, x(t)) + FF (x(t), x(t− τ)) + η(t), (3.3)

where F (t, x(t)) is an arbitrary time-local external force, and the friction FF (x(t), x(t−
τ)) and noise η(t) obey the fluctuation dissipation relation. That is, we assume that the
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friction can be written using a memory Kernel Γ(t) as

FF (x(t), x(t− τ)) = −
∫ t

−∞
dt′Γ(t− t′)v(t′), (3.4)

and the noise auto-correlation function fulfills the requirement

⟨η(t)η(t′)⟩ = kBTΓ(t− t′), (3.5)

with some temperature T . To restrict the analysis to real-valued processes only, we, in
addition, assume that the noise power spectrum is positive:

S(ω) =
∫ ∞

−∞
dt ⟨η(t)η(0)⟩ exp(iωt) > 0. (3.6)

Under these conditions, the stochastic delay differential equation describes the dynamics
of a particle dragged by the external force F through a non-Markovian but equilibrium
bath. Hence, one can use all results valid under these conditions, such as fluctuation the-
orems, equilibrium linear response theory, etc. For example, when the external force is
potential, F (x(t)) = −∇U(x(t)), the stationary probability distribution for {x(t), v(t)}
is given by the Boltzmann distribution ρ(x, v) = exp(−βH(x, v))/Z, with the Hamilto-
nian H(x, v) = U(x) +mv2/2, inverse temperature β = 1/(kBT ), and partition function
Z. In Publication 7.1188, we detail two experimentally motivated examples of such
processes. One potential issue that might constrain the practical applicability of our
results is that the noise that fulfills the fluctuation-dissipation relation (3.5) is non-
trivial and might be challenging to realize in experiments. Nevertheless, our numerical
simulations suggest that this should be possible at least approximately.

Unfortunately, the described dynamical class involves only delay stochastic differential
equations that are linear in the delayed position. Nonetheless, systems when the feedback
is (at least approximately) linear in the time-delayed term are quite commonly used in
practice. One example is the so-called feedback cooling92,93. Furthermore, I believe there
is still untapped potential in using general results and symmetries of physics to derive
solvable nonlinear stochastic delay differential equations. Currently, I am exploring ways
to generalize these results.

3.2 Feedback driven active Brownian particles (Refs.2,72,85,90,94)

Natural microswimmers such as bacteria represent rather complex biophysical systems7.
To better understand their behavior, mimic their functionality, or eventually utilize
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them to perform useful tasks, researchers nowadays intensely study experimentally and
theoretically artificial microswimmers. These microswimmers are often spherical parti-
cles made from two hemispheres with different physical properties, called Janus parti-
cles after the homonymous two-faced Roman god. Typical examples are the catalytic
microswimmers in Figure 1.1 and hot (or thermophoretic) microswimmers in Figure
2.3c. However, as discussed in Section 2.3, the Janus microswimmers swim ballistically
until they are reoriented by rotational diffusion, significantly limiting the experimental
control over their trajectories95,96. Therefore, my experimental colleagues developed85,86

a)
b)

c) d)

Figure 3.2: Active particles with delayed attractive interactions. a) When the par-
ticles are further away (closer) than req they swim towards (away from) each
other with a constant speed vth. Due to these two-body interactions, the parti-
cles form dynamical ‘active molecules’ in b). c) The interaction rule from a) with
req = 0 and one of the two particles fixed leads, for large enough delay times, to
rotational motion of the active particle around the pinned one. d) Polar angles
θ =

∫ t

t−δt
dt′ω(t′) = ψ(t) − ψ(t − δt) traveled by the active particle per one delay

time as functions of time for a fixed swimming speed and different delays. Panels
a) and b) are taken from Ref.85 and panels c) and d) from Ref.72.
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a new type of symmetric thermophoretic microswimmers shown in Figure 3.2a. These
particles are melamine resin spheres (radius 1 µm) covered by gold nanoparticles (ra-
dius 10 nm). If placed in water and irradiated by laser at their circumference, they
swim with a constant speed proportional to the laser intensity in the direction of the
vector connecting the laser focus with the particle center. The swimming direction can
be controlled simply by changing the position of the laser focus.

This improved experimental control allows steering the microswimmers with unprece-
dented precision, only hindered by the phenomenon that inevitably limits the accuracy
of any feedback control, the delay of the feedback loop, i.e., the time required to mea-
sure the position, process the measurement in the computer, and change the laser focus.
Even though the current (2023) variant of the experimental setup allows for short enough
delays that hardly affect the dynamics, during the development of the experiment, we
uncovered many surprising phenomena occurring for long enough delay times. In short,
it turns out that trivial delayed interactions alone have the potential to underlie a large
part of the complexity observed in motile active matter.

3.2.1 Active Brownian molecules (Refs.85,90)

In Publication 7.12, we investigated the level of control achievable using the symmetric
active particles by steering them to form active molecules in Figure 3.2b. We achieved
that by implementing the simple rule depicted in Figure 3.2b. When the particles
were farther than a fixed nonzero distance req, we propelled them with a fixed speed vth

towards each other. And when they were closer than req, we propelled them with the
same speed away from each other. As a result the dynamics of the center of mass of the
particles obeyed the nonlinear stochastic delay differential equation

ṙ(t) = −2vth sign (r(t− τ) − req) +
√

4Dη(t). (3.7)

For vanishing delay, this equation describes an overdamped Brownian particle with unit
friction coefficient diffusing in the absolute value potential U(r) = 2vth|r − req|. For
nonzero delay, the particles are thus on average distant req and their distance r ex-
hibits exponentially decaying fluctuations following from the Boltzmann distribution
P (r) ∝ exp[U(r)/2D]. Interestingly, the nonlinear delay differential equation obtained
by neglecting the noise can be solved exactly by a triangle wave with amplitude 2vthτ

and period 4τ . Due to the delay, the distance r is thus on average still given by req but it
oscillates around this value. Due to the noise, these oscillations have a finite correlation
time, which can be predicted by an approximate solution of Eq. (3.7)85.
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Considering more than two particles, the first term on the right-hand side of Eq. (3.7)
is given by the average of two-particle interactions, normalized to vth. For zero delay,
the equation describes the diffusion in a multi-dimensional absolute value potential,
which insight can be used to determine the average structure of the resulting ‘active
molecules’ in Figure 3.2b. Similarly, as for two particles, these molecules are highly
dynamic. They oscillate due to the delay, and due to the noise, the individual particles
in the molecules can even interchange their positions. For more details, I refer to videos
supplementing Ref.85 and to its full text in Publication 7.12.

Since the interactions used in the experiments are strongly nonlinear already for two
particles, the theoretical analysis is limited to highly approximate calculations. To get
more insights, we considered in Publication 7.13 a similar system with linear interac-
tions, i.e., we considered a harmonic potential for vanishing delay instead of the absolute
value potential. The main physical difference between this setup and the experimental
setup of Publication 7.12 is that the latter assumes constant particle speeds while the
‘harmonic potential’ implies that the speed grows linearly with increasing interparticle
distance. As a result, the dynamics can be reasonably linearized even for more than
two particles, and the resulting approximated dynamical equations can be solved ex-
actly. Interestingly, one can even obtain a reasonable analytical estimate for transition
rates between different possible conformations of the molecules formed by the delayed
harmonic interactions. However, this is only possible when neglecting that the usually
used absorbing boundary condition is no longer valid for non-Markovian dynamics. As
a result, the predicted transition rates are reasonably accurate for intermediate delays
only. While this outperforms the usually employed short delay approximation97, deriva-
tion of transition rates for non-Markovian dynamics still represents an interesting open
problem.

The main qualitative difference between the ‘constant-force’ molecules of Publica-
tion 7.1285 and ‘harmonic’ molecules of Publication 7.1390 is that, due to the con-
stant speed, the former are stable for arbitrarily long delay times. On the other hand,
the oscillations in a harmonic potential get amplified for long delay times, leading to
an exponential increase of inter-particle distances. Hence, the harmonic molecules ex-
hibit both hallmark features of delay systems: instabilities and oscillations. Since the
analysis in90 is somewhat technical, I invite the interested reader to read more in the
attached Publication 7.13.
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3.2.2 Delay-induced chirality in systems of micro-swimmers (Refs.72,94)

In Publication 7.1472, we investigated what happens if the simple constant speed in-
teraction from the previous subsection is used to propel the particles towards a fixed
target particle. The situation is depicted in Figure 3.2c. The microswimmer detects
the target’s position vector −r(t) at time t and at time t + δt swims in the direction
−r(t)/|r(t)| with a constant speed v0 ∗. As depicted in the figure, this delayed attraction
makes the particle rotate around the target for long enough delay times. Mathemati-
cally, the rotational motion of a single microswimmer is well described by the nonlinear
stochastic delay differential equation

ϕ̇(t) = ω0 sin[ϕ(t) − ϕ(t− δt)] +
√
D/(2a2)η(t), (3.8)

where ϕ(t) is the polar angle (see Figure 3.2c), D the transitional diffusion coefficient of
the microswimmer, a its radius (the target particle is just a pinned, passive microswim-
mer), and ω0 = v0δt/(2a). This equation describes a Kuramoto oscillator98 trying to
synchronize with its own past position. Assuming that, for D = 0, the system eventu-
ally converges into a state with constant angular velocity ω, one can use the formula
ϕ(t) =

∫ t
−∞ dt′ ω to rewrite Eq. (3.8) as ω = ω0 sin(ωδt) and find the stable solutions

as functions of the control parameter ω0δt numerically. It turns out that, for ω0δt < 1,
the only stable solution is ω = 0, while there are two stable rotating states differing in
the sign of ω for ω0δt > 1. For increasing delay (or, equivalently, swimming speed v0),
the system thus undergoes a normal supercritical pitchfork bifurcation99. Alternatively,
approximating ω(t)δt by the delay angle θ(t) ≡ ∫ t

t−δt dt
′ ω(t′), and expanding the sine in

Eq. (3.8) up to the third order in the delay time δt (and neglecting the term
...
θ (t), which

makes the resulting approximate equation unstable100), one arrives at the Markovian
Langevin equation, which describes the diffusion of an overdamped Brownian particle in
a quartic potential. For ω0δt < 1, the potential has a single minimum corresponding to
the non-rotating state. And, for ω0δt > 1, it has two symmetric minima corresponding
to the two rotating states. In addition to this insight, the Markovian Langevin equa-
tions allow one to predict relaxation times to the stable rotating states and, using the
Kramers’ theory101, the transition rates for changes between the two transiently-stable
rotating states attained for ω0δt > 1. This is the simplest version of the theory, which

∗I apologize that the notation throughout the text is not unified. For example, in more experimentally
motivated papers, we denote delay as δt and in the theoretical ones as τ . I decided to reuse the
notation employed in the attached publications in their commentary to help an interested reader to
digest the publications more easily.
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explains the behavior observed in experiments qualitatively. In Publication 7.14, we
also developed a refined version of the above-described theory, which considers additional
experimental details (most notably, another type of delay involved in the feedback loop).
The refined theory gives even quantitative agreement with the experiments.

Interestingly, the single particle theory also fits the average angular velocity of mul-
tiple particles rotating around the target when each is attracted to the target by the
same delayed attraction as the single particle. In addition, the individual particles in-
teract sterically, hydrodynamically, and thermophoretically. Due to these interactions,
the particles organize in concentric shells around the target, which rotate in the same
direction for large delays, and can even counter-rotate for intermediate delays. While
the corotation can be explained solely based on steric interactions, the counterrotation
is caused by hydrodynamic coupling between the particles. Simply put, when the laser
propels a particle, it also propels the water in the opposite direction. This backflow
pushes particles in neighboring shells in opposite directions for intermediate delays. For
more details, I refer to Publication 7.1472.

As our current experimental setup is not capable of controlling more than 20 particles
at once, we decided to study manybody systems with up to 200 particles using Brown-
ian dynamics simulations. In the simulations, we took into account the steric repulsion
between the particles but not the hydrodynamic coupling (taking into account hydrody-
namics for such a large system represents a nontrivial numerical challenge). The results
of these simulation, described in Publication 7.1594, are quite surprising. While the
average angular velocity of the system still qualitatively obeys the single particle theory
described above, the detailed dynamics of the system experiences a series of dynamical
phase transitions. These transitions are induced by shear stress caused by unequal an-
gular velocities of the individual particle layers around the target particle. When v0δt

is increased, the system goes through the following dynamical phases:

1. stable, non-rotating crystallite.

2. homogeneously rotating crystallite.

3. sheared or ‘quaking’ crystallite, where the outermost layers slide over (or lag be-
hind) the inner layers.

4. ring phase, where the innermost layers are no longer in contact with the target
particle.

5. a yin-yang phase, where the radial symmetry of the ring state is broken.
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6. a blob phase, where the particles completely detach from the target and form a
densely packed satellite orbiting around it while shaking from the shear stresses.

The shearing of the system is of slip and stick type observed in athermal granular
materials, and thus it is accompanied by the formation of shear bands. For more details
and for a detailed discussion of the individual dynamical phases, I refer to Publica-
tion 7.1594. A very good intuition about the behavior of this beautiful system can be
obtained by watching videos of the individual phases, which can be found either in the
paper’s supplementary material or on YouTube †.

3.2.3 Machine learning with micro-swimmers (Ref.2)

One of the ultimate aims of active matter research is to develop autonomous, perhaps
even self-learning, artificial microswimmers with applications, e.g., in engineering or
medicine. Motivated by this goal and also with the vision that understanding the adap-
tation of artificial microswimmers to real-world conditions might bring new insights into
evolutionary mechanisms at work in the development of bacteria and similar natural mi-
croswimmers, we have investigated in Publication 7.162 how our symmetric artificial
microswimmers can learn to orient in real-world arenas by using reinforcement learning.
To the best of our knowledge, our work represents the first experimental application
of reinforcement learning to a real-world navigation problem in a noisy environment.
Our setup is halfway to the goal of autonomous self-learning microswimmers because
the brain that learns the optimal strategy is not inside the individual particles but in a
computer operating the feedback loop.

In the experiment, the microswimmers are confined between two glass cover slides, and
thus they effectively move in two dimensions. To implement the learning, we divided the
plane into 7×7 equal squares shown in Figure 3.3a. Blue denotes the region through
which the microswimmer can move to reach the green target state. When the swimmer
entered the red absorbing boundary, it was returned back to its initial position at one
of the blue states. To find the optimal policy to steer the swimmer from blue states
to the target state using the set of allowed actions in Figure 3.3b, we implemented
the reinforcement learning method called Q-learning102. In this method, one defines a
Q-matrix where weight is given for performing the allowed actions in each blue state.
Hence our matrix had 9 × (5 × 5 − 1) entries. The policy described by the Q-matrix
imposes the action with the lowest weight in each state.

†One can either click the ‘YouTube’ above in the electronic version or use the link
https://www.youtube.com/watch?v=1Gfgq7FvfaA&list=PLDwaP_kIyigWI4637AQH1upD4seyYOynw.
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At the beginning of the learning, the Q-matrix is populated randomly, resulting in
a random initial policy depicted in Figure 3.3c, left. During the learning, the Q-
matrix is updated according to an algorithm, which gives a positive reward to actions
leading the swimmer to the target and negative rewards to the actions which end up
in one of the absorbing states (for more details, I refer to Publication 7.162). The
final policy obtained after the learning, depicted in Figure 3.3c, right, represents an
optimal compromise between the fast approach to the target and staying in the blue
arena in the noisy environment. We have tested that learning is more efficient if several
microswimmers update the same Q-matrix.

My main job in this project was to explain why the optimal policy contains some
unintuitive elements (e.g., those pointing to the left while the target is in the up di-

a) b) c)

d)

e)

Figure 3.3: Reinforcement learning with artificial microswimmers. Panel a) shows the
grid world where the swimmer learns to navigate using the set of allowed actions in
b). The red squares in a) are absorbing states, and the green square is the target
state. c) During the learning, the initial random policy (left) transforms into an
optimal policy to reach the target as fast as possible (right). d) Due to the feed-
back loop delay between detecting the microswimmers’ position and imposing the
action and thermal noise, the real displacements ∆r of the particle (blue circles) are
symmetrically distributed along the desired displacement v∥δte∥ (v∥ is the particle
swim speed, δt the time delay, and e∥ unit vector in a desired direction). This leads
to the optimal swim speed (or delay time) in e) to reach a target position without
being absorbed by the boundary. Figures were taken from Ref.2.
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rection). Partially, this can be explained by a weak drift in the experimental sample.
However, there is also a more fundamental reason for such a policy, which should be
considered by any device or animal navigating with time delay in a noisy environment.
Within the delay time between the decision where the particle should swim and taking
the corresponding action, the swimmer performs Brownian motion (and it also perhaps
moves due to the previous action). As a result, its relative position to the target at
the time of actual implementation of the action is stochastic, resulting in the set of
actual displacements depicted in Figure 3.3d, which are randomly distributed around
the desired displacement. The corresponding error increases with the noise intensity D,
delay time δt, and the swimming speed v∥. As a consequence, there is an optimal speed
that guarantees that the target is reached with maximum probability (see Figure 3.3e).
Using a simple model detailed in Ref.2, the optimal speed can be estimated as

vopt
∥ =

√
2D

sinh σθ
2δt

, (3.9)

where σ2
θ is the variance of the aiming error angle θ, depicted in Figure 3.3d. The

variance depends on the previous action, noise intensity, and delay time, and in Ref.2

we take it as a fit parameter.
The above formula also predicts an optimal delay time δt for a fixed swimming speed.

Interestingly, this is in accord with the recent finding that the precision of reaching a
target by the run-and-tumble bacteria also exhibits an optimum as a function of the
run-and-tumble times103,104, which play a similar role for the motion of bacteria as the
single delay time δt in our experiments. For more details, I refer to Publication 7.162.

3.3 Delay Vicsek model (Refs.80–82)

The Vicsek model105 is one of the best-known toy models of active matter. Its original
variant106, is a simple generalization of the XY model (in two dimensions) and Heisenberg
model (in three dimensions) in which the individual spins (agents) move in discrete time
with a fixed speed v0 in the direction of their orientation. At each time t, the spin of agent
i assumes the value of the average spin of its neighbors closer than an interaction radius
R at time t−1 modified by a noise (alignment interaction). For low noise intensities, the
Vicsek model exhibits a global order (aligned spins) even in two dimensions, and hence it
overcomes the equilibrium limitation imposed by the Mermin-Wagner theorem. For an
intense noise, the spins are disordered. The nature of the transition between these two
phases was long debated. The current consensus is that the transition is discontinuous
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(or first order), with a microphase separation into dense bands (or sheets) of aligned spins
and low-density bands of disorder traveling through the sample. The bands form only
for large enough systems, where the crossover system size107 increases with decreasing
speed v0. However, even at high speeds, microphase separation only occurs in simulations
involving a significant number of particles. That is why understanding the true nature
of the transition had to wait for sufficiently fast computers.

In fact, not only the original paper106 reported that the transition is continuous (sec-
ond order), as in the Heisenberg model. Nowadays, it seems to be clear that the transi-
tion looks second order whenever the density fluctuations in the simulation are not too
large15. Since these fluctuations grow with the particle number N , the transition can
be considered as smooth for small enough N (for fixed v0). In this regime, the Vicsek
model close to the transition exhibits a finite-size critical behavior13,87 in the sense that
a set of scaling functions and critical exponents describes susceptibility and space and
time correlation functions108,109.

a) b) c)

d) e) f)

Figure 3.4: Finite-size scaling in the delay Vicsek model. a) In the delay Vicsek model,
each agent assumes at time t + τ average orientation of the particles, which were
closer to it than R at time t. The agents move with constant speed v0 in discrete
time (time-step 1) in the direction of their orientation. The static critical exponents
(b-d), the critical nearest neighbor distance (e), and the dynamical exponent z
dramatically change with increasing delay from their values for the classical Vicsek
model towards long-delay asymptotic values. The figures were taken from Ref.80.
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When comparing the predictions of the Vicsek model to data obtained for birds or
insects, the finite size results in the region way below the crossover system size are of
the main interest13,87,110. These comparisons show that the Vicsek model fails to predict
the shape of time-correlation functions and scaling exponents found from experimental
data for swarms of midgets13,87, and also information spreading in bird flocks, e.g., when
birds follow a leader or react to a local stimuli110.

The authors of Refs.13,15 argued that these failures of the Vicsek model follow from
the fact that it completely neglects inertia in changing the orientation of the individual
agents. Hence, they introduced an improved model called as inertia spin model, where
the alignment interaction acts on the agent orientation indirectly by an additional ‘spin’
variable. The refined model’s predictions nicely agree with the field observations13,15,110.
Nevertheless, we see another important gap in the Vicsek model: it neglects time delay in
the interactions. This is our main motivation for investigations of delay Vicsek model80,
where the alignment interaction is not based on the particle’s neighbors at time t − 1,
but at time t− 1 − τ (see Figure 3.4a). Below, I present the results we have obtained
for finite-size scaling (Subsection 3.3.1) and information propagation (Subsection
3.3.2) in the delay Vicsek model. I consider these results preliminary and am still
actively working on their refinement.

3.3.1 Finite-size scaling in delay Vicsek model (Ref.80)

In Publication 7.1780, we report on our study of finite size scaling in the delay Vicsek
model. In the study, we fixed noise intensity, particle speed v0, and interaction radius
R and considered various particle numbers N ranging from 64 to 2048 particles. We
simulated the delay Vicsek model in a cube with edge L and periodic boundary condi-
tions. Keeping in mind that our results were obtained for a specific set of parameters
is important because it is known that scaling exponents in the Vicsek model are, in
general, parameter dependent.

For each N , we varied L to obtain the susceptibility χ of the system as a function of
the nearest neighbor distance between the particles, r1. Afterward, we computed the
static critical exponents γ and ν and the asymptotic nearest neighbor distance rC by the
best data collapse of the resulting curves by shifting and rescaling the x and y axis as
(r1 −rC)N1/3ν and χN−γ/3ν . We have repeated this procedure for delay times τ ranging
from 0 to v0τ/R ∼ 1. The resulting delay dependences of the critical exponents and
rC are given in Figure 3.4b-e. With increasing delay time, all the parameters converge
from their standard-Vicsek-model values to long delay plateau values. An analytical
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argument given in the supplementary information to80 shows that, for long delays, the
delay Vicsek model dynamics depends just on the combination v0τ . Thus, while the
precise form of the delay dependence of the static critical parameters γ, ν, and rC varies
with the particle speed, they should converge to the same plateau values as in Figure
3.4 for arbitrary nonzero v0. I am now working on a numerical check of these results.
Unfortunately, the numerical simulations, mainly calculating susceptibilities and other
correlation functions, are incredibly time-consuming.

The most interesting observations from the static finite size scaling are the unprece-
dentedly large values of the critical exponents γ and ν for intermediate and long delays
and the maximum found in the asymptotic nearest neighbor distance rC . While we
still haven’t understood the meaning of the large scaling exponents, the maximum in
rC reflects the known79,82,83 effect of stabilization of the flocking phase by short delays.
Delayed reactions enhance the system’s stability against random perturbations. On the
other hand, too long delays prevent the agents from efficiently following their neighbors.
The maximum in rC results from a compromise between these two tendencies.

For each set N , v0, R, noise intensity, and delay time τ , the susceptibility exhibits
a maximum that marks the system size (or, equivalently, the nearest neighbor distance
r1) corresponding to the order-disorder transition. For the parameters at the transition,
we have calculated space and time-correlation functions. For each τ , the correlation
functions for different N can again be collapsed to a single master curve by rescaling
time as t/τR = t/ξz, where τR and ξ are the correlation time and length, and z is the
dynamical exponent. The resulting dependence of z on the delay time is given in Fig-
ure 3.4f. For τ = 0, z = 2 as in the standard Vicsek model with a small v0 and in
the Heisenberg model. With increasing delay time, z converges to ∼ 1, which is the
value reported for natural swarms in Ref.13, and which is also close to the prediction
from the inertia spin model15. Besides, the shapes of time correlation functions obtained
from the delay Vicsek model are also similar to those found for natural swarms and the
inertia spin model (for details, see Publication 7.1780). According to our analysis,
time delay thus represents another way to explain the dynamical scaling observed in
natural swarms. However, this work is still in progress.

3.3.2 Information propagation in delay Vicsek model (Refs.81,82)

When we found that the delay Vicsek model is capable of reproducing dynamical scaling
and time correlations observed in natural swarms, we focused on the study of information
propagation in the model in a similar fashion as it was done for natural bird flocks110.
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Even without delay, the study of information propagation in motile systems such as
the Vicsek model is a complicated task, in particular when the source of information is
moving, which is quite a generic situation in flocks following a leader bird. Therefore, we
have started our investigation in Publication 7.1881 with a simple lattice model, where
a scalar field at a given site assumes at discrete time t + 1 average value of itself and
its neighbors at time t. At first glance, the model can be classified as a lattice variant
of the Vicsek model with zero speed of the agents and a vanishing noise. However, it
turns out that its different continuum limits converge to the spin-wave approximations
of either the inertia spin model (when lattice constant is kept proportional to time step)
or the Vicsek model (when lattice constant squared is kept proportional to time step).

Using the lattice model, we studied two types of local information sources called
firm and lax leaders. Firm leaders are meant to describe a leader particle deliberately
trying to influence the whole system and correspond to fixing the field’s value at the
origin during the whole evolution of the system. Lax leader describes the spreading of
a random fluctuation through the system and corresponds to setting the field’s initial
value at the origin to a given value and letting the system evolve freely for t > 0. It
turns out that a reasonable definition of signal speed is (distance from the leader)/(the
time when the field changes most rapidly at that distance). Using this definition, we
found that the information spreading in the lattice model is approximately diffusive for
both types of perturbation, i.e., the distance traveled by the signal is proportional to√
t. Interestingly, this result is obtained regardless of the fact the information spreading

in the inertia spin model is predicted to be linear110.
Next, we considered the Vicsek model with very weak noise and the two types of

perturbations from the lattice model, which, however, traveled through the system at
the same speed as the other agents. For low speeds, the information spreads in the
same way as in the lattice model. However, the information spreading is no longer
purely conductive for larger speeds. As a result, the information spreads diffusively in
the direction opposite to the leaders heading and approximately ballistically (distance
traveled proportional to t) in the direction of the leader.

In Publication 7.1982, we performed an analogous analysis of information spreading
in the delay Vicsek model, together with the analysis of the ability of the system to
follow a moving leader. Concerning the latter, we found in accord with the results
described in the previous Subsection 3.3.1 that delays foster the stability of the aligned
state of the system against random perturbations but hinder the system’s ability to
follow a leader. Concerning information propagation, we found that the information
spreading in the direction opposite to the leader’s motion is still diffusive. However, for
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a fixed low (but nonzero) speed of the agents, the information spreading in the leader’s
direction is diffusive for short delays but becomes increasingly linear as the delay is
increased. Furthermore, the delay introduces oscillations into the dispersion relations.
Again, I consider these results preliminary, and we are working intensely to improve our
understanding of information spreading in Vicsek and related models.

Finally, in Ref.82, we have also studied linear response in the delay Vicsek model. Out
of thermal equilibrium, it lacks its general properties as a response is no longer bound
to be given by equilibrium (or stationary) correlation functions, and we indeed have not
found such a general relation. Our analysis further suggests that the response in the
Vicsek model to a torque applied to a subgroup of agents is linear only in the parameter
regime when the average polarization of the system is approximately conserved. For
more details, I refer to Publication 7.1982.
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4 Final Remarks

This thesis summarizes some of the advances in our understanding of the dynamics
and thermodynamics of active matter, focusing on energy extraction from active self-
propulsion and the effects of time-delayed interactions. These results represent tiny
contributions to the knowledge acquired over the past years in this dynamic field. And
even our results leave more loose ends than answers. For example, we have just started
with investigations of the importance of delay in active matter systems. More impor-
tantly, most of our current models are rather based on observed phenomenology than
on some deeper (bio)physical principles. Hence one of the natural topics for future
investigation is to derive more reliable models of interparticle interactions by using a
bottom-up approach based on the capabilities of the individuals in question. For exam-
ple, our preliminary works show that the Vicsek model can be (approximately) derived
by considering agents moving with a fixed speed and trying to maximize their local ori-
entational correlations with their neighbors. Similarly, other types of agents combined
with other local target functions might result in new models more suitable to a given
situation than our present models. Besides continuing the study of the influence of de-
lay on the dynamics of experimental Brownian active matter systems, studying such a
bottom-up approach to the derivation of active matter systems is my main goal for the
forthcoming years.
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