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1
I N T R O D U C T I O N

1.1 preliminaries

Extremal Combinatorics studies interactions between different prop-
erties of a discrete object, for instance, how many edges in a graph
enforce the existence of certain subgraphs. Its study was initiated in
the 1930s by the Hungarian mathematical school led by Turán, Erdős
and others, and nowadays extremal problems constitute one of the
most important branches of research in combinatorics, with applica-
tions to additive number theory, discrete geometry and theoretical
computer science, to name a few. Their importance within mathemat-
ics was acknowledged by the Abel Prize committee in 2012, when the
prize was awarded to E. Szemerédi. Likewise, the methods and proof
techniques have evolved over the years from ad hoc induction and
counting arguments to intricate uses of tools from Algebra, Analysis
and Probability.

These developments are reflected in the present thesis. It is com-
prised of seven chapters (excluding the introduction) covering eleven
of my research papers published or accepted for publication between
2016 and 2022, and one paper which is submitted at the time of
writing.

Besides various combinatorial and graph theoretic arguments in our
proofs we use a number of techniques from multivariate optimization
(Chapters 2,4 and 6) probability (Chapters 3,4,5 and 7) and algebra
(Chapters 7 and 8). We therefore believe this thesis presents a good
cross-section of modern extremal combinatorics and its interplay with
other areas of mathematics.

In the time since our papers were published, a number of our results
were extended by various groups of researchers, including several lead-
ers of the field. In particular, extending our work in Chapter 2, Gruslys,
Letzter and Morrison [VSN20, VSN] proved the Frankl-Füredi con-
jecture for large n for r = 3 and disproved it for all r ≥ 4. Keevash
and Long [PJ] established a density counterpart to our Ramsey-type
result on the Brown-Erdős-Sós conjecture from Chapter 3. Our bound
on inducibility of cycles in Chapter 4 was subsequently improved by
Král’, Norin and Volec [KNV19]. Perhaps the most spectacular devel-
opment was a proof of our Edge-statistics conjecture of Chapter 4 by
three groups of researchers. Kwan, Tran and Sudakov [KST19] settled
it in the superlinear regime (that is, when ` = ω(k)), while Fox and
Sauermann [JL20] and, independently, Martinsson, Mousset, Noever
and Trujić [Mar+19] solved it for the remaining values of `. Our results
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2 introduction

in the second part of Chapter 6 were generalized by Gruslys and Let-
zter [VS20a, VS20b], who proved the Erdős conjecture discussed there
in full. Finally, a number of researchers including most significantly O.
Janzer [O J] made progress on some of the open problems we raised
in Chapter 7.

In the subsequent sections of the Introduction we shall describe the
content of the respective chapters of this thesis.

1.2 lagrangians of hypergraphs

In Chapter 2 we deal with the problem of Lagrangians of hypergraphs.
It is based on the solo paper [M T17].

Multilinear polynomials are of central interest in most branches of
modern mathematics, and extremal combinatorics is by no means an
exception. In particular, a large number of hypergraph Turán problems
reduce to calculating or estimating the Lagrangian of a hypergraph,
which is a constrained maximum of the multilinear function naturally
associated with the hypergraph.

To set the scene, we need a few definitions. We follow standard
notation of extremal combinatorics (see e.g. [Bol86]). In particular,
for n, r ∈ N, we write [n] for the set {1, . . . , n} and, given a set X,
by X(r) we denote the set family {A ⊆ X : |A| = r}. Dealing with
finite families of finite sets we will be freely switching between the set
system and the hypergraph points of view: with no loss of generality,
we can assume our hypergraphs to be defined on N, yet we write
e(H) for the number of sets (‘edges’) in H.

For a finite r-uniform hypergraph H ⊆ [n](r) and a vector of real
numbers (referred as a weighting) ~y := (y1, . . . , yn) consider a multilin-
ear polynomial function

L(H,~y) := ∑
A∈H

∏
i∈A

yi.

The Lagrangian of H is defined as its maximum on the standard
simplex

λ(H) := max{L(H,~y) : y1, . . . , yn ≥ 0;
n

∑
i=1

yi = 1};

note that, by compactness, the maximum does always exist (but need
not be unique).

The above notion was introduced in 1965 by Motzkin and Strauss
[TE65] for r = 2, that is for graphs, in order to give a new proof
of Turán’s theorem. Later it was extended to uniform hypergraphs,
where the Lagrangian plays an important role in governing densities
of blow-ups. In particular, using Lagrangians of r-graphs, Frankl and
Rödl [PV84] disproved a conjecture of Erdős [Erd83] by exhibiting
infinitely many non-jumps for hypergraph Turán densities. In the



1.2 lagrangians of hypergraphs 3

following years the Lagrangian has found numerous applications in
hypergraph Turán problems; for more details we refer to a survey by
Keevash [Kee11] and the references therein. Further results, which
appeared after the publication of [Kee11], include [DP13] and [Q
T+16].

In this chapter we address the problem of maximising the La-
grangian itself over all r-graphs with a fixed number of edges. Let Hm,r

be the subgraph of N(r) consisting of the first m sets in the colexico-
graphic order (recall that this is the ordering on N(r) in which A < B
if max(A4B) ∈ B). In 1989 Frankl and Füredi [PZ89] conjectured that
the maximum Lagrangian of an r-graph on m edges is realised by
Hm,r.

Conjecture 1.2.1 ([PZ89]). λ(Hm,r) = max{λ(H) : H ⊆ N(r), e(H) =

m}.

In an important special case, which we refer to as the principal case,
Conjecture 1.2.1 states that for m = (t

r) the maximum Lagrangian
is attained on Hm,r = [t](r), where we have λ(Hm,r) = λ([t](r)) =
1
tr (

t
r). While initially the Frankl-Füredi conjecture was motivated by

applications to hypergraph Turán problems, we think it also interesting
in its own right, as it makes a natural and general statement about
maxima of multilinear functions.

For r = 2 the validity of Conjecture 1.2.1 is easy to see and fol-
lows from the arguments of Motzkin and Strauss [TE65]. In fact,
the Lagrangian of a graph H is attained by equi-distributing the
weights between the vertices of the largest clique of H, resulting in
λ(H) = ω(H)−1

2ω(H)
. Since Hm,r has the largest clique size over all graphs

on m edges, Conjecture 1.2.1 holds.
On the other hand, the situation for hypergraphs is far more com-

plex, since for r ≥ 3, unlike in the graph case, no direct way of
inferring λ(H) from the structure of H is known. Hence one is con-
fined to estimating the Lagrangians of different r-graphs against each
other without calculating them directly.

For r = 3 Talbot [J T02] proved that Conjecture 1.2.1 holds whenever
(t−1

3 ) ≤ m ≤ (t−1
3 ) + (t−2

2 )− (t− 1) = (t
3)− (2t− 3) for some t ∈ N.

Note that this range covers an asymptotic density 1 subset of N,
and also includes the principal case m = (t−1

3 ). Recently Tang, Peng,
Zhang and Zhao [Q T+16] extended the above range to (t−1

3 ) ≤ m ≤
(t−1

3 ) + (t−2
2 ) − 1

2 (t − 1). Furthermore, Conjecture 1.2.1 is known to
hold when (t

3)−m is a small constant, but for the remaining values of
m it is still open.

In contrast to this, for r ≥ 4 much less has been known so far,
as Talbot’s proof method for r = 3, perhaps surprisingly, does not
immediately transfer. Talbot showed in the same paper [J T02] that
for every r ≥ 4 there is a constant γr > 0 such that if (t−1

r ) ≤ m ≤
(t

r)− γrtr−2 and H is supported on t vertices (that is, ignoring isolated
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vertices, H is a subgraph of [t](r)), then indeed λ(H) ≤ λ(Hm,r). Still,
for no value of m, apart from some trivial ones, Conjecture 1.2.1 has
been known to hold. Our main goal in this chapter is to close this gap
by confirming the Frankl-Füredi Conjecture for ‘most’ values of m for
any given r ≥ 4, including the principal case for large m.

Theorem 1.2.2. For every r ≥ 4 there exists γr > 0 such that for all
(t−1

r ) ≤ m ≤ (t
r)− γrtr−2 we have

λ(Hm,r) = max{λ(H) : H ⊆N(r), e(H) = m}.

Corollary 1.2.3. For every r ≥ 4 there exists tr ∈N such that for all t ∈N

with t ≥ tr we have

max
{

λ(H) : H ⊆N(r), e(H) =

(
t
r

)}
= λ([t](r)) =

1
tr

(
t
r

)
.

By monotonicity, we obtain another immediate corollary, which can
be viewed as a strong approximate version of Conjecture 1.2.1.

Corollary 1.2.4. For every r ≥ 4 there exists tr ∈N such that for all t ≥ tr

the following holds. Suppose that (t−1
r ) < m ≤ (t

r) and that H is an r-graph
with e(H) = m. Then

λ(H) ≤ 1
tr

(
t
r

)
.

When H is supported on [t] we give a proof of a stronger statement,
namely that in this case we can take γr = (1 + o(1))/(r − 2)! in
Theorem 1.2.2. More precisely, we claim the following.

Theorem 1.2.5. For every r ≥ 3 there exists a constant δr > 0 such that for
all (t−1

r ) ≤ m ≤ (t
r)− (t−2

r−2)− δrtr−9/4 we have

λ(Hm,r) = max{λ(H) : H ⊆ [t](r), e(H) = m}.

For r = 3 it was implicitly shown by Talbot in [J T02] that for
any (t−1

3 ) < m ≤ (t
3), that is for all m ∈ N, the 3-graph maximising

the Lagrangian amongst all m-edge 3-graphs can be assumed to be
supported on [t]. Combined with Theorem 1.2.5, this yields, for large
m, an improvement of the bounds in [J T02] and [Q T+16].

Corollary 1.2.6. There exists a constant δ3 > 0 such that for all (t−1
3 ) ≤

m ≤ (t
3)− (t− 2)− δ3t3/4 we have

λ(Hm,r) = max{λ(H) : H ⊆N(r), e(H) = m}.
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Overview of the proof

The proof of our main result, Theorem 1.2.2, uses a number of well-
known properties of the Lagrangian, as well as induction on r and
some facts about uniform set systems such as the Kruskal-Katona
theorem. We begin by considering the r-graph G ⊆ N(r) and the
weighting ~x that (co-)achieve the largest Lagrangian amongst all r-
graphs of size m. We assume that λ(G) is strictly larger than λ(Hm,r),
and aim to show that then m must lie outside the range specified in
Theorem 1.2.2. This is carried out as follows.

First, we make a number of standard assumptions on G and ~x. We
assume that G covers pairs (meaning that any two vertices of G are
contained in some edge) and has the minimum possible number of
vertices (referred as the ‘support’). Assuming by symmetry that the
entries of ~x are listed in descending order, we can also claim that G
is left-compressed. As a consequence, we obtain some bounds on the
sizes of link hypergraphs of G, as stated in Proposition 2.2.1 (which is
where we need the Kruskal-Katona theorem).

It turns out that the parameter we are most interested in is T, the
support of G. By combining Proposition 2.2.8, which is a standard tool
that relates λ(G) to the Lagrangians of its link hypergraphs, with a
number of further ideas such as induction of r and Proposition 2.2.1,
we gradually establish better and better bounds on T as well as on
related parameters such as x1 and xT (the largest and the smallest
entries of ~x). This part of the argument culminates in Lemma 2.5.1
and Lemma 2.6.2, where we show, respectively, that T = t + C and
x1 < 2xt−3α for some constants 0 ≤ C ≤ C0(r) and α = α(r).

In the final part of the proof the above bounds are applied to
replace a number of ‘bad’ edges of G with some ‘good’ edges from
[t](r) \ G such that the resulting graph does G′ not cover any pair in
{t− 1, . . . , T}(2), thus λ(G′) ≤ λ(Hm,r) < λ(G). The estimates on T
and x1 ensure that the good edges are reasonably heavy, so that, unless
(t

r)−m is small (in which case we might not find enough good edges),
the total weight of the good edges is greater than that of the bad edges,
resulting in λ(G′) > λ(G), a contradiction. Hence, (t

r)−m has to be
small, completing the proof.

1.3 three ramsey results for uniform hypergraphs

The work in this chapter is based on papers [MM21] (joint with
M. Amir and A. Shapira) and [AM21] (with A. Shapira).

Let us say that a set of vertices in a graph (or hypergraph) is ho-
mogeneous if it spans either a clique (i.e. a complete graph) or an
independent set (i.e. an empty graph). Ramsey’s theorem states that
every graph contains a homogeneous set of size 1

2 log2 n, and Erdős
proved that in general, one cannot expect to find a homogeneous set
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of size larger than 2 log2 n (see [GRS91]). Since Erdős’s example uses
random graphs, and random graphs are universal (with high probabil-
ity), that is, they contain an induced copy of every fixed graph H, it is
natural to ask what happens if we assume that G is non-universal, or
equivalently, that it is induced H-free for some fixed H. A theorem of
Erdős and Hajnal [PA89] states that in this case we are guaranteed to

have a homogeneous set of size 2Ω(
√

log n), that is, a significantly larger
set than in the worst case. The notorious Erdős–Hajnal Conjecture
states that one should be able to go even further and improve this
bound to nc, where c = c(H). We refer the reader to [M C14] for more
background on this conjecture and related results.

Conlon, Fox and Sudakov [DJB12] and Rödl and Schacht [VS12]
have recently initiated the study of problems of this type in the setting
of r-uniform hypergraphs (or r-graphs for short). Our first aim in this
chapter is to obtain two results of this flavour described below.

Almost homogeneous sets in non-universal hypergraphs

Our first result is motivated by a theorem of Rödl [V R86]. Let us
say that a set of vertices W in a graph is η-homogeneous if W either
contains at least (1− η)(|W|2 ) or at most η(|W|2 ) edges. It is a standard ob-
servation that Erdős’s lower bound for Ramsey’s theorem (mentioned
above), actually shows that some (actually, most) graphs of order n
do not even contain 1

4 -homogeneous1 sets of size O(log n). In other
words, in the worst case relaxing 0-homogeneity to 1

4 -homogeneity
does not make the problem easier. Rödl’s [V R86] surprising theorem
then states that if G is non-universal then for any η > 0, it contains an
η-homogeneous set of size Ω(n), where the hidden constant depends
on η. Fox and Sudakov [JB08] gave a new proof of Rödl’s theorem,
which does not rely on Szemerédi’s regularity lemma, and therefore
provides a much better bound on the implicit constant in Ω(n).

It is natural to ask if a similar2 result holds also in hypergraphs. Ran-
dom 3-graphs show that, in the worst case, the largest 1

4 -homogeneous
set in a 3-graph might be of size O(

√
log n), and a matching lower

bound of Ω(
√

log n) was proved by Conlon, Fox and Sudakov [DJB11].
Our first theorem in this chapter shows that, as in graphs, if we assume
that a 3-graph is non-universal then we can find a much larger almost
homogeneous set.

Theorem 1.3.1. For every 3-graph F and η > 0 there is c = c(F , η) >

0 such that every induced F -free 3-graph on n vertices contains an η-
homogeneous set of size c log n.

1 One can easily replace the 1
4 with any constant smaller than 1

2 . We will stick with the
1
4 in order to streamline the presentation.

2 We of course say that a set of vertices W in an r-graph is η-homogeneous if W either
contains at least (1− η)(|W|r ) or at most η(|W|r ) edges.
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Rödl [V R86] found an example of a non-universal 3-graph in which
the largest 1

4 -homogeneous set has size O(log n).3 Hence, the bound in
Theorem 1.3.1 is tight up to the constant c. We will describe in Section
3.5 (see Proposition 3.5.2) a generalization of Rödl’s example, giving
for every r ≥ 3 an example of a non-universal r-graph in which the
size of the largest 1

4 -homogeneous set is O((log n)1/(r−2)). It seems
reasonable to conjecture that this upper bound is tight, that is, that for
every r ≥ 3 every non-universal r-graph has an almost homogeneous
set of size Ω((log n)1/(r−2)).

Let Kk denote the complete graph on k vertices and let K(3)
k denote

the complete 3-graph on k vertices. It is easy to see that up to a change
of constants, a set of vertices has edge density close to 0/1 (i.e is
η-homogeneous for some small η), if and only if it has Kk-density
close to 1 either in the graph or in its complement. The same applies to
3-graphs. An interesting feature of the proof of Theorem 1.3.1 is that
instead of gradually building a set of vertices with very large/small
edge density, we find it easier to build such a set with large K(3)

k -
density either in G or its complement. The way we gradually build
such a set is by applying a variant of a greedy embedding scheme
used by Rödl and Schacht [VS12] in order to give an alternative proof
of an elegant theorem of Nikiforov [V N08] (this alternative proof
is also implicit in [DJB12]). To get this embedding scheme ‘started’
we prove a lemma saying that if a 3-graph G is non-universal then
there is a graph G on a subset of V(G) such that either almost all or
almost none of the Kk’s of G are also K(3)

k ’s in G. This latter statement
is proved via the hypergraph regularity method.

Complete partite sets in non-universal hypergraphs

Determining the size of the largest homogeneous set in a 3-graph is still
a major open problem, see [DJB10]. The best known lower and upper
bounds are of order log log n and

√
log n respectively. It is thus hard to

formulate a 3-graph analogue of the Erdős–Hajnal Theorem since it is
not clear which bound one is trying to beat. At any rate, as of now, we
do not even know if a non-universal 3-graph contains a homogeneous
set of size ω(log log n) (see Section 3.5 for further discussion on this
problem). This motivated the authors of [DJB12, VS12] to look at the
following related problem. Let K(3)

t,t,t denote the complete 3-partite
3-graph with each part of size t. It is a well known fact [P E64]
that every 3-graph of positive density contains a copy of K(3)

t,t,t with
t = Ω(

√
log n). This immediately means that for every 3-graph G,

either G or its complement contains a K(3)
t,t,t with t = Ω(

√
log n). As

evidenced by random 3-graphs, this bound is tight. A natural question,

3 The O(log n) bound is implicit in [V R86], and was first mentioned explicitly
in [DJB12].
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which was first addressed by Conlon, Fox and Sudakov [DJB12] and
by Rödl and Schacht [VS12] is whether one can improve upon this
bound when G is assumed to be non-universal.

It will be more convenient to switch gears at this point, and let
R3,F (t) denote the size of the largest induced F -free 3-graph G, so that
neither G nor G contain a copy of K(3)

t,t,t. So the question posed at the
end of the previous paragraph is equivalent to asking if for every fixed
F we have R3,F (t) ≤ 2o(t2), and the results of [DJB12, VS12] establish
that this is indeed the case. 4 Conlon, Fox and Sudakov [DJB12] also
found an example of a 3-graph F for which R3,F (t) ≥ 2Ω(t). Our
second result improves their lower bound as follows.

Theorem 1.3.2. There is a 3-graph F for which R3,F (t) ≥ tΩ(t).

As discussed in [DJB12], it is natural to consider the corresponding
problem in general r-graphs. Letting K(r)

t,...,t denote the complete r-
partite r-graph with parts of size t, we define Rr,F (t) to be the size of
the largest induced F -free r-graph G, so that neither G nor G contain
a copy of K(r)

t,...,t. It follows from [P E64], which establishes that in every

r-graph G on 2Ω(tr−1) vertices with density 1/2 we can find a K(r)
t,...,t,

that

Rr,F (t) ≤ 2O(tr−1) . (1.1)

It was shown in [DJB12] that there is an r-graph F satisfying

Rr,F (t) ≥ 2Ω(tr−2) . (1.2)

An alternative proof of (1.2) follows from Proposition 3.5.2.
The famous stepping-up lemma of Erdős and Hajnal (see [GRS91])

allows one to transform a construction of an r-graph without a large
monochromatic set into an exponentially larger (r + 1)-graph without
a large monochromatic set (of roughly the same size). Observe that
both (1.1) and (1.2) suggest that if 2tα

is the size of the largest non-
universal r-graph G, so that neither G nor G contain K(r)

t,...,t, then the
corresponding bound for (r+ 1)-graphs is 2tα+1

. The following theorem
establishes one side of this relation, by proving an Erdős–Hajnal-type
stepping-up lemma for the problem of bounding Rr,F (t).

Theorem 1.3.3. The following holds for every r ≥ 4. For every (r− 1)-graph
F there is an r-graph F+ and a constant c = c(r,F ) > 0, so that

Rr,F+(t) ≥ (Rr−1,F (ct))ct .

4 While the proof in [VS12] obtained the bound R3,F (t) ≤ 2t2/ f (t) with f (t) an inverse
Ackermann-type function (on account of using the hypergraph regularity lemma),
the proof in [DJB12] gave the improved bound R3,F (t) ≤ 2t2−c

where c = c(F ) is a
constant that depends only on F .
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Theorem 1.3.3 implies that any improvement of (1.2) for r = 3
immediately implies a similar improvement of (1.2) for arbitrary r ≥ 3.
In particular, as a corollary of Theorems 1.3.2 and 1.3.3 we obtain the
following improvement of (1.2).

Corollary 1.3.4. For every r ≥ 3 there is an r-graph F satisfying Rr,F (t) ≥
tΩ(tr−2).

To prove Theorem 1.3.3 we need to overcome two hurdles. First, we
need a way to construct the r-graph F+ given the (r− 1)-graph F . An
important tool for this step will be an application of a theorem of Alon,
Pach and Solymosi [NJJ01], which is a hypergraph extension of a result
of Rödl and Winkler [VP89]. The second hurdle is how to construct
an r-graph avoiding a K(r)

t,...,t given an (r− 1)-graph avoiding a large

K(r−1)
t′,...,t′ . Here we will apply a version of a very elegant argument from

[DJB10], which is a variant of the Erdős–Hajnal stepping-up lemma.
While this variant of the stepping-up lemma is not as efficient as the
original one5, it is strong enough for our purposes.

A Ramsey variant of the Brown-Erdős-Sós conjecture

The final part of Chapter 3 covers a more recent paper [AM21] (joint
with A. Shapira) and concerns with the Brown-Erdős-Sós problem.

The first result in extremal graph theory is probably Mantel’s theo-
rem stating that an n vertex graph with more than n2/4 edges contains
3 edges spanned by 3 vertices, that is, a triangle. This is of course just
a special case of Turán’s theorem, one of the fundamental theorems
in graph theory. Turán’s theorem spurred an entire branch within
graph theory of what is now called Turán-type problems in graphs
and hypergraphs [Kee11], as well as in other settings such as matrices
and ordered graphs, see [G T18].

One of the most notorious Turán-type problems is a conjecture
raised in the early 70’s by Brown, Erdős and Sós [BES73b, BES73a]. To
state it we need a few definitions. An r-uniform hypergraph (r-graph
for short) G = (V, E) is composed of a vertex set V and an edge set E
where every edge in E contains precisely r distinct vertices. An r-graph
is linear if every pair of vertices belong to at most one edge. We call
a set of k edges spanned by at most v vertices a (v, k)-configuration.
Then the Brown–Erdős–Sós conjecture (BESC for short) states that for
every k, r ≥ 3 and δ > 0 if n ≥ n0(k, r, δ) then every linear r-graph
on n vertices with at least δn2 edges contains an ((r − 2)k + 3, k)-
configuration.

The simplest case of the BESC is when r = k = 3. This special case
was famously solved by Ruzsa and Szemerédi [RS78] and became

5 Observe that stepping-up lemmas with an exponential blowup-up are not useful in
our setting since (1.1) and (1.2) tell us that the gap between Rr−1,F (t) and Rr,F+ (t) is
not exponential.
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known as the (6, 3)-theorem. To get a perspective on the importance of
this theorem suffice it to say that the famous triangle removal lemma (see
[DJ13] for a survey) was devised in order to prove the (6, 3)-theorem,
that one of the first applications of Szemerédi’s regularity lemma
[E S78] was in [RS78], and that the (6, 3)-theorem implies Roth’s
theorem [Rot53] on 3-term arithmetic progressions in dense sets of
integers. Despite much effort the problem is wide open already for
the next configuration, namely (7, 4). As an indication of the difficulty
of this case let us mention that it implies the notoriously difficult
Szemerédi theorem [Sze75] for 4-term arithmetic progressions (see [P
E75]). Let us conclude this discussion by mentioning that the best
result towards the BESC was obtained 15 years ago by Sárközy and
Selkow [SS04] who proved that f3(n, k + 2 + blog2 kc, k) = o(n2).6

Since then, the only advancement was obtained by Solymosi and
Solymosi [DJ17] who improved the f3(n, 15, 10) = o(n2) bound of
[SS04] to f3(n, 14, 10) = o(n2). Conlon, Gishboliner, Levanzov and
Shapira [D C+] have recently announced an improvement of the result
of [SS04] that replaces the log k term with log k/ log log k.

Given the difficulty of the BESC, researchers have recently looked at
various relaxations of it. For example, instead of looking at arbitrary
r-graphs, one can look at those arising from a group, see [J L20,
RBM20, Sol15, JC20, C W20]. We will consider in this chapter another
relaxation of the BESC which was recently suggested independently
by Conlon and Nenadov (private communications). We say that a
linear r-graph in complete7 if every pair of vertices belong to exactly
one edge.

Problem 1.3.5 (Conlon, Nenadov). Prove that the following holds for every
r ≥ 3, k ≥ 3, c ≥ 2 and large enough n ≥ n0(c, r, k): If G is an n-vertex
complete linear r-graph then in every c-colouring of its edges one can find k
edges of the same colour, which are spanned by at most (r− 2)k + 3 vertices.

As we mentioned above, the BESC is a Turán-type question, stating
that enough edges force the appearance of certain configurations.
With this perspective in mind, Problem 1.3.5 is its natural Ramsey
weakening. Indeed, BESC implies its statement, as it gives the required
monochromatic configuration in the most popular colour. The relation
is analogous to the one between Szemerédi’s theorem [Sze75] and Van
der Waerden’s theorem [Wae27]. In order to get a better feeling of this
problem, we encourage the reader to convince themself of the folklore
observation that Problem 1.3.5 holds for c = 1. A simple application
of Ramsey’s theorem also shows that Problem 1.3.5 holds when k = 3.

6 Here, f3(n, v, k) is the corresponding extremal number, i.e. the smallest m such that
every 3-graph with n vertices and m edges contains a (v, k)-configuration.

7 Such an object is sometimes called an r-Steiner System (when r = 3 this is a Steiner
Triple System). Note that there are many non-isomorphic complete linear r-graphs on
n vertices.
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Our aim here is to give a positive answer to Problem 1.3.5 assuming
r is large enough. More precisely, we have the following.

Theorem 1.3.6. For every integer c there exists r0 = r0(c) such that for
every r ≥ r0 and integer k ≥ 3 there exists n0 = n0(c, r, k) such that
every c-colouring of a complete linear r-graph on n > n0 vertices contains a
monochromatic ((r− 2)k + 3, k)-configuration.

Note that even under assumptions of large uniformity it is unlikely
that ((r− 2)k + 3, k) can ever be improved to ((r− 2)k + 2, k). Indeed,
a conjecture by Füredi and Ruszinkó [ZR13] states that for each r ≥ 3
there exist arbitrarily large r-Steiner Systems without an ((r− 2)k +
2, k)-configuration. That would preclude an extension of Theorem 1.3.6
to ((r − 2)k + 2, k) even for c = 1. The case r = 3 of the Füredi-
Ruszinkó conjecture is an old conjecture by Erdős [P E76], which was
recently proved asymptotically, independently in [TL19] and [S G+20].

In the important special case of c = 2 we show that r0(2) can be
chosen as small as 4.

Theorem 1.3.7. For any integers r ≥ 4 and k ≥ 3 there exists n0 = n0(r, k)
such that every 2-colouring of a complete linear r-graph on n > n0 vertices
contains a monochromatic ((r− 2)k + 3, k)-configuration.

While we believe that with some effort it should be possible to show
that r0(2) = 3, it appears that completely removing the assumption
that r is large enough as a function of c would require a different
approach. In particular, while the case k = 3 is an easy application
of Ramsey’s theorem, we do not know how to resolve Problem 1.3.5
already for (c, r, k) = (3, 3, 4).

The proof of Theorems 1.3.6 and 1.3.7 has two key ideas. The first
is to work with an auxiliary graph B of “bowties”. Every vertex
v in this graph corresponds to a pair of intersecting8 edges of the
r-graph G. The graph B contains edges only between a vertex b1,
representing two intersecting edges {S1, T} of G and another vertex
b2, representing two intersecting edges {S2, T} and only if the edges
S1, S2, T form a (3r− 3, r)-configuration. In Section 3.7 we will collect
several preliminary observations regarding the graph B and about
edge-colourings of complete graphs. In Section 3.8 we will prove our
main results assuming B has certain nice properties. This will reduce
the proof to proving Lemma 3.8.6 which is the main technical part
of the proof and is proved in Section 3.9. The second main idea of
this proof is to define a somewhat subtle induction which will be
used in order to gradually “grow” ((r − 2)k + 3, k)-configurations,
for k = 3, 4, . . ., and thus prove Lemma 3.8.6. See Section 3.9 for an
overview of this proof.

Perhaps one take-home message of this result is that even when
considering the Ramsey relaxation of the BESC (stated in Problem

8 Since we only consider linear r-graphs, if two edges intersect, they intersect at a single
vertex. We will frequently use this fact throughout.
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1.3.5), and even after adding the assumption that r ≥ r0(c), one still has
to work quite hard in order to find the ((r− 2)k + 3, k)-configurations
of the BESC.

1.4 inducibility and edge-statistics

Chapter 4 is based on two papers [DM18] (joint work with D. Hefetz)
and [NM20] (with N. Alon, D. Hefetz and M. Krivelevich )

A common theme in modern extremal combinatorics is the study
of densities or induced densities of fixed objects (such as graphs,
digraphs, hypergraphs, etc.) in large objects of the same type, possibly
under certain restrictions. This general framework includes Turán
densities of graphs and hypergraphs, local profiles of graphs and their
relation to quasi-randomness, and more. One such line of research was
initiated in 1970s by Pippenger and Golumbic [PG75]. Given graphs
G and H, let DH(G) denote the number of induced subgraphs of G
that are isomorphic to H and let IH(n) = max{DH(G) : |G| = n}.
A standard averaging argument was used in [PG75] to show that
the sequence {IH(n)/( n

|H|)}∞
n=|H| is monotone decreasing, and thus

converges to a limit ind(H), the so-called inducibility of H.
Since it was first introduced in 1975, inducibility has been studied

in many subsequent papers. Determining this invariant seems to be
a very hard problem. To illustrate the current state of knowledge
(or lack thereof), it is worthwhile to note that even the inducibility
of paths of length at least 3 and cycles of length at least 6 are not
known. Still, the inducibility of a handful of graphs and graph classes
is known. These include various very small graphs (see, e.g., [J B+16,
EL15, Hir14]) and complete multipartite graphs (see, e.g., [B B+95,
BCS86, JA94]). Additional recent results on inducibility can be found,
e.g., in [Hua14, MS17]. Some of the recent progress in this area is
due to Razborov’s theory of flag algebras [Raz07], which provides a
framework for systematic computer-aided study of questions of this
type.

While, trivially, the complete graph H = Kk and its complement
achieve the maximal possible inducibility of 1, the natural analogous
question, which graphs on k vertices minimise the quantity ind(H),
which has been asked in [PG75], is still open.

Let H be an arbitrary graph on k vertices, where k is viewed as
large but fixed. By considering a balanced blow-up of H (and ignoring
divisibility issues), it is easy to see that ind(H) ≥ k!/kk. An iterated
blow-up construction provides only a marginally better lower bound
of k!/(kk − k). Pippenger and Golumbic [PG75] conjectured that the
latter is tight for cycles.

Conjecture 1.4.1 ([PG75]). ind(Ck) = k!/(kk − k) for every k ≥ 5.
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Note that the requirement k ≥ 5 appearing in Conjecture 1.4.1 is
necessary. Indeed, ind(C3) = 1 since C3 = K3 is a complete graph and,
as shown in [PG75], ind(C4) = 3/8 since C4 = K2,2 is a balanced com-
plete bipartite graph. The authors of [PG75] also posed the following
asymptotic version of the above conjecture.

Conjecture 1.4.2 ([PG75]). ind(Ck) = (1 + o(1))k!/kk.

In support of Conjecture 1.4.2, it was shown in [PG75] that ICk(n) ≤
2n
k

( n−1
k−1

)k−1
holds for every k ≥ 4. This implies that ind(Ck) ≤ 2e ·

k!/kk, leaving a multiplicative gap of 2e (which is approximately
5.4366) between the known upper and lower bounds. In this chapter
we partially bridge the above gap by proving a better upper bound on
the inducibility of Ck, namely ind(Ck) ≤ (128/81)e · k!/kk (note that
(128/81)e is approximately 4.2955).

Theorem 1.4.3. For every k ≥ 6 we have

ind(Ck) ≤
128e
81
· k!

kk .

We note that the case k = 5 of Conjecture 1.4.1 was settled by
Balogh, Hu, Lidický and Pfender [J B+16], who showed, in particular,
that if n is a power of 5, then IC5(n) is uniquely attained by the iter-
ated blow-up of C5. The proof which was given in [J B+16] combines
flag algebras [Raz07] and stability methods. It is also worth noting
that, in triangle-free graphs, all pentagons are induced. Maximising
the number of pentagons in triangle-free graphs is an old problem
of Erdős [Erd84], which was solved, using flag algebras, by Grze-
sik [A G12] and independently by Hatami, Hladký, Král’, Norine and
Razborov [Hat+13] (prior to the use of flag algebras, the best result
was due to Győri [Győ89] who gave an elegant elementary proof of a
slightly weaker bound).

The second half of Chapter 4 deals with the more general prob-
lem of edge-statistics in (large) graphs, a topic which we introduced
in [NM20]. Let k be a positive integer and let G be a finite graph of
order at least k. Let A = AG,k be chosen uniformly at random from
all subsets of V(G) of size k and let XG,k = e(G[A]). That is, XG,k is
the random variable counting the number of edges of G with both
endpoints in A. Naturally, the above quantities can also be interpreted
as densities rather than probabilities, and we shall frequently switch
between these two perspectives.

Given integers n ≥ k and 0 ≤ ` ≤ (k
2), let I(n, k, `) = max{P(XG,k =

`) : |G| = n}, that is, I(n, k, `) is the maximum density of induced
subgraphs with k vertices and ` edges, taken over all graphs of order
n. A standard averaging argument shows that I(n, k, `) is a mono-
tone decreasing function of n. Consequently, we define ind(k, `) :=
limn→∞ I(n, k, `) to be the edge-inducibility of k and `. While this quan-
tity is trivially 1 for ` ∈

{
0, (k

2)
}

(simply take G to be a large empty
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or complete graph, respectively), it is natural to ask how large can
ind(k, `) be for 0 < ` < (k

2).
This question is closely related to the problem of determining the

inducibilities of fixed graphs, a concept which was introduced in
1975 by Pippenger and Golumbic [PG75]. For a graph H, let DH(G)

denote the number of induced subgraphs of G that are isomorphic
to H, and let IH(n) = max{DH(G) : |G| = n}. Again, the sequence
{IH(n)/( n

|H|)}∞
n=|H| is monotone decreasing and thus converges to a

limit ind(H), the inducibility of H. There has been a lot of interest in
this area (see, e.g., [J B+16, DM18, Yus19, KNV19]), in particular, in
the first half of this chapter we covered the results on Hefetz and
Tyomkyn [DM18] on the inducibility of cycles.

Observe that both types of inducibility are invariant under tak-
ing complements, that is, ind(k, `) = ind

(
k, (k

2)− `
)

and ind(H) =

ind(H). Note also that ind(H) ≤ ind(|H|, e(H)). Moreover, if |H| = k
and e(H) ∈

{
1, (k

2)− 1
}

, then ind(H) = ind(k, e(H)), as H is the
unique (up to isomorphism) graph with k vertices and e(H) edges.

Consider a random graph G ∼ G(n, p), where p = (k
2)
−1

. A straight-
forward calculation shows that the expected value of the number of
k-subsets of V(G) which span precisely one edge is about 1/e. This
implies that ind(k, 1) ≥ 1/e + ok(1) (as the ok(1) notation suggests, we
will often think of k as an asymptotic quantity and, in particular, we
will assume k to be sufficiently large wherever needed). In fact, we will
see later that there are many constructions which achieve 1/e + ok(1)
as a lower bound for ind(k, 1). Another construction, achieving the
same asymptotic value for ` = k− 1 is the complete bipartite graph
with the smaller part of size n/k, so that ind(k, k− 1) ≥ ind(K1,k−1) ≥
1/e + ok(1). In fact, it is known [JA94] that ind(K1,k−1) = 1/e + ok(1).
Note that the ok(1) term is necessary. For example, counting cherries in
Kn/2,n/2 shows that ind(3, 2) = ind(K1,2) ≥ 3/4 (in fact, it follows from
Goodman’s Theorem that ind(3, 1) = ind(3, 2) = 3/4). Motivated by
the aforementioned constructions (as well as some additional data),
we conjecture that the lower bound of 1/e is asymptotically tight.

Conjecture 1.4.4 (The Edge-statistics Conjecture). For every ε > 0 there
exists k0 = k0(ε) such that for all integers k > k0 and 0 < ` < (k

2) we have
ind(k, `) ≤ 1/e + ε.

For graph-inducibilities we make an analogous conjecture, which
would be implied by the Edge-statistics Conjecture.

Conjecture 1.4.5 (The Large Inducibility Conjecture).

lim sup
{

ind(H) : H /∈ {K|H|, K|H|}
}
= 1/e.

Our first theorem on this topic constitutes a first step towards
proving Conjecture 1.4.4. It asserts that ind(k, `) is bounded away
from 1 by an absolute constant for every k and 0 < ` < (k

2).
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Theorem 1.4.6. There exists an ε > 0 such that for all positive integers k
and ` which satisfy 0 < ` < (k

2) we have

ind(k, `) < 1− ε.

For clarity of presentation, we do not give explicit bounds on ε and
refer to Section 4.12 for a discussion.

Note that it is not hard to prove that for every positive integer k we
have ind(k, `) = 1 if and only if ` ∈

{
0, (k

2)
}

. Indeed, if 0 < ` < (k
2),

then ind(k, `) < 1− 4−k2
is an easy consequence of Ramsey’s Theorem

and the aforementioned monotonicity of I(n, k, `). With a bit more
effort, this bound can be improved to 1− k−2. On the other hand, we
do not see a simple argument that would upper bound ind(k, `) away
from 1 by an absolute constant as in Theorem 1.4.6. Note also that the
related problem of minimizing graph-inducibilities has been extensively
studied. In particular, Pippenger and Golumbic [PG75] showed that
the inducibility of any k-vertex graph is at least (1 + ok(1))k!/kk. It
follows that ind(H) > 0 for every graph H and thus ind(k, `) > 0 for
every k and `. We refer the reader to Section 4.12 for further discussion.

For various ranges of values of ` (viewed as a function of k) we
establish much better upper bounds than the one stated in Theo-
rem 1.4.6. First, for every ` satisfying min

{
`, (k

2)− `
}

= ω(k), we
prove an upper bound of 1/2.

Proposition 1.4.7. For every ε > 0 there exist C(ε) > 0 and k0(ε) > 0
such that the following holds. Let k and ` be integers satisfying k ≥ k0 and
Ck ≤ ` ≤ (k

2)− Ck. Then

ind(k, `) ≤ 1
2
+ ε.

Next, we prove Conjecture 1.4.4 ‘almost everywhere’. In fact, we
prove a much stronger statement, namely that for every ` satisfying
min

{
`, (k

2)− `
}
= Ω

(
k2) the quantity ind(k, `) is actually polynomi-

ally small in k – the right asymptotic behaviour as can be seen by
considering the random graph G(n, `/(k

2)), which gives ind(k, `) =

Ω(k−1).

Theorem 1.4.8. For every positive integers k and ` such that min{`, k2/2−
`} = Ω(k2) we have ind(k, `) = O

(
k−0.1).

Lastly, we consider the case when ` is fixed (i.e., does not depend on
k). Here we prove an upper bound of 3/4. In the interesting sub-case
` = 1, which corresponds to the inducibility of the one-edge graph
(equivalently, of K−k , the complete graph with one edge removed) we
prove a yet better bound of 1/2.

Theorem 1.4.9. For every fixed positive integer ` we have

ind(k, `) ≤ 3
4
+ ok(1).
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Moreover, for ` = 1 we have

ind(k, 1) ≤ 1
2
+ ok(1).

Our results are summarized in the following table. For various ranges
of ` ≤ k2/4, it states the best known upper bound on ind(k, `). Note
that for ` ≥ k2/4 the table can be extended symmetrically.

` = `(k) 1 const. [ω(1), O(k)]
[
ω(k), o(k2)

] [
Ω(k2), k2/4

]
ind(k, `) ≤ 1/2 3/4 1− ε 1/2 O(k−0.1)

1.5 triangles and anti-triangles

Chapter 5 combines two results (based on papers [DM16] and [M T21])
dealing with the interplay between triangles and ant-triangles (empty
3-vertex sets) in graphs.

A graph is called `-universal if it contains every `-vertex graph as an
induced subgraph. Universality is a well-studied graph property, for
instance, the famous Erdős-Hajnal conjecture [PA89] can be formulated
in the following form.

Conjecture 1.5.1 (Erdős-Hajnal). For every integer ` there exists an ε > 0
such that every n-vertex graph G with no clique or independent set of size nε

is `-universal.

In 2015 Linial and Morgenstern [LM15] asked a question of a similar
flavour. Instead of forbidding large cliques and independent sets (anti-
cliques) they asked, what happens if the graph G contains only few
cliques and anticliques of a certain order m. Here we address this
question.

First, let us introduce some useful notation and terminology, most
of which is standard (see e.g. [Bol98]). For a graph G write V(G) and
E(G) for its sets of vertices and edges, respectively. Let |G| = |V(G)|
denote the order of G and let e(G) = |E(G)| denote its size. The
complement of G is denoted by G. For a set S ⊆ V(G) put G[S] for
the subgraph of G induced on the set S. For a set S ⊆ V(G) and a
vertex u ∈ V(G), let NG(u, S) = {w ∈ S : uw ∈ E(G)} denote the set
of neighbours of u in S and let dG(u, S) = |NG(u, S)| denote the degree
of u into S. We abbreviate NG(u, V(G)) to NG(u) and dG(u, V(G)) to
dG(u). The former is referred to as the neighbourhood of u in G and the
latter as its degree. We use dG(u, v) to denote the co-degree of u and v,
that is, |NG(u) ∩ NG(v)| and the somewhat less standard dG(u,−v) to
denote |NG(u) \ NG(v)|. Often, when there is no risk of confusion, we
omit the subscript G from the notation above.

For graphs G and H, put DH(G) for the number of induced copies
of H in G and pH(G) for the corresponding density:
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pH(G) =

(
n
|H|

)−1

· DH(G) .

The quantity pH(G) can be also interpreted as the probability that a
randomly picked set of |H| vertices of G induces a copy of H.

For H = K2, a single edge, DH(G) is simply e(G) and thus we
write pe(G) for pK2(G), the edge density of G. For graphs of order 3,
since they are determined up to isomorphism by their size, we write
Di(G) for DH(G) and pi(G) for pH(G), where i = e(H). The vector
(p0(G), . . . , p3(G)) is called the 3-local profile of G.

Let G = (Gk)
∞
k=1 be a sequence of graphs, where Gk = (Vk, Ek) is

of order nk := |Vk| and nk tends to infinity with k. If for some graph
parameter λ the limit limk→∞ λ(Gk) exists, we denote it by λ(G). A
sequence G is said to be `-universal if Gk is `-universal for every
sufficiently large k.

Linial and Morgenstern proved in [LM15] that there exists a con-
stant ρ = 0.159181 . . . such that every G with p0(G), p3(G) < ρ is
3-universal and asked whether an analogous result holds for higher
universalities.

Question 1.5.1 ([LM15]). Given ` ≥ 4, is there some ε > 0 such that every
graph sequence G with p0(G), p3(G) < 1

8 + ε is `-universal?

Note that our definition of `-universal sequences is slightly different
from the one given in [LM15]. The latter required additionally that
pGk(H) be bounded away from 0 for each H of order `. However
for our purposes (i.e. answering Question 1.5.1) these definitions are
equivalent due to the induced graph removal lemma of Alon, Fischer,
Krivelevich and Szegedy [Alo+00].

It was pointed out by the author that for every ` ≥ 5 the answer to
Question 1.5.1 is negative. Though his counterexample has already
appeared in [LM15], for the sake of completeness we will repeat it in
the next section.

This leaves ` = 4 as the only remaining open case of Question 1.5.1.
Our first main result in this chapter, Theorem 1.5.2, answers it in the
affirmative, thereby settling Question 1.5.1 in full.

Let us define a sequence of graphs G to be t-random-like, or tRL
for brevity, if pKt(G) = pKt

(G) = 2−(
t
2). Our choice of terminology

stems from the fact that such a sequence has approximately the same
number of t-cliques and t-anticliques, that is, independent sets of size
t, as the random graph Gn,1/2. Note that for G to be 2RL it is sufficient
to have pe(G) = 1/2. We will be mostly interested in 3RL sequences;
in our terminology G is 3RL if and only if p0(G) = p3(G) = 1/8.

A standard diagonalisation argument shows that in order to answer
Question 1.5.1 for ` = 4 affirmatively, it suffices to prove the following
assertion.

Theorem 1.5.2. Every 3RL sequence is 4-universal.
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Theorem 1.5.2 is related to the quasirandomness of graphs as well.
This is a central notion in extremal and probabilistic graph theory. It
was introduced by Thomason in [A T87] and was extensively studied
in many subsequent papers. In particular, it was proved by Chung,
Graham and Wilson [CGW89] (see also [AS04] for more details) that if
pH(G) = pH(Gn,1/2) holds for every graph H of order 4, then the same
equality holds for every graph H of any fixed size. In the terminology
of [CGW89] this fact is denoted by P1(4)⇒ P1(s). On the other hand, it
was pointed out in [CGW89] that the property P1(3), that is, containing
the “correct” number of induced copies of every 3-vertex graph, is not
sufficient to ensure quasirandomness. As we shall see in Section 5.2,
P1(3) is in fact equivalent to 3RL. Thus, our results can be viewed as
the study of P1(3). Under this viewpoint Theorem 1.5.2 shows that,
while 3RL graphs need not satisfy P1(4), they still must contain a
positive density of every possible induced 4-vertex graph.

Having resolved Question 1.5.1, we know that the 3RL property
implies 4-universality, but is not enough to ensure `-universality for
any larger `. A natural follow up question to ask is, whether there still
exist infinite classes of graphs H that must be contained in every 3RL
sequence G. Cliques, paths, cycles and stars are natural candidates for
such classes. We shall answer this question in the negative by provid-
ing counterexamples for each of these classes. In fact, our second main
result, Theorem 1.5.3 provides, perhaps surprisingly, a counterexample
for any single graph which is not too small. Throughout this chapter
R(k, `) will stand, as usual, for the corresponding Ramsey number
(see [Bol98] for more background details).

Theorem 1.5.3. For every graph H of order at least R(10, 10) there exists
a 3RL sequence G, where no Gk ∈ G contains a copy of H as an induced
subgraph.

According to [S R11], the best currently known bounds on R(10, 10)
are 798 ≤ R(10, 10) ≤ 23556 (the standard upper bound for Ramsey
numbers yields R(10, 10) ≤ (10+10−2

10−1 ) = 48620).
Theorem 1.5.3 combined with Theorem 1.5.2 and the induced graph

removal lemma [Alo+00] immediately give the following corollary.

Corollary 1.5.2. There exists an ε > 0 such that for every graph H of
order at least R(10, 10) there is a sequence G, where no Gk ∈ G contains an
induced copy of H, but pJ(G) > ε for every 4-vertex graph J.

Theorem 1.5.3 and Corollary 1.5.2 show that, for sufficiently large
values of `, having either the “correct” densities of triangles and anti-
triangles or positive densities of every 4-vertex graph is far from being
enough to ensure `-universality. This goes in stark contrast with G
having the “correct” densities of all induced 4-vertex graphs, which
implies that G is quasirandom and therefore `-universal for every `.

Having constructions of 3RL sequences which are only `-universal
for very small values of ` on the one hand and the random graph
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Gn,1/2 (which is `-universal for every fixed `) on the other hand, it is
natural to ask, if for arbitrarily large ` there exists a 3RL sequence
which is `-universal but not f (`)-universal for some function f . This
would show that no fixed universality is sufficient to ensure all other
universalities. Our third theorem shows that this is indeed the case in
the following strong sense.

Theorem 1.5.4. For every ` there exists a 3RL sequence G` such that
pH(G`) > 0 for every graph H of order 2`, but G` is not 24` · 2`-universal.

In the second part of Chapter 5 we cover the content of the recent
solo paper [M T21]. One of the classical results in extremal graph
theory, Goodman’s theorem [Goo59], states that in every 2-colouring
of the edges of the complete graph Kn the number of monochromatic
triangles is at least 1

4 (
n
3)− o(n3). In other words, about a quarter of all

possible triangles are guaranteed to be monochromatic. With this in
mind, Erdős [P E97, Erd+97] asked about the number of edge-disjoint
monochromatic triangles in any 2-colouring of Kn.

To be more formal, a triangle packing of a graph G is a collection of
edge-disjoint triangles in G. The size of a triangle-packing is the total
number of edges it contains.9 Define f (n) to be the largest number
m such that every 2-colouring of the edges of Kn contains a triangle
packing of size m in which each triangle is monochromatic.

As a basic example, consider n = 6. By the folklore fact about
Ramsey numbers, any 2-colouring of K6 contains a monochromatic
triangle, and it is not hard to see that it has to contain at least two such
triangles. However, they need not be edge-disjoint, as can be seen by
taking a 5-cycle and replicating a vertex. So f (6) = 3.

In general, the obvious upper bound of f (n) ≤ n2/4− o(n2) is seen
to hold by considering the balanced complete bipartite graph and its
complement. Erdős [P E97, Erd+97] conjectured that this is tight.10

Conjecture 1.5.3.

f (n) =
n2

4
− o(n2).

To draw a parallel to Goodman’s theorem, Conjecture 1.5.3 states
that every 2-edge-colouring of Kn admits a packing with monochro-
matic triangles, containing about one half of all possible edges.

In previous works, Erdős, Faudree, Gould, Jacobson and Lehel
[Erd+97] proved a first non-trivial lower bound of f (n) ≥ (9/55)n2 +

o(n2). Keevash and Sudakov [PB04] improved this, by using the frac-
tional relaxation of the problem, to f (n) ≥ n2/4.3 + o(n2). Alon and

9 This is obviously the number of the triangles in the packing times 3. We prefer the
present scaling for technical and presentation reasons.

10 In [P E97, Erd+97, PB04] the n2/4 + o(n2) notation is used. It is understood that
the additive o(n2)-term can be negative, as this is the case e.g. in the above exam-
ple. Hence, we believe the expression n2/4− o(n2) better reflects the nature of the
conjecture.
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Linial (see [PB04]) suggested, as a step towards Conjecture 1.5.3, to
consider the natural class of colourings, in which one of the colour
classes is triangle-free.

At this stage it will be more convenient to break the symmetry and
speak of a graph and its complement. A graph is said to be co-triangle-
free if its complement is triangle-free. Equivalently, co-triangle-free
graphs are graphs with independence number at most 2. Define g(n)
to be the largest number m such that every co-triangle-free graph on
n vertices contains a triangle packing of size m. The same example as
for f (n) – the disjoint union of two cliques of order n/2, shows that
g(n) ≤ n2/4− o(n2), and Conjecture 1.5.3 would imply that this is
tight.

Conjecture 1.5.4.

g(n) =
n2

4
− o(n2).

Yuster [R Y07] worked specifically on Conjecture 1.5.4 and proved
that any potential counterexample to it must have between 0.2501n2

and 3n2/8 edges. That is, its size cannot be too close to, or too far
from the Mantel threshold.

Our aim is to give a short proof of Conjecture 1.5.4.

Theorem 1.5.5. We have

g(n) =
n2

4
− o(n2).

Moreover, we classify the extremal graphs. An n-vertex graph is
said to be ε-far from being bipartite if at least εn2 edge deletions are
required in order to make it bipartite.

Theorem 1.5.6. For every ε > 0 there exists δ > 0 such that any co-triangle-
free graph G of order n, whose complement is ε-far from being bipartite, has
a triangle packing of size (1/4 + δ)n2 + o(n2).

We say that a graph is co-bipartite if its complement is bipartite.
Equivalently, G is co-bipartite if V(G) is spanned by a disjoint union
of two cliques; clearly, co-bipartite graphs are co-triangle-free. Thus,
Theorems 1.5.5 and 1.5.6 imply that every co-triangle free graph on
n vertices admits a triangle packing on n2/4− o(n2) edges, and the
graphs achieving at most n2/4 + o(n2) are essentially co-bipartite.

At the core of our proof is Lemma 5.9.2. It deals with the case when
G is ‘critical’, that is its complement G is triangle-free and not bipartite,
but can be made bipartite by deleting a vertex. Lemma 5.9.2 states
that G has a fractional triangle packing of size larger than n(n− 1)/4.
This, combined with the integer-fractional transference principle of
Haxell and Rödl, averaging over fractional packings, and a computer
verification for small values of n in the spirit of [PB04], yields the
proof of Theorem 1.5.5.
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To prove Theorem 1.5.6, in addition to the above tools, we apply
a theorem of Alon, Shapira and Sudakov on the structure of graphs
with a large edit distance to a monotone graph property.

1.6 monochromatic connected components

The results of Chapter 5 can also be interpreted as Ramsey problems
for 2-colourings of complete graphs. Continuing this line of thought,
in Chapter 6 (following papers [DM23] and [DM22]) we turn our
attention to another natural Ramsey-type question in graphs. Namely,
given an r-edge-colouring of the complete graph Kn, what is the largest
number of edges in a monochromatic connected component? This
natural question has only recently received the attention it deserves,
partly due to the results presented here.

First, following [DM23] (joint with D. Conlon), we show that the
answer for r = 2 is 2n2/9 + o(n2). In fact, we prove a more general
statement, namely that every two-colouring of the edges of the com-
plete graph Kn contains a monochromatic trail or circuit of length at
least 2n2/9 + o(n2). This is asymptotically best possible.

Next, based on the recent paper [DM22] (joint with D. Conlon
and S. Luo) we introduce a general framework for studying this
problem and apply it to fully resolve the r = 4 case (the case r =

3 was previously resolved by S. Luo). If we write M(n, r) for the
largest natural number such that every r-colouring of Kn contains
a monochromatic connected component with at least M(n, r) edges,
then the main result of [DM23] and Section 6.1 may be interpreted
as saying that M(n, 2) = 2

9 n2 + o(n2). In fact, a more careful analysis
of our argument implies that M(n, 2) ≥ 1

9 (2n2 − n− 1), with, where
divisibility allows it, the example consisting of two disjoint red cliques
of orders 2n+1

3 and n−1
3 with all blue edges between showing that this

is best possible.
To say something about the general case, we first look at Gyárfás’

construction of r-colourings where each monochromatic component
has at most n/(r− 1) vertices. This construction, which relies on the
existence of the affine plane of order r− 1, works when r− 1 is a prime
power and n is a multiple of (r− 1)2. Concretely, the affine plane of
order r− 1 corresponds to a copy of K(r−1)2 together with r different
decompositions of this graph into r− 1 vertex-disjoint copies of Kr−1

(that is, r different Kr−1-factors) with the property that any edge is
contained in exactly one of the r(r− 1) copies of Kr−1. By giving the
edges in the ith Kr−1-factor colour i, we obtain an r-colouring where
every monochromatic component has at most r− 1 vertices. Moreover,
when n is a multiple of (r− 1)2, we can simply blow up this colouring
to obtain an r-colouring where every monochromatic component has
at most n/(r− 1) vertices.
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Essentially the same construction works in the edge case to show
that, when r− 1 is a prime power, there are r-colourings where each
monochromatic component has at most ( 1

r(r−1) + o(1))(n
2) edges (the

only caveat is that we should use each colour roughly the same number
of times within each of the blown-up vertices). Luo [Luo], who proved
that this is tight for r = 3. That is, M(n, 3) = d 1

6 (
n
2)e for n sufficiently

large. Moreover, by giving a tight lower bound for the largest number
of edges in a connected component in a graph of given density, he
was able to show that M(n, r) ≥ 1

r2 (
n
2) in the general case. Our concern

here will be with the following conjectural improvement to this bound.

Conjecture 1.6.1. For any natural numbers n and r with r ≥ 2,

M(n, r) ≥
⌈

1
r(r− 1)

(
n
2

)⌉
.

Moreover, when there is no affine plane of order r− 1, there exists a constant
εr > 0 such that

M(n, r) ≥
(

1
r(r− 1)

+ εr

)(
n
2

)
.

The results of [DM23] (Section 6.1) and [Luo] prove this conjecture
when r = 2 and 3, respectively. Our main result here is a proof of
the next open case, when r = 4. Note that, in this case, Gyárfás’
construction corresponds to a 4-colouring of K9 where each colour
class is the union of three vertex-disjoint triangles. In the statement
below, by saying that a colouring matches Gyárfás’ construction, we
mean that the set of components and the intersection pattern of their
vertex sets match those in this construction.

Theorem 1.6.2. In every 4-colouring of the edges of Kn, there is a monochro-
matic component with at least 1

12 (
n
2) edges. That is, M(n, 4) ≥ d 1

12 (
n
2)e.

Moreover, unless the colouring matches Gyárfás’s construction, there is
a monochromatic component with at least

( 1
12 + ε

)
(n

2) edges, where ε =
2

14+
√

96
− 1

12 > 0.0007.

Our proof of Theorem 1.6.2 consists of first showing that any 4-
colouring of Kn has one of a bounded number of component structures
and then that each such component structure contains a component
with enough edges. For instance, one of the possible component struc-
tures is that each colour has precisely three components. But then one
of these 12 components clearly contains at least 1/12 of the edges, as
required. For the other possible component structures, our arguments
are not usually so simple, relying instead on a key observation, Propo-
sition 6.3.1 below. This states that if a certain union of components is
large in the vertex sense, but none of these components is large in the
edge sense, then some one of the remaining components will be large
in the edge sense. In fact, even this is not quite enough and, inspired
by Füredi’s approach to the vertex case, we must allow for weighted
or fractional unions of components.
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1.7 repeated patterns in proper colourings

In Chapter 7, based on paper [DM21b] (joint work with D. Conlon) we
turn our attention to proper edge-colourings of Kn. That is, colourings
where any two edges sharing a vertex receive different colours.

A considerable body of recent work in extremal combinatorics is
devoted to the study of rainbow patterns in proper edge-colourings of
complete graphs. To mention two such results (amongst many [BPS17,
BPS20, CP20, EGJ20, Gao+21, GJ20, Glo+21, KY18]
[Kim+20, MPS19, MPS20, Pok18, PS18, PS19]), there is the work of
Alon, Pokrovskiy and Sudakov [APS17] showing that any proper
edge-colouring of Kn contains a rainbow path of length n− o(n) and
the work of Montgomery, Pokrovskiy and Sudakov [MPS21] and,
independently, Keevash and Staden [PK20] resolving a celebrated
conjecture of Ringel, one of whose statements involves finding a
rainbow copy of any tree with n edges in a particular proper edge-
colouring of K2n+1. For the most part, this recent work has focused
on finding large structures in proper edge-colourings. We instead
study small structures, our aim being to understand when a proper
edge-colouring contains two or more repeats of a particular graph H.

To be more precise, we say that two copies of a graph H in a
colouring of Kn are colour isomorphic if there exists an isomorphism
between them preserving the colours. The following function is our
main object of study.

Definition 1. For k, n ≥ 2 and a graph H, define fk(n, H) to be the smallest
integer C such that there is a proper edge-colouring of Kn with C colours
containing no k vertex-disjoint colour-isomorphic copies (or ‘repeats’) of H.

We make several remarks about this definition. First, one could,
in principle, ask the same question without the restriction to proper
colourings. However, this changes the character of the question com-
pletely. Indeed, consider the colouring of the complete graph on vertex
set {1, 2, . . . , n} where we colour the edge ij with i < j by the colour i.
Then this is a colouring with n− 1 colours which does not even con-
tain two disjoint edges of the same colour. On the other hand, when
we restrict to proper colourings, we have that fk(n, K2) ≥ d 1

k−1 (
n
2)e

by a straightforward application of the pigeonhole principle. For n
sufficiently large in terms of k, it also follows from several well-known
decomposition results, such as Gustavsson’s theorem [Gus91], that
this bound is tight.

Our second remark collects together several simple observations
that we will use throughout.
Remark 1.7.1. The quantity fk(n, H) is monotone increasing in n, but
decreasing in k and in H (with respect to taking subgraphs). Moreover,
since every proper colouring has at least n− 1 colours,(

n
2

)
≥ fk(n, H) ≥ n− 1.
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Finally, although our definition contains no requirement that the
copies of H should be rainbow, all of the results where we find repeats
of a particular graph H remain true up to a constant factor if we insist
that each copy is rainbow. This then brings our work more fully in
line with the body of research discussed at the outset. With these
preliminaries out of the way, we now describe our main results.

In the classical Turán problem, the growth rate of the extremal
function ex(n, H) is subject to a well-known trichotomy. Namely, non-
bipartite graphs, bipartite graphs with a cycle and forests satisfy
ex(n, H) = Θ(n2), n1+Ω(1) ≤ ex(n, H) ≤ n2−Ω(1) and ex(n, H) =

Θ(n), respectively. Our first theorem shows that something broadly
similar holds for f2(n, H), although, unlike the extremal function, our
function can, and usually does, degenerate for bipartite graphs with a
cycle. Note that here and throughout, all terms in the O-notation are
to be interpreted with respect to n, with all other variables treated as
constants.

Theorem 1.7.2. The growth rate of f2(n, H) satisfies:

(i) f2(n, H) = Θ(n2) if H is a forest. Otherwise, f2(n, H) = O(n2−Ω(1)).

(ii) If H is non-bipartite, then f2(n, H) ≤ n + 1.

(iii) If H is bipartite and e(H) ≥ 2|H| − 2, then f2(n, H) = Θ(n).

(iv) There exist bipartite graphs H with n1+Ω(1) ≤ f2(n, H) ≤ n2−Ω(1).

For three or more repeats, the class of graphs for which we know
that fk(n, H) = O(n) grows as k increases. In fact, for any graph H
containing a cycle, we can show, by using a variant of Bukh’s random
algebraic method [Buk15], that there exists k such that fk(n, H) =

O(n).

Theorem 1.7.3. For any graph H containing a cycle, there exists k such
that fk(n, H) = O(n).

For trees, the situation is much more involved, as spelled out in the
next theorem, whose proof relies on a mixture of novel combinatorial
and algebraic methods.

Theorem 1.7.4. For any tree T with m edges and any k ≥ 3:

(i) fk(n, T) = Ω(nk/(k−1)). Moreover, if T has at least two edges, then
f3(n, T) = Θ(n3/2).

(ii) fk(n, T) = Ω(n(m+1)/m) and there exists k′ such that fk′(n, T) =

O(n(m+1)/m).
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1.8 weak saturation in graphs and hypergraphs

Chapter 8 deals with my recent work on weak saturation in graphs and
hypergraphs. It covers papers [DM21a] (joint work with D. Bulavka
and M. Tancer) and [AM22] (with A. Shapira).

Let F and H be q-uniform hypergraphs (q-graphs for short); we
identify hypergraphs with their edge sets. We say that a subgraph
G ⊆ F is weakly H-saturated in F if the edges of F \ G can be ordered
as e1, . . . , ek such that for all i ∈ [k] the hypergraph G ∪ {e1, . . . , ei}
contains an isomorphic copy of H which in turn contains the edge ei.
We call such e1, . . . , ek an H-saturating sequence or saturation process of G
in F. The weak saturation number of H in F, wsat(F, H) is the minimum
number of edges in a weakly H-saturated subgraph of F. When F is
complete of order n, we simply write wsat(n, H).

Weak saturation was introduced by Bollobás [Bol68a] in 1968 and is
related to (strong) graph saturation: G is H-saturated in F if adding
any edge of F \ G would create a new copy of H. However, a number
of properties of weak saturation make it a more natural object of
study. Firstly, it follows from the definition that any graph G achieving
wsat(F, H) has to be H-free (we could otherwise remove an edge from
a copy of H in G resulting in a smaller example), while for strong
saturation H-freeness may or may not be imposed, resulting in two
competing notions (see [MS15] for a discussion). Secondly, a short
subadditivity argument originally due to Alon [Alo85] shows that for
every 2-uniform H, limn→∞ wsat(n, H)/n exists. Whether the same
holds for strong saturation is a longstanding conjecture of Tuza [Tuz86].
And thirdly, weak saturation lends itself to be studied via algebraic
methods, thus offering insight into algebraic and matroid structures
underlying graphs and hypergraphs.

The most natural case when F and H are cliques was the first to be
studied. Let Kq

r denote the complete q-graph of order r. Confirming
a conjecture of Bollobás, Lovász [Lov77] proved that wsat(n, Kq

r ) =

(n
q)− (n−r+q

q ) and independent proofs were given later by Alon [Alo85],
Frankl [Fra82], and Kalai [Kal84b, Kal85]. While the upper bound is a
construction that is easy to guess (a common feature in weak saturation
problems), all of the above lower bound proofs rely on algebraic or
geometric methods, and no purely combinatorial proof is known to
this date.

In the subsequent years weak saturation has been studied exten-
sively [Alo85, EFT91, Pik01a, Tuz88, MS15, Pik01b, Sem97, BS02,
Sid07, FG14, Bal+12, BP98, MN18]. Despite this, our understanding
of weak saturation numbers is still rather limited.
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In this chapter we first address the case when H = Kq
r1,...,rd is a

complete d-partite q-graph for arbitrary d ≥ q > 1. That is, V(H) is a
disjoint union of sets R1, . . . , Rd with |Ri| = ri and

E(H) =

{
e ∈

(
V(H)

q

)
: |e ∩ Ri| ≤ 1 for all i ∈ [d]

}
,

in particular, for q = 2 we recover the usual complete multipartite
graphs. This is perhaps the next most natural class of hypergraphs to
consider after the cliques.

For the host graph F, besides the clique it is natural to consider a
larger complete d-partite q-graph Kq

n1,...,nd . In the latter case we again
have a choice between the undirected and directed versions of the prob-
lem. The former follows the definition of weak saturation given at the
beginning, while in the latter we additionally impose that the new
copies of H in F created in every step “point the same way”, i.e. have
ri vertices in the i-th partition class for all i ∈ [d] (see below for a
formal definition).

All three above versions have been studied in the past. For q =

2, Kalai [Kal85] determined wsat(n, Kr,r). Kronenberg, Martins and
Morrison [KMM21] gave recently a new proof of this result, extending
it to wsat(n, Kr,r−1) and asymptotically to all wsat(n, Ks,t). No other
values wsat(n, Kq

r1,...,rd) are known except for r1 = · · · = rd = 1 when
H is a clique and a handful of closely related cases, e.g., when all ri
but one are 1 [Pik01b]. When both H and F are complete d-partite,
for d = q Alon [Alo85] solved the problem in the directed setting.
Moshkovitz and Shapira [MS15], building on Alon’s work, settled the
undirected case, determining wsat(Kd

n1,...,nd
, Kd

r1,...,rd
). There has been

no progress for d > q.
In our first contribution in this chapter we settle completely the

directed case for all q and d. To state the problem formally, let r =

(r1, . . . , rd) and n = (n1, . . . , nd) be integer vectors such that 1 ≤ ri ≤
ni. Suppose N = N1 t · · · t Nd where |Ni| = ni and t denotes a
disjoint union. Let Kq

n be the complete d-partite q-graph on N whose
partition classes are the Ni, and let Kq

r be an unspecified complete
d-partite q-graph on the same partition classes, with ri vertices in each
Ni. Given a subgraph G of Kq

n, a sequence of missing edges e1, . . . , ek is
a (directed) Kq

r -saturating sequence of G in Kq
n if: (i) Kq

n \ G = {e1, . . . , ek};
(ii) for every j ∈ [k] there exists Hj ⊆ G ∪ {e1, . . . , ej} isomorphic to Kq

r

such that ej ∈ Hj and |V(Hj)∩Ni| = ri for all i ∈ [d]. The q-graph G is
said to be (directed) weakly Kq

r -saturated in Kq
n if it admits a Kq

r -saturating
sequence in the latter. The (directed) weak saturation number of Kq

r in Kq
n,

in notation w(Kq
n, Kq

r ), is the minimal number of edges in a weakly
Kq

r -saturated subgraph of Kq
n.

Theorem 1.8.1. For all d ≥ q ≥ 2, n and r we have

w(Kq
n, Kq

r ) = ∑
I∈([d]q )

∏
i∈I

ni − ∑
I∈( [d]≤q)

∏
i∈I

(ni − ri).
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In the above formula ( [d]≤q) stands for the set of all subsets of [d] of size
at most q, and we use the convention that ∏i∈∅(ni − ri) = 1.

As mentioned, the d = q case of Theorem 1.8.1 was proved by
Alon [Alo85]. Hence our result generalizes Alon’s theorem to arbitrary
d ≥ q. When H is balanced, that is when r1 = · · · = rd, there is
no difference between the directed and undirected partite settings.
Writing Kq(r; d) for Kq

r,...,r (d times), Theorem 1.8.1 thus determines the
weak saturation number of Kq(r; d) in complete d-partite q-graphs.

Corollary 1.8.2. For all d ≥ q ≥ 2 and n1, . . . , nd ≥ r ≥ 1 we have

wsat(Kq
n1,...,nd , Kq(r; d)) = ∑

I∈([d]q )

∏
i∈I

ni − ∑
I∈( [d]≤q)

∏
i∈I

(ni − r).

Our proof of Theorem 1.8.1 combines exterior algebra techniques
in the spirit of [Kal85] with a new ingredient: the use of the coluorful
exterior algebra inspired by the recent work of Bulavka, Goodarzi and
Tancer on the colourful fractional Helly theorem [BGT21].

Kronenberg, Martins and Morrison ([KMM21], section 5) remarked
that while the values wsat(n, Kt,t) and wsat(K`,m, Kt,t) for `+ m = n,
which were determined in separate works, are of the same order of
magnitude, it is not obvious if there is any direct connection. In our
second contribution in this chapter we establish such a connection
using a tensoring trick. As we have mentioned earlier, 2-graphs H
satisfy wsat(n, H) = cHn + o(n), and Alon’s proof of this fact [Alo85]
can be straightforwardly adjusted to show that wsat(Kn,n, H) = c′H ·
2n + o(n) when H is bipartite. We show that in fact cH = c′H . A minor
adjustment to our proof gives that, for any rational 0 < α < 1, the
quantities wsat(n, H) and wsat(Kαn,(1−α)n, H), when αn ∈ Z, are of the
same order of magnitude. Setting H = Kt,t answers the above question
of [KMM21]. For q ≥ 3 a similar method determines asymptotically
the weak saturation number of complete d-partite d-graphs in the
clique, generalizing Theorem 4 of [KMM21].

Theorem 1.8.3. For every bipartite 2-uniform graph H we have

lim
n→∞

wsat(n, H)

n
= lim

n→∞

wsat(Kn,n, H)

2n
. (1.3)

Furthermore, for any d ≥ 2 and 1 ≤ r1 ≤ · · · ≤ rd we have

wsat(n, Kd
r1,...,rd

) =
r1 − 1
(d− 1)!

nd−1 + O(nd−2). (1.4)

In the second half of the chapter we study the limiting constant in
more generality. Recall that wsat(n, H) stands for the smallest number
of edges in a weakly H-saturated r-graph on n vertices.

Note that by the construction from [EHM64], we know that every
graph H we have wsat(n, H) = OH(n). As of now, the best known
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general bounds for wsat(n, H) when H is a graph are due to Fau-
dree, Gould and Jacobson [FGJ13] who showed that for graphs H of
minimum degree δ = δ(H) we have11(

δ

2
− 1

δ + 1

)
· n ≤ wsat(n, H) ≤ (δ− 1) · n + O(1).

At this point it is natural to ask if for every H there is a constant CH

so that

wsat(n, H) = (CH + o(1))n. (1.5)

Such a result was obtained in 1985 by Alon [Alo85], who proved
that for graphs the function wsat(n, H) is (essentially) subadditive,
implying that wsat(n, H)/n tends to a limit, by Fekete’s subadditivity
lemma [Fek23].

Much less was known when H is an r-graph with r ≥ 3. Similarly
to the case r = 2 above, Bollobás’s construction from [Bol65] gives a
simple bound of

wsat(n, H) = OH(nr−1).

A more refined result was obtained by Tuza [Tuz92] who introduced
the following key definition. The sparseness of an r-graph H, denoted
s(H), is the smallest size of a vertex set W ⊆ V contained in precisely
one edge of H; note that 1 ≤ s(H) ≤ r for every non-empty r-graph
H. It was proved in [Tuz92] that for every r-graph H there are two
positive reals cH and CH such that

cH · ns−1 ≤ wsat(n, H) ≤ CH · ns−1. (1.6)

It was further conjectured in [Tuz92] that the more refined bound
wsat(n, H) = CH · ns−1 + O(ns−2) holds for every r-graph of sparse-
ness s. See also the recent survey [Cur+21] on saturation problems
where this conjecture is further discussed. Since such a result is not
known even for graphs (i.e. when r = s = 2), Tuza [Tuz92] asked if
one can improve upon (1.6) by showing that for every r-graph we have
wsat(n, H) = CH · ns−1 + o(ns−1) where s = s(H). Prior to this work,
such a result was only known for r = 2 by Alon’s result (1.5). Here we
fully resolve Tuza’s problem for all r-graphs.

Theorem 1.8.4. For every r-graph H there is CH > 0 such that

lim
n→∞

wsat(n, H)/ns−1 = CH,

where s = s(H) is the sparseness of H. In particular12, for every r-graph H
there is C′H ≥ 0 such that

lim
n→∞

wsat(n, H)/nr−1 = C′H.

11 The upper bound is known to be tight for many graphs, the cliques being one example.
Concerning the lower bound, the authors of [FGJ13] give a construction of a graph H
with wsat(n, H) ≤ (δ/2 + 1/2− 1/δ)n.

12 Here we simply use the fact that for every r-graph H we have 1 ≤ s(H) ≤ r.
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It is interesting to note that Tuza [Tuz86] (for graphs) and Pikhurko
[Pik99] (for arbitrary r-graphs) also conjectured that a theorem analo-
gous to the second assertion of Theorem 1.8.4 should hold with respect
to sat(n, H). However, there are results suggesting that this analogous
statement does not hold even for graphs, see [Beh18, CL20, Pik04]
and the discussion in [Cur+21].

It is natural to ask why Alon’s [Alo85] one-paragraph proof of
Theorem 1.8.4 for s = 2 is hard to extend to s > 2.13 Perhaps the
simplest reason is that one cannot hope to show that in these cases the
function wsat(n, H) is subadditive (and then apply Fekete’s lemma)
since a subadditive function is necessarily of order O(n), while we
know from (1.6) that when s ≥ 3 the function wsat(n, H) is of order
at least n2. One can of course try to come up with more complicated
recursive relations for wsat(n, H) and combine them with variants of
Fekete’s lemma, but this seems to lead to a dead-end (we have certainly
tried to go down that road). Our main novelty here is in finding a
direct and efficient way to use an m-vertex r-graph witnessing the fact
that wsat(m, H) is small, in order to build arbitrarily large n-vertex
r-graphs witnessing the fact that wsat(n, H) is small. One of the main
tools we use to construct such an example is Rödl’s approximate
designs theorem [Röd85] which enables us to efficiently combine
many examples of size m into one of size n. Rödl’s result would only
allow us to construct a saturation process generating part of the edges
of Kr

n. To complete this saturation process we would also need another
set of gadgets.

13 While formally [Alo85] only deals with r = 2, the proof very similarly applies to
s = 2 for arbitrary r.
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[Erd+97] P. Erdős, R. Faudree, R. Gould, M. Jacobson, and J. Lehel.
“Edge disjoint monochromatic triangles in 2-colored graphs.”
In: Discrete Math 164 (1997), pp. 81–85.
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[Győ89] E. Győri. “On the number of C5’s in a triangle-free graph.”
In: Combinatorica (Print) 9.1 (1989), pp. 101–102.

[Hat+13] H. Hatami, J. Hladky, D.Kral, S. Norine, and A. Razborov.
“On the number of pentagons in triangle-free graphs.”
In: Journal of Combinatorial Theory, Series A 120.3 (2013),
pp. 722–732.

[Hir14] J. Hirst. “The inducibility of graphs on four vertices.” In:
Journal of Graph Theory 75.3 (2014), pp. 231–243.

[Hua14] H. Huang. “On the maximum induced density of directed
stars and related problems.” In: SIAM Journal on Discrete
Mathematics 28.1 (2014), pp. 92–98.



38 bibliography

[J B+16] J. Balogh, P. Hu, B. Lidicky, and F. Pfender. “Maximum
density of induced 5-cycle is achieved by an iterated blow-
up of 5-cycle.” In: European Journal of Combinatorics 52

(2016), pp. 47–58.

[JA94] J. Brown and A. Sidorenko. “The inducibility of complete
bipartite graphs.” In: Journal of Graph Theory 18.6 (1994),
pp. 629–645.

[JB08] J. Fox and B. Sudakov. “Induced Ramsey-type theorems.”
In: Adv. Math. 219 (2008), pp. 1771–1800.

[JL20] J. Fox and L. Sauermann. “A completion of the proof of the
Edge-statistics Conjecture.” In: Advances in Combinatorics 4

(2020).

[J L20] J. Long. “A note on the Brown-Erdos-Sos conjecture in
groups.” In: Combinatorics, Probability and Computing 29.4
(2020), pp. 633–640.

[JC20] J. Solymosi and C. Wong. “The Brown-Erdos-Sos Conjec-
ture in finite abelian groups.” In: Discret. Appl. Math. 276

(2020), pp. 155–160.

[J T02] J. Talbot. “Lagrangians of hypergraphs.” In: Combin., Probab.
Comput. 11 (2002), pp. 199–216.

[JLR11] Svante Janson, Tomasz Luczak, and Andrzej Rucinski.
Random graphs. John Wiley and Sons, 2011.

[KSC11] J. Kahn, M. Saks, and C.Smyth. “The dual BKR inequality
and rudich’s conjecture.” In: Combinatorics, Probability and
Computing 20.2 (2011), pp. 257–266.

[Kal84a] G. Kalai. “Intersection patterns of convex sets.” In: Israel J.
Math. 48.2-3 (1984), pp. 161–174.

[Kal84b] G. Kalai. “Weakly saturated graphs are rigid.” In: Con-
vexity and graph theory (Jerusalem, 1981). Vol. 87. North-
Holland Math. Stud. North-Holland, Amsterdam, 1984,
pp. 189–190.

[Kal85] G. Kalai. “Hyperconnectivity of graphs.” In: Graphs Com-
bin. 1.1 (1985), pp. 65–79.

[KNS64] G. Katona, T. Nemetz, and M. Simonovits. “On a problem
of Turan in the theory of graphs.” In: Mat. Lapok 15 (1964),
pp. 228–238.

[Kee11] P. Keevash. “Hypergraph Turan problems.” In: Surveys
in Combinatorics 2011. Ed. by RobinEditor Chapman. Lon-
don Mathematical Society Lecture Note Series. Cambridge
University Press, 2011, pp. 83–140.

[KY18] P. Keevash and L. Yepremyan. “Rainbow Matchings in
Properly Colored Multigraphs.” In: SIAM Journal on Dis-
crete Mathematics 32.3 (2018), pp. 1577–1584.



bibliography 39

[Kim+20] J. Kim, D. Kühn, A. Kupavskii, and D. Osthus. “Rainbow
structures in locally bounded colorings of graphs.” In:
Random Structures and Algorithms 56.4 (2020), pp. 1171–
1204.

[KNV19] D. Kral, S. Norin, and J. Volec. “A bound on the inducibil-
ity of cycles.” In: Journal of Combinatorial Theory, Series A
161 (2019), pp. 359–363.

[KMM21] G. Kronenberg, T. Martins, and N. Morrison. “Weak satu-
ration numbers of complete bipartite graphs in the clique.”
In: J. Combin. Theory Ser. A 178 (2021), pp. 105357, 15.

[KST19] M. Kwan, B. Sudakov, and T. Tran. “Anticoncentration for
subgraph statistics.” In: Journal of the London Mathematical
Society 99.3 (2019), pp. 757–777.

[LM15] N. Linial and A. Morgenstern. “Graphs with Few 3-Cliques
and 3-Anticliques are 3-Universal.” In: Journal of Graph The-
ory 78.3 (2015), pp. 229–238.

[Lov77] L. Lovász. “Flats in matroids and geometric graphs.” In:
Combinatorial surveys (Proc. Sixth British Combinatorial Conf.,
Royal Holloway Coll., Egham, 1977). 1977, pp. 45–86.

[Luo] S. Luo. “On connected components with many edges.” In:
Preprint available at arXiv:2111.13342 [math.CO] ().

[MM21] A. Shapira M. Amir and M. Tyomkyn. “Two Erdos–Hajnal-
type theorems in hypergraphs.” In: J. Combinatorial Theory,
Ser. B 146 (2021), pp. 417–438.

[M C14] M. Chudnovsky. “The Erdos–Hajnal conjecture – A sur-
vey.” In: J. of Graph Theory 75 (2014), pp. 178–190.

[M T17] M. Tyomkyn. “Lagrangians of hypergraphs: The Frankl-
Furedi conjecture holds almost everywhere.” In: Journal of
the London Mathematical Society 96.3 (2017), pp. 584–600.

[M T21] M. Tyomkyn. “Many disjoint triangles in co-triangle-free
graphs.” In: Combinatorics, Probability and Computing 30.1
(2021), pp. 153–162.

[Mar+19] A. Martinsson, F. Mousset, A. Noever, and M. Trujic. “The
edge-statistics conjecture for `� k6/5.” In: Israel Journal of
Mathematics 234.2 (2019), pp. 677–690.

[MPS19] R. Montgomery, A. Pokrovskiy, and B. Sudakov. “Decom-
positions into spanning rainbow structures.” In: Proceed-
ings of the London Mathematical Society 119.4 (2019), pp. 899–
959.

[MPS20] R. Montgomery, A. Pokrovskiy, and B. Sudakov. “Embed-
ding rainbow trees with applications to graph labelling
and decomposition.” In: Journal of the European Mathemati-
cal Society 22 (2020), pp. 3101–3132.



40 bibliography

[MPS21] R. Montgomery, A. Pokrovskiy, and B. Sudakov. “A proof
of Ringel’s conjecture.” In: Geom. Funct. Anal. 31 (2021),
pp. 663–720.

[MN18] N. Morrison and J. Noel. “Extremal bounds for bootstrap
percolation in the hypercube.” In: J. Combin. Theory Ser. A
156 (2018), pp. 61–84.

[MS17] N. Morrison and A. Scott. “Maximising the number of
induced cycles in a graph.” In: Journal of Combinatorial
Theory, Series B 126 (2017), pp. 24–61.

[MS15] G. Moshkovitz and A. Shapira. “Exact bounds for some
hypergraph saturation problems.” In: J. Combin. Theory Ser.
B 111 (2015), pp. 242–248.

[NAB09] N. Alon, A. Shapira, and B. Sudakov. “Additive approx-
imation for edge-deletion problems.” In: Annals of Math
170 (2009), pp. 371–411.

[NJJ01] N. Alon, J. Pach, and J. Solymosi. “Ramsey-type theorems
with forbidden subgraphs.” In: Combinatorica 21 (2001),
pp. 155–170.

[NM20] M. Krivelevich N. Alon D. Hefetz and M. Tyomkyn. “Edge-
statistics on large graphs.” In: Combinatorics, Probability and
Computing 29.2 (2020), pp. 163–189.

[O J19] O. Janzer. “Improved bounds for the extremal number of
subdivisions.” In: Electron. J. Combin. 26.P3.3 (2019).

[O J] O. Janzer. “Rainbow Turan number of even cycles, re-
peated patterns and blow-ups of cycles.” In: Israel J. Math.
().

[OV18] J. O’Neill and J. Verstraete. “A generalization of the Bol-
lobas set pairs inequality.” In: arXiv preprint arXiv:1812.00537
(2018).

[Osu21] M. Osumi. “Ramsey numbers of trails.” In: arXiv preprint
arXiv:2109.00734 (2021).
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