
Institute of Particle and Nuclear Physics

Multiphonon and shell model approaches
to nuclear spectroscopy
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Introduction

Atomic nuclei are fascinating examples of strongly interacting quantum many-body
systems. Over more than one hundred years since the discovery of the nucleus by
Ernest Rutheford, we have accumulated an enormous amount of theoretical and
experimental knowledge about nuclear structure. We have invented many nuclear
models, which, in connection with immense progress in experimental techniques,
allowed us to get at least a partial insight into a wide variety of nuclear phenomena.
Despite the complexity of the computational many-body methods employing state-
of-the-art models of internucleonic interactions, our understanding is built on several
simple concepts that capture essential features of most nuclei.

In the traditional view, the atomic nucleus is modeled as a self-bound system
consisting of strongly interacting point-like nonrelativistic nucleons. Though we
deal with many nucleons, it is remarkable that many nuclear properties are driven
by the motion of a few individual constituents. That is why microscopic models
became pillars of modern nuclear theory. The success of microscopic models would
not be possible without incredible progress in computational power, along with the
development of numerical algorithms and methods for large-scale diagonalizations
of effective nuclear Hamiltonians. Besides the single-particle features, an inherent
attribute of all nuclei is the existence of collective excitations, formed as a coherent
action of many nucleons. Representative examples are rotations of deformed nuclei
and vibrations occurring both in spherical and deformed systems. Since similar
types of collective motion are well-known in molecules, it is not surprising that many
theoretical concepts used for describing atomic and molecular systems were brought
to nuclear physics theory and vice versa. Typical examples are mean-field Hartree-
Fock(HF) and Hartree-Fock-Bogolyubov (HFB) methods, density functional theory
(DFT), or Random Phase Approximation (RPA).

An indispensable role in our understanding of nuclear spectra is played by the
phenomenological collective models of Bohr and Motellsson and the Interacting bo-
son model (IBM) of Arima and Iacchello, which grasp the main aspects of nuclear
collective motion by suitably chosen collective degrees of freedom. Altogether, dif-
ferent facets of nuclear structure demonstrate the uniqueness of atomic nuclei as
laboratories for studying the quantum many-body problem.

Although we fairly well understand the microscopic origin of collective modes
in nuclei, a precise quantitative description of such excitations in medium-heavy
and heavy nuclei by employing modern nucleon-nucleon interactions is still missing.
Therefore it persists an urgent need to develop novel many-body techniques and
approximation schemes that push the limits of present-day approaches toward a
unified description of low- and high-energy collective states.

My scientific work represents a little piece contributing to this ongoing, seemingly
neverending effort. I was mainly focused on developing microscopic approaches for
calculating spectra and collective electromagnetic transitions in spherical nuclei and
truncation schemes in shell model calculations. I am a co-author of 27 papers in
referred journals and about the same contributions to conference proceedings. The
submitted habilitation thesis provides an overview of problems I have worked on
and discusses selected results.

Most of the work was done in close collaboration with respected colleagues from
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Instituto Nazionale di Fisica Nucleare and Universita di Federico II, which was
initiated mainly during my post-doctoral stay in Naples in 2009-2010 and continues
until today.

The thesis comprises two parts and appendices with reprints of selected papers.
In chapter 1, I explain motivation and basic principles of microscopic methods com-
monly used to describe collective vibrations. The core of the thesis, section 1.3,
introduces the Equation of motion phonon approach (EMPM) for the description
of collectivity in spherical closed-shell nuclei and nuclei with one valence particle
(hole). This section is supplemented with nine papers attached in Appendix A. I
signifficantly contributed to formal development of this novel theoretical approach,
as well as to its practical implementation and numerical calculations. The chapter 2,
supplemented with four papers in Appendix B, is devoted to methods for truncation
of model spaces used in the shell model calculations, which I contributed to durig
my post-doc stay in Naples.

The work presented in the thesis was partly supported by the Czech Science
Foundation grants P203-13-07117S, P203-16-16772S, and P203-19-14048S and by
the Charles University Research Center UNCE/SCI/013.
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1. Nuclear collective vibrations

The quantum liquid drop picture of the atomic nucleus readily evokes an image of
surface vibrations when the system is excited with an external perturbation. Such vi-
brations are inherent to spherical and deformed nuclei across the whole mass table.
Apart from small amplitude oscillations, manifested as low-lying collective vibra-
tional states of specific angular momenta and parities, excitations corresponding to
a large-amplitude motion are well recognized in nuclear spectra. In this chapter,
we recapitulate the key quantities used to characterize collective states in atomic
nuclei, and further, we give an overview of commonly accepted microscopic models
used for their quantitative description.

1.1 Giant resonances

The most prominent examples of collective excitations in nuclei are giant resonances
(GR) - large amplitude oscillations of different types (shape, spin, isospin) and mul-
tipolarities (monopole, dipole, quadrupole, octupole) which can be invoked by an
external perturbation (e. g. photons or charged projectiles). They are formed by
a nuclear motion to which many individual nucleons contribute coherently. Giant
resonances are manifested as significant, broad humps in the cross sections of spe-
cific nuclear reactions and form prominent peaks in nuclear response functions of
corresponding types and multipolarities.

Electromagnetic probes play a unique role in the research of nuclear collectivity.
Indeed, an enormous amount of experimental and theoretical studies have been
devoted to electromagnetic nuclear response functions because they provide clean
and unique insight into the internal structure of nuclei.

The collectivity of an individual electromagnetic transition is related to its tran-
sition probability. For the transition from an initial state with spin Ji and parity πi
to a final state with spin Jf and parity πf we define reduced transition probability
as

B(i→ f,Xλ) =
|⟨f, Jf , πf ||M̂

X

λ ||i, Ji, πi⟩|2

2Ji + 1
, (1.1)

where M̂
X

λ is the electromagnetic transition operator, representing photon emission
or absorption of electric (X ≡ E) or magnetic (X ≡ M) type and multipolarity
λ1. A commonly accepted approximation used in nuclear structure calculations of
photoabsorption and γ decay processes is that the electromagnetic field interacts
with a system of nonrelativistic point-like nucleons. This simplified picture leads to

”standard” expressions for transition operators M̂
X

λ , which can be found in many
textbooks (e. g. [RS80]).

However, the density of nuclear states grows rapidly with increasing excitation
energy forbidding thus to identify individual transitions. Therefore it is more con-
venient to define the strength function

S(Xλ, ω) =
∑︂
f

B(i→ f,Xλ)δ(ω − ωfi) ≈
∑︂
f

B(i→ f,Xλ)ρ∆(ω − ωfi), (1.2)

1Alternative definitions of transition probability that use other conventions for the reduced
matrix element can be found in the literature.
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Fig. 1.1: The liquid-drop picture of selected collective modes in nuclei. Different types
and multipolarities determine the character of collective motion, e. g., breathing mode
(E0), dipole (E1) and quadrupole (E2) oscillations, scissor-like vibrations (M1), or twist
mode (M2). Adopted from [Kva22].

where ωfi = Ef − Ei denotes the excitation energy of a final state.

The δ-function is in calculations often replaced with appropriate smoothing func-
tion ρ∆(ω−ωfi) with finite width ∆, simulating the continuum and the coupling to
complex configurations.

The transition matrix elements ⟨f, Jf , πf ||M̂
X

λ ||i, Ji, πi⟩, which can be, in prin-
ciple, calculated within physically relevant (macroscopic or microscopic) nuclear
model is directly related to various experimental observables via definition 1.1. For
example, the photoabsorption cross section can be calculated by using the expression

σ(ω, i→ f) =
8π3ℏcα
e2

∑︂
λ,X=E,M

k2λ−1

[(2λ+ 1)!!]2
λ+ 1

λ
δ(ω − ωfi)B(i→ f,Xλ), (1.3)

where α is the fine structure constant, e is the elementary charge, c is the speed
of light, ℏ is the reduced Planck constant, and k = ω

ℏc is the wavenumber of the
incident photon.

The important attribute of nuclear states is their collectivity. The transition
strength can be used as a criterion to determine how collective is a particular state.
By using strength function definition 1.2 we can define energy weighted sum within
an energy interval ⟨ωmin, ωmax⟩ as

SXλ
EW (ωmin, ωmax) =

∫︂ ωmax

ωmin

S(Xλ, ω)ωdω. (1.4)

The collectivity in the energy interval ⟨ωmin, ωmax⟩ is then proportional to the frac-
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Fig. 1.2: Schematic picture of dipole excitations in spherical nuclei. The high-energy
states form IVGDR - collective oscillation of protons against neutrons. Neutron-rich
nuclei exhibit another type of dipole collective motion located near the neutron separation
energy (Sn), commonly interpreted as neutron skin oscillation against N = Z symmetric
core. While GDRs can be reasonably described as harmonic oscillations (one-phonon
states), lowest dipole excitations are formed from multiphonon excitations. Adapted
from [NuP15].

tion of energy weighted sum exhausted by states in this interval

w(ωmin, ωmax) =
SXλ
EW (ωmin, ωmax)

SXλ
EW (0,∞)

. (1.5)

Usually, we speak about GR if a significant fraction of the sum rule value SXλ
EW (0,∞)

(say 50% or more) is exhausted by transitions to states within the region of the
resonance. Basic attributes of GRs (position, strength, width) do not depend on
details in the microscopic structure of nuclei but rather on their bulk properties and
vary smoothly with the nuclear mass.

The mostly studied collective excitations are electric (X = E) dipole (λ = 1)
excitations. The high energy part - isovector giant dipole resonance (IVGDR) is
observed across the entire nuclide chart, with energy centroid

Ex ≈ 31.2A− 1
3 + 20.6A− 1

6MeV (1.6)

and width of several MeV [BF75].
Macroscopically, IVGDR can be seen as out-of-phase oscillations of protons

against neutrons (see fig. 1.1), as described by Goldhaber-Teller [GT48] and Jensen-
Steinwedel [SD50] hydrodynamical models. The E1 contribution to the photoab-
sorption cross section 1.3 is the most important one, and the IVGDR represents the
dominant part of total E1 strength. Therefore dipole approximation is often used
in the evaluation of the total photoabsorption cross section,

σtot ≈
16π3α

9e2

∫︂ ∞

0

ωS(E1, ω)dω, (1.7)

for which Thomas-Reiche-Kunh sum rule provides an estimate (see e. g. [HvdW01])

σtot ≈ 60
NZ

A
MeV.mb. (1.8)
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Electric dipole excitations have been the subject of theoretical and experimental
investigations for decades. However, only recent progress in experimental techniques
led to the accumulation of information not only about their gross features but also
details about their strength distributions, isospin character, and its relations to
neutron skin thickness and nuclear polarizability (for a review, see [BLT19]).

From a theoretical point of view, three main physical mechanisms are responsible
for the fine structures and widths of GRs. The first one is the fragmentation of
elementary particle-hole (ph) excitations (Landau damping), the second one is direct
particle emission (escape width), and the third one is the coupling of elementary ph
states to complex configurations.

A schematic plot of the E1 strength function is shown in fig. 1.2. Apart from
the broad IVGDR peak around 20 MeV, in the low energy tail of resonance below
a neutron separation energy, we observe transitions forming so-called Pygmy dipole
resonance (PDR). The widely accepted macroscopic view of the PDR is that it is a
manifestation of neutron skin oscillations against a symmetric (N = Z) core. Fur-
thermore, in the low-energy part of the spectrum, states which cannot be interpreted
as simple harmonic oscillations but rather as complicated multiphonon excitations
are present.

The experimental and theoretical interest in PDR is further motivated by the
fact that low-energy dipole strength influences the astrophysical r-process and thus
can dramatically impact the abundance of elements formed in the stellar environ-
ment [Gor98]. Other types of resonances, widely studied in the last decades with
electromagnetic probes, include electric quadrupole (E2), magnetic dipole (M1), and
monopole (E0) modes (for a review, see [HvdW01]). Their studies are indispens-
able not only from a nuclear structure perspective but provide essential inputs for
modeling neutron stars, supernovae explosions, and collisions of heavy ions. For ex-
ample, nuclear matter compressibility can be determined from properties of isoscalar
monopole strength functions [SY93].

Let us mention some recent measurements that substantially contributed to un-
derstanding the mechanisms responsible for forming collective states and revealed
their fine structures in spherical nuclei. Data extracted from (d, p) reactions and the
high-energy inelastic scattering of protons became a very powerful tool for the deter-
mination of various properties of IVGDR in 208Pb [SHB+20] and 120Sn [WSP+21].
The measurements at forward scattering angles in (p, p′) reactions were used to
extract information about fine structures of electric and magnetic dipole modes
[NCvT19]. Characteristic energy scales present in dipole responses of magic nu-
clei 208Pb [PFK+14], 40,48Ca [CDF+22] and isoscalar quadrupole responses of 40Ca
[UBC+11], 28Si and 27Al [UBC+16] were extracted from data by employing wavelet
analysis.

New precise data represent a challenge for the many-body theory because only
a comparison with theoretical predictions can shed light on mechanisms responsible
for observed fine structures in nuclear response functions.

1.2 Theoretical modeling of collective states

The unified microscopic theory of the atomic nucleus with powerful predictive power
is an unfulfilled dream of several generations of nuclear physicists. The well-known
obstacle which prohibits straightforward ab initio modeling of nuclei from the un-
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derlying theory of strong interactions - quantum chromodynamics (QCD), is its
nonperturbative behavior in the energy domain typical for nuclear physics. For-
tunately, we have a bridge connecting QCD with low-energy phenomena - chiral
perturbation theory (ChPT), which enables us to derive effective inter-nucleon in-
teractions. Despite the tremendous progress that has been achieved in the past
decade in constructing high-precision realistic 2- and 3-nucleon forces from ChPT
[EMN20], [EKR20], ab-initio modeling of collective states and, in particular, gi-
ant resonances is still limited to light systems. It is still helpful to rely on more
phenomenological models, which can provide a better quantitative description of
observed data.

The crucial idea in developing a theory of nuclear collective vibrations is to
replace fermionic degrees of freedom (nucleons) with boson-like excitations, which
serve as building blocks for modeling collective states. This recipe turned out to
be very useful in several areas of nuclear physics. Feschbach and Iachello, in their
pioneering works [FI74, FI73], used ph representation of bosons and showed that
spectra of closed-shell nuclei 16O, 40Ca could be described within interacting boson
approximation (IBA). From a practical point of view, they replaced many fermionic
(single-particle) degrees of freedom with a few collective phonons of bosonic type.
The omission of the Pauli principle and an unclear relation to the shell model picture
of the nucleus were the main shortcomings of the approach. However, analogously,
one can describe low-lying spectra of open-shell nuclei in terms of collective excita-
tions of valence particles. This assumption turned out to be very useful and led to
the formulation of the Interacting Boson model (IBM) (Arima and Iachello [AI75],
[AI76], [AI78]).

The IBM can be understood as a truncated shell model where identical fermions
occupy valence space and form monopole and quadrupole boson-like pairs. This way,
one can effectively reduce the number of degrees of freedom and computational cost.
The efficacy of IBM led to its spread to many areas of nuclear physics, but approx-
imations adopted in IBM forbade establishing a simple link to more sophisticated
microscopic models.

In microscopic approaches, the mean-field picture is the starting approximation
that simplifies the solution of the many-body problem. There are two commonly-
used ways to determine proper single-particle degrees of freedom. The first one,
adopted in most shell model (SM) calculations, extracts single-particle energies from
experimental ”‘single-particle” levels of neighboring odd nuclei. In the selfconsis-
tent mean-field theories, instead, we employ HF(HFB) method to calculate single-
(quasi)particle basis, energies, and residual interactions from the same Hamiltonian.
The selfconsistency is crucial for describing nuclear collectivity.

1.2.1 Microscopic models of harmonic vibrations

In the phenomenological models, unknown parameters are tuned to obtain the best
agreement of principal characteristics of collective states (energies, transition proba-
bilities) with experimental data. Microscopic models are more ambitious since they
attempt to attain a realistic description of collective states from underlying nucleon-
nucleon interactions. The microscopic picture is based on the idea of a mean field,
which approximates the exact ground state of the nucleus. However, independent
particle motion is perturbed by residual nucleon forces, which give rise to the cor-
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relations. Indeed, the long-range part of the residual interaction is responsible for
the emergence of collective vibrational states. In many cases, such states can be
fairly well described by a harmonic approximation. Typical examples are (nearly)
harmonic oscillations of the nuclear shape, but also collective vibrations related to
other degrees of freedom (e. g., spin-flip transitions, pairing vibrations) were ob-
served in many atomic nuclei.

This section is devoted to the mostly adopted microscopic method used for mod-
eling collective vibrations in nuclei - the Random Phase Approximation (RPA). The
derivation of RPA equations, with a detailed discussion about their formal proper-
ties, is part of many textbooks (e.g., [RS80],[Row70]); therefore, the discussion is
restricted just to crucial aspects of RPA in ph formalism.

Let us assume a many-body system described by a 2-body Hamiltonian Ĥ ex-
pressed in second quantization and HF representation

Ĥ =
∑︂
ij

ϵiâ
†
i âi +

∑︂
ijkl

Vijkl : â
†
i â

†
j âlâk : +EHF , (1.9)

where â†i , âi are fermionic creation and annihilation operators and ϵi correspond-
ing single-particle energies. We assume that single-particle basis was obtained in
a selfconsistent HF calculation and, therefore, the residual 2-body part can be ex-
pressed via normal ordering : : with respect to HF vacuum state |HF⟩ with energy
EHF = ⟨HF| Ĥ |HF⟩.

The exact ground state
⃓⃓
0̃
⟩︁
, excited states |λ⟩ and corresponding eigenergies

E0, Eλ can be, in principle, obtained by solving the Schrödinger equation

Ĥ |λ⟩ = Eλ |λ⟩ , Ĥ
⃓⃓
0̃
⟩︁
= E0

⃓⃓
0̃
⟩︁
. (1.10)

For strongly interacting many-body systems like nuclei, it is impossible to find exact
solutions of equations 1.10, and one has to adopt suitable approximation schemes.
Although the strong character of interaction prohibits fast convergence of absolute
energies and wave functions, relative observables can still be effectively described
without the knowledge of (quasi)exact solutions. In the case of (quasi)harmonic
vibrations, one assumes that collective excitations are created by the action of a

phonon operator Q̂
†
λ on the ground state

⃓⃓
0̃
⟩︁
of the system, i. e.,

|λ⟩ = Q̂
†
λ

⃓⃓
0̃
⟩︁
, Q̂λ

⃓⃓
0̃
⟩︁
= 0. (1.11)

The introduction of phonon-like excitations 1.11 allows us to rewrite 1.10 to more
convenient form

[Ĥ, Q̂
†
λ]
⃓⃓
0̃
⟩︁
= ℏωλQ̂

†
λ

⃓⃓
0̃
⟩︁
, (1.12)

where ℏωλ = Eλ − E0 denotes the excitation energy. As the phonon operators Q̂
†
λ

and vacuum state
⃓⃓
0̃
⟩︁
are unknown a priori, in practical calculations, some assump-

tions about their form must be introduced. Their particular choice determines the
approximation used in solving the many-body problem2.

2In microscopic models, the phonon operator is chosen to capture a general type of excitation,
not only a collective one, and allows for treating non-collective (single-particle) and collective states
on equal footing.
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Following the standard prescription [Row68],[RS80], we evaluate the expectation

value of double commutators [δQ̂λ′ , [Ĥ, Q̂
†
λ]] in the ground state as⟨︁

0̃
⃓⃓
[δQ̂λ′ , [Ĥ, Q̂

†
λ]]

⃓⃓
0̃
⟩︁
= ℏωλ

⟨︁
0̃
⃓⃓
[δQ̂λ′ , Q̂

†
λ]
⃓⃓
0̃
⟩︁
. (1.13)

In the previous expression
⟨︁
0̃
⃓⃓
δQ̂λ′ denotes a general state generated as a variation

of phonon operator δQ̂
†
λ′ .

As a starting point, a reasonable approximation of the exact ground state
⃓⃓
0̃
⟩︁
has

to be calculated. In the case of close (sub-)shell nuclei HF (or phenomenological)
mean-field state is adopted (

⃓⃓
0̃
⟩︁
≈ |HF⟩). In open-shell systems, short-range pairing

correlations have to be taken into account. This can be achieved by introducing
quasiparticles within HFB theory.

The next step requires construction of a many-body basis suitable for the de-
scription of excited states. In the closed-shell systems, elementary ph excitations of
the HF mean-field and, in the open-shell systems, 2-quasiparticle (qp) excitations of
the HFB vacuum are used as building blocks of collective excitations. Their mixing,
caused by the long-range part of residual interaction, gives rise to the appearance
of collective modes. The following discussion is restricted to spherical closed-shell
nuclei and ph formalism.

The simplest microscopic model of nuclear vibrations, generally known as the
Tamm-Dancoff approximation (TDA), assumes that excited states are combinations
of elementary 1p-1h configurations only. Thus, TDA phonon operator of the form
is assumed

Q̂
†(TDA)

λ =
∑︂
ph

Xλ
phâ

†
pâh. (1.14)

Here the operators â†p, âh create particle, hole states respectively and Xλ
ph denotes

corresponding ph amplitude. From the definition 1.14 we see that TDA vacuum is
given by HF state because

Q̂
(TDA)

|HF⟩ = 0. (1.15)

Undoubtedly HF vacuum cannot represent an exact ground state of a closed-shell
nucleus because correlations caused by the residual interaction can significantly alter
independent particle motion. This shortcoming of TDA is partially cured in more
sophisticated ph theory - Random phase approximation (RPA). In RPA the phonon
operator is defined as

Q̂
†(RPA)

λ =
∑︂
ph

Xλ
phâ

†
pâh − Y λ

phâ
†
hâp, (1.16)

and the RPA ground state is defined by equation

Q̂
(RPA)

λ |RPA⟩ = 0. (1.17)

In practice, RPA state is unknown and therefore further approximation must be
adopted to calculate amplitudes Xλ

ph, Y
λ
ph. For this purpose we assume a variation

of phonon state

δQ̂
(RPA)

λ =
∑︂
ph

δXλ∗
ph â

†
hâp − δY λ∗

ph â
†
pâh, (1.18)
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and upon insertion into 1.13 we obtain set of equivalent equations

⟨RPA| [â†hâp, [Ĥ, Q̂
†(RPA)

λ ]] |RPA⟩ = ℏω(RPA)
λ ⟨RPA| [â†hâp, Q̂

†(RPA)

λ ] |RPA⟩

⟨RPA| [â†pâh, [Ĥ, Q̂
†(RPA)

λ ]] |RPA⟩ = ℏω(RPA)
λ ⟨RPA| [â†pâh, Q̂

†(RPA)

λ ] |RPA⟩ .

Despite the simple form of phonon operator 1.16, evaluating the aforementioned
matrix elements is a complex task if a correlated RPA vacuum state is considered.
Therefore, in realistic calculations correlated RPA state is usually replaced by HF
vacuum, i. e.,

⟨RPA| [â†hâp, â
†
p′ âh′ ] |RPA⟩ ≈ ⟨HF | [â†hâp, â

†
p′ âh′ ] |HF ⟩ = δpp′δhh′ . (1.19)

This widely adopted simplification, generally denoted as the quasiboson approxima-
tion (QBA) [BET61], is certainly plausible if the exact ground state does not differ
much from HF vacuum. Consistently with 1.19 we can write

⟨RPA| [Q̂
(RPA)

λ , Q̂
†(RPA)

λ′ ] |RPA⟩ ≈ δλλ′ , (1.20)

i. e., the RPA phonons obey bosonic commutation relations within QBA and the
Hamiltonian can be expressed in terms of RPA phonon operators as

Ĥ ≈
∑︂
λ

ℏωλQ̂
†(RPA)

λ Q̂
(RPA)

λ + ERPA, (1.21)

where the energy of the RPA ground state is given by

ERPA = EHF −
∑︂
λ

ℏωλ

∑︂
ph

|Y λ
ph|2. (1.22)

From 1.21 it follows that each RPA mode can be interpreted as a harmonic vibration
of the ground state with frequency ωλ. For convenience, RPA equations can be
formulated in matrix form(︃

A B
B∗ A∗

)︃(︃
Xλ

Y λ

)︃
= ℏωλ

(︃
1 0
0 −1

)︃(︃
Xλ

Y λ

)︃
, (1.23)

where elements of A and B are given by

Aphp′h′ = ⟨HF| [â†hâp, [Ĥ, â
†
p′ âh′ ] |HF⟩

Bphp′h′ = ⟨HF| [â†hâp, [Ĥ, â
†
h′ âp′ ] |HF⟩ .

By solving 1.23 we obtain vectors Xλ and Y λ and, thus RPA phonons 1.16 and
excitation energies ℏωλ. However, absolute values of backward amplitudes |Y λ|
are expected to be much smaller compared to forward ones |Xλ|; otherwise, QBA
1.19 would not be justified and RPA would break down. The presence of nonzero
backward amplitudes Y λ implies that vacuum |RPA⟩ is no longer a mean-field state,
but it contains correlated (2p-2h) virtual excitations. Therefore RPA is often entitled
as ph theory with ground state correlations.

By putting Y λ = 0, RPA equations 1.23 are reverted to TDA. The main benefit
of RPA is given by the presence of virtual ground state correlations (i. e. Y λ ̸= 0)
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Fig. 1.3: Evolution of isovector dipole strength in Ca isotopes calculated within RPA.
With an increasing number of neutrons, the strength is spread over more states and a low-
lying bump, interpreted as Pygmy resonance, becomes more prominent. The calculation
was carried out with chiral NNLOopt potential supplemented with a density-dependent
phenomenological correction mimicking 3-body contact interaction [KLIV+14]. The
strength function was obtained from discrete B(E1) distribution according to prescrip-
tion 1.2 with ∆ = 0.5MeV.

which can significantly enhance transition probabilities of low-lying collective states,
in agreement with experimental data.

RPA fulfills several important formal properties. For example, it can be shown
that RPA represents a small amplitude limit of time-dependent mean-field methods
[RS80]. Moreover, spurious modes connected with symmetry breakings of the mean-
field Hamiltonian are separated from physical excitations (see 1.3.3 for more details)
in RPA, and RPA strength distributions preserve energy-weighted sum rules. Nowa-
days, RPA is a routinely used tool for describing low-energy vibrations and GRs of
various types in spherical as well as deformed nuclei.

Because of its versatility, RPA was widely adopted in systematic studies of nuclei
with purely phenomenological interactions, as well as within the context of mod-
ern DFT with effective nuclear forces of nonrelativistic (Skyrme [CCVC13], Gogny
[PBB05]) and relativistic type [PRNcvacV03]. Furthermore, in recent years, RPA
calculations with realistic 2-body [PPHR06, HPR11, BKI+14], and 2- + 3-body
[WHX+18, HWY+20] potentials, were carried out. Since ab-initio methods employ-
ing modern nucleon potentials are still limited to light, and medium-heavy systems,
RPA calculations with realistic forces can serve as an additional testing ground for
developing modern nucleon-nucleon potentials suitable for heavier systems.
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1.2.2 Extensions of RPA

RPA models, especially the ones based on DFT, were very successful in determin-
ing gross characteristics of giant resonances (energy centroids or total transition
strengths) across the nuclear chart. However, to describe the widths of GRs and
complex low-lying excitations, 1-phonon (or first-order) RPA/TDA methods must
be extended. Many-body approaches which extend RPA and incorporate more com-
plex excitations are usually denoted as higher (extended) RPA models. A plethora
of such methods was developed and applied in various areas of nuclear physics. A
recent comprehensive review of RPA extensions summarized development in this
area achieved within the last 20 years [SDD+21].

This section gives a short overview of several state-of-the-art ”beyond-RPA”
approaches that have been recently successfully implemented in realistic calculations
of low-energy collective vibrations and giant resonances.

Second RPA

The most straightforward extension of RPA, second(order) RPA (SRPA) was origi-
nally formulated by Sawicky [Saw62], who studied the effect of 2p-2h states on the
spectrum of 16O. Later, a detailed derivation of the SRPA and its relation to gen-
eral dissipative processes and damping of nuclear collective modes was provided by
Yannoules et al. [YDG83, Yan87].

In SRPA, we supplement the phonon operator with terms generating 2p-2h parts
of the wave function. Therefore, the SRPA phonon operator is defined straightfor-
wardly as

Q̂
†(SRPA)

λ =
∑︂
ph

Xλ
phâ

†
pâh − Y λ

phâpâ
†
h +

+
∑︂

p1p2h1h2

X λ
p1p2h1h2

â†p1 â
†
p2
âh1 âh2 − Yλ

p1p2h1h2
âp1 âp2 â

†
h1
â†h2

. (1.24)

In analogy with RPA 1.23, a matrix form of SRPA equations can be derived
for amplitudes Xλ, Y λ and X λ,Yλ [Yan87, GGC10, PR09]. Without ground state
correlations (i. e., backward amplitudes Y,Y are set to zero) SRPA is reduced to
the second(order) TDA (STDA). Unfortunately, the inclusion of 2p-2h configurations
considerably increases the dimensions of model spaces and, therefore, SRPA calcula-
tions are computationaly demanding. Thanks to the rapid increase of computational
power and the development of numerical libraries in recent years, large-scale SRPA
calculations for spherical medium-heavy nuclei became feasible. Including pairing
correlations and deformation degrees of freedom leads to an enormous increase in
model space dimensions; hence SRPA calculations for deformed nuclei remain be-
yond the reach of present-day numerical codes.

Large-scale SRPA calculations of electromagnetic responses in selected closed-
shell nuclei were carried out with realistic interaction within the framework of the
Unitary Correlation Operator Method (UCOM) [PR09, PR10]. SRPA, in general,
produces results more consistent with experimental data than RPA (see fig. 1.4).
SRPA strength functions are considerably shifted down in energy and more frag-
mented, which contributes to the spreading width of resonances. On the other
hand, some properties of SRPA calculations are problematic. As demonstrated by
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Fig. 1.4: Comparison of RPA and SRPA isoscalar monopole (ISM), isoscalar quadrupole
(ISQ) and isovector dipole (IVD) strength functions in 16O and 40Ca. Adopted from
[PR09].

Papakonstantinou [Pap14], SRPA might provide unphysical low-lying states and un-
stable solutions. The problem of instabilities in SRPA and extended RPA was also
studied in [Tse13]. Unfortunately, SRPA does not allow the separation of spuri-
ous solutions from the physical spectrum, and therefore, low-lying states contain
spurious admixtures (see 1.3.3).

Despite the problems mentioned above, SRPA was employed in the context of
DFT theories based on Skyrme [GGC10, GGC11, GGE15] and Gogny [GGDD+12]
interaction. Recent applications include a systematic study of quadrupole strength
up to 208Pb [VGG18] and calculations of dipole strength and polarizability in 48Ca
[GGV18]. Moreover, the formalism for charge-exchange transitions was developed
and applied to calculations of Gammow-Teller transitions [GGE20] in 48Ca. The
influence of tensor force on low-lying 0+, 2+, 3−states in closed-shell nuclei within
SRPA was studied recently [YBSZ21].

SRPA calculations shed light on the nature of quadrupole resonances in spher-
ical closed-shell nuclei. Fine structures of quadrupole strength function in 208Pb
[LMv+00], 40Ca[UBC+11] and 28Si [UBC+16] were extracted from high resolution
(p, p′) and (e, e′) experiments and compared with SRPA predictions. These studies
confirmed that SRPA accounts for important effects leading to a better description
of fragmentation in strength functions and spreading widths of resonances.
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Extended theory of Fermi Finite Systems and
Quasiparticle Time Blocking Approximation

An alternative many-body approach that uses RPA as an initial step is the Extended
theory of Fermi Finite Systems (ETFFS) [KST04]. This self-consistent approach,
developed by Migdal [Mig67], is based on the theory of finite Fermi systems and
Green-functions formalism. ETFFS naturally extends RPA by including configura-
tions of 1p-1h×RPA phonon type. In this configuration space, one can derive an
effective interaction and charges and consider ground-state correlations in a consis-
tent way. The essential feature of ETFFS is that it incorporates all main sources
of resonance widths since it treats continuum effects, Landau damping, as well as
complex configurations.

Moreover, ETFFS was combined with covariant relativistic DFT [LRV07, RL09].
Conceptually similar to ETFFS is the Quasiparticle Time Blocking Approxima-
tion (QTBA) [LT07], which generalized the Green functions formalism by including
2qp×RPA phonon configurations. Also, the relativistic version of QTBA (RQTBA)
[LRT08] was developed to extend relativistic QRPA. RQTBA was used in several
theoretical investigations of low-lying dipole strength distributions, e.g., in the study
of dipole excitations in the chain of even-even Calcium isotopes [EL16].

Recently, a finite temperature extension of RQTBA, suitable for studies of highly
excited states in medium-heavy nuclei, was presented [WL19]. Further development
of the Green functions approach, within the equation of motion framework, made
feasible calculations with even more complex 2qp×2 -phonon states [LS19]. The
calculations of dipole response functions in selected Calcium and Nickel isotopes
demonstrated that such configurations might induce non-negligible energy shifts
and further redistribution of transition strengths.

Particle Vibrational Coupling model

Another example of the method based on RPA, closely related to ETTFS, is Particle
Vibrational Coupling (PVC) model [BBB83]. In the PVC, the interaction between
low-lying collective states and individual nucleons causes the modification of single-
particle states and the damping of giant resonances.

Various PVC calculations can be found in the literature. Whereas older ones rely
on phenomenological interactions, modern self-consistent implementations adopt
nonrelativistic DFT (with Skyrme interaction) [CSB10], [SCRM20], as well as, rela-
tivistic DFT [LR06]. Skyrme effective forces were also employed in extended mean-
field theory for a systematic study of coherent and incoherent damping mechanisms
of giant resonances in closed-shell nuclei [LAC04].

Quasiparticle-Phonon model

RPA phonons are used as building blocks of the Quasiparticle-Phonon model (QPM),
developed by Soloviev and collaborators [Sol92]. In QPM, residual 2-body interac-
tion is approximated by a sum of separable multipole-multipole terms, which allows
covering large model spaces with complex states up to 3-phonons in an approxi-
mative way. Historically, the separable interaction with adjustable parameters and
phenomenological mean-field of Woods-Saxon type were used in the calculations.
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The parameters were adjusted in order to describe the properties of low-lying col-
lective transitions.

Once the (Q)RPA phonons Q̂
†
λ are generated, QPM Hamiltonian can be ex-

pressed as

ĤQPM =
∑︂
λ

ℏωλQ̂
†
λQ̂λ + Ĥres, (1.25)

where Ĥres describes coupling between multiphonon states (see [Sol92] for details).
The Hamiltonian 1.25 is then diagonalized in a truncated multiphonon basis con-
structed as superpositions of 1-,2-, and 3-phonon states built from low-lying (Q)RPA
phonons

|Ψν⟩ = {
∑︂
i

Xν
i Q̂

†
i +

∑︂
ij

Y ν
ij Q̂

†
iQ̂

†
j +

∑︂
ijk

Zν
ijkQ̂

†
iQ̂

†
jQ̂

†
j} |Ψ0⟩ , (1.26)

with ground-state |Ψ0⟩ calculated in Q(RPA).
The QPM wave functions are properly antisymmetrized since exact commutation

relations (beyond QBA) are assumed for (Q)RPA phonons. Moreover, the config-
uration space spanned by QPM states is large enough for a unified description of
low-lying multiphonon states and giant resonances in heavy spherical nuclei [TLS04],
as well as systematic studies of low-lying collective states in deformed nuclei (see
review [IPS+12]).

Within DFT a self-consistent version of QPMwas formulated [TL16] and adopted
in the investigation of PDR in Tin isotopic chain [TL08]. QPM has become a pow-
erful theoretical tool for interpretation of data extracted from photon-scattering
[SRT+08, OTEL+14], (d, p) and resonant proton scattering [SHB+20], [WSP+21]
experiments in medium-heavy and heavy nuclei. Recently, a new high-precision
measurement of quadrupole response in 112,114Sn supplemented with QPM calcula-
tions has revealed strong evidence of Pygmy quadrupole resonance in these nuclei
[TSLZ19].
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1.3 Equation of motion phonon method

In the previous section, we gave an overview of selected microscopic methods for
describing collective states in nuclei. Coherent superpositions of elementary exci-
tations give rise to the appearance of basic harmonic modes, which can be treated
as phonons. It is, therefore, legitimate to use phonons as building blocks of more
complex states and express nuclear wave functions as superpositions of multiphonon
states in a similar fashion as done in QPM.

The practical obstacle prohibiting calculations in spaces spanned by multiphonon
states is a nontrivial evaluation of Hamiltonian in such bases. Straightforward cal-
culation of matrix elements of a general 2-body Hamiltonian is practically unfeasible
for more than 2-phonon configurations in J-coupled formalism. On the other hand,
the utilization of coupled basis is convenient because it can significantly reduce
model space dimensions.

We suggested how to solve this problem in [AKI+07], where an iterative method
for the exact evaluation of Hamiltonian in bases spanned by TDAmultiphonon states
was introduced. However, the first application [AKI+08] used 1p1h×TDA phonon
configurations and was not fully self-consistent.

The shortcomings were surpassed in the upgraded formulation of the method
[BKLI+12a] (reprint A.2), which used direct products of TDA phonons, and al-
lowed an effective truncation of multiphonon model spaces. The approach, entitled
the Equation of motion phonon method (EMPM), is a natural extension of TDA,
accounting for multiphonon configurations. This section summarizes essential steps
in the derivation of EMPM and presents several applications in closed-shell and
neighboring odd nuclei.

1.3.1 EMPM for even-even systems

The key idea of EMPM is the partitioning of model space into phonon subspaces for
which the eigenvalue problem can be solved independently. For this purpose, the
full model space H is decomposed into phonon subspaces Hn

H =
∑︂

n=0,1,2...

⊕Hn, (1.27)

where each subspace is spanned by a set of n−phonon states with good angular
momenta J . It is convenient to construct such states iteratively as products of TDA

phonon operator Q̂
†
λ and (n− 1)-phonon states |αn−1, J

′⟩ ∈ Hn−1 according to

|(λ× αn−1), JM⟩ = [Q̂
†
λ × |αn−1, J

′⟩]JM . (1.28)

Here and in the forthcoming text, it is assumed that TDA phonons Q̂
†
λ are con-

structed as spherical tensors of rank Jλ, and the shorthand notation of spherical
tensor coupling (Jλ + J ′ = J) is used, i. e.,

[Q̂
†
λ × |αn−1, J

′⟩]JM =
∑︂
MλM ′

(JλMλJ
′M ′|JM)Q̂

†
λ,JλMλ

|αn−1, J
′M ′⟩ . (1.29)

For simplicity, we also omit angular momenta projections because J−coupled for-
malism allows us to express any quantity in terms of reduced matrix elements.
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A general n-phonon state |αn, J⟩ ∈ Hn can be expanded into a basis 1.28

|αn, J⟩ =
∑︂

λ,αn−1

Cαn
λαn−1

|(λ× αn−1), J⟩ . (1.30)

The iteration procedure starts for n = 0, assuming that the subspace H0 contains
only HF vacuum. Since TDA phonons are built from 1p-1h excitations , from 1.30
it is obvious that any state |αn, J⟩ is a linear combination of np-nh configurations
only.

Let us search for correlated states 1.30 which diagonalize the Hamiltonian in
each n−phonon subspace Hn, i. e.,

⟨αn, J | Ĥ |α′
n, J

′⟩ = Eαnδαn,α′
n
δJJ ′ , n = 0, 1, 2... (1.31)

The calculation of eigenenergies Eαn and n−phonon eigenstates |αn, J⟩ requires an
evaluation of Hamiltonian matrix in the basis 1.28. However, this task is practically
unfeasible in the J−coupled scheme for n > 2. Instead of direct calculation we
assume that states αn−1 in the expansion 1.30 diagonalize the Hamiltonian in the
subspace Hn−1, i. e. eigenvalue problem 1.31 has been already solved for (n − 1).
Then, from 1.31 it follows

⟨αn, J | [[Ĥ, Q̂
†
λ]× |αn−1, J

′⟩]J = (Eαn − Eαn−1) ⟨αn, J | [Q̂
†
λ × |αn−1⟩]J . (1.32)

The expansion of commutator [Ĥ, Q̂
†
λ] is simple for an uncoupled representation but

requires some tedious manipulations in the J scheme. Nevertheless, as we showed
in [BKLI+12a] (reprint A.2), the equation 1.32 can be rewritten to a generalized
eigenvalue problem in n−phonon space

HnC = (AnDn)C = EnDnC. (1.33)

The matrix Hn = AnDn is the representation of the Hamiltonian in the basis 1.28

(Hn)λαn−1,λ′α′
n−1

= ⟨(λ× αn−1), J | Ĥ
⃓⃓
(λ′ × α′

n−1), J
⟩︁

(1.34)

and Dn is the metric (overlap) matrix

(Dn)λαn−1,λ′α′
n−1

=
⟨︁
(λ× αn−1), J

⃓⃓
(λ′ × α′

n−1), J
⟩︁
. (1.35)

The expansion coefficients Cαn
λαn−1

in 1.30 are nothing but components of eigenvectors
C in 1.33. In general, the eigenvalue problem 1.33 is defined in overcomplete model
space, and one has to extract a linearly independent set of basis states before the
diagonalization.

The virtue of EMPM is that matrices An,Dn in arbitrary n-phonon subspace
can be evaluated iteratively from quantities dependent on eigenstates |αn−1, J⟩ of
the same Hamiltonian in (n − 1)-phonon subspace. In particular, matrix elements
of An,Dn depend on particle-particle (pp) and hole-hole (hh) densities

ρα′
n−1αn−1

([i× j]J) = ⟨αn−1, Jαn−1||[â
†
i × b̂j]

J ||α′
n−1, Jα′

n−1
⟩, (1.36)

and phonon amplitudes

X
αn−1

λαn−2
= ⟨αn−1, Jαn−1 ||Q̂

†
λ||αn−2, Jαn−2⟩. (1.37)
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The operator â†i ≡ â†jimi
, b̂i ≡ (−1)ji+mi âji−mi

creates particle, hole occupying i−th
spherical single-particle orbit with angluar momentum ji and projection mi, respec-
tively.

Let us notice that densities 1.36 are defined for the states from the same phonon
subspace, and therefore pair of indices ij must be either pp or hh type (ph or hp
density is zero). The expression for amplitude 1.37, instead, contains states which
differ by one phonon. The formulas for iterative calculation of matrix elements
1.34,1.35 can be found in [BKLI+12a] (reprint A.2).

Once matricesAn,Dn are calculated we diagonalizeHn and obtain eigensolutions
in n−phonon space. The algorithm can be further repeated in (n + 1)-phonon
subspace while keeping its formal simplicity.

After pre-diagonalizations, the Hamiltonian can be formally written as

Ĥ =
∑︂
n

∑︂
αn,J

Eαn |αn, J⟩ ⟨αn, J |+
∑︂

nn′,n ̸=n′

∑︂
αn,α′

n,J

|αn, J⟩ Ĥ ⟨α′
n, J | . (1.38)

The first term in 1.38 corresponds to diagonal sub-blocks of Hamiltonian in a basis
composed of n−phonon eigenstates, while the second describes couplings between
subspaces with different n. Finally, the total EMPM Hamiltonian matrix, composed
of diagonal square blocks and off-diagonal rectangular dense sub-blocks (see fig.
1.5), can be constructed and diagonalized. After the final diagonalisation EMPM
eigenstates are given by

|Ψ, J⟩ =
∑︂

n=0,1,2...

∑︂
αn

Zn
αn

|αn, J⟩ , (1.39)

where Zn
αn

are the amplitudes of multiphonon eigenstates {|αn, J⟩ , n = 0, 1, 2...}.
The EMPM incorporates several approximation schemes, depending on the max-

imum number of phonons n in the model space. An initial step (n = 0) consists in
determining a reference state (HF vacuum). EMPM equations are reduced to TDA
for n = 1. EMPM for n = 2 is equivalent to STDA if the ground-state correlations
are neglected and all single-particle configurations within a model space are taken
into account.

EMPM possesses several advantages compared to STDA and SRPA. Firstly, it
can be naturally extended for odd systems and n > 2 while preserving the simplicity
of formalism. This task is hardly achievable in STDA and SRPA. Since EMPM is
formulated solely in the phonon language, calculations requiring a drastic basis
truncation are expected to provide more stable results. The second advantage is the
treatment of spurious modes connected with the violation of translational invariance
of Hamiltonian in many-body calculations. This problem is discussed in section
1.3.3.

Applications of EMPM in closed-shell nuclei

The following part is a short overview of EMPM applications in closed-shell nuclei.
Selected papers related to EMPM are enclosed in the appendix of the thesis.

The derivation of EMPM formalism in the angular momentum coupled basis
and its first implementation with the inclusion of up to 3-phonon configurations for
the description of electric responses in 16O was presented in [BKLI+12a] (reprint
A.2). Numerical calculations with phenomenological and HF single-particle bases
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Fig. 1.5: Block-diagonal structure of EMPM matrix for a general 2-body Hamiltonian
obtained with the iterative scheme for generating multiphonon states.

demonstrated the effect of 2- and 3-phonon states on strength distributions, as well
as ground state correlations. The fragmentation of E1 response in 208Pb was studied
in the forthcoming paper [BKLI+12b].

The effect of 2-phonon states on ground-state correlation energies of light double
magic nuclei was investigated in [DGHK+17] (reprint A.5). For this purpose, we
adopted Hamiltonian with NNLOopt potential derived from ChPT, which was opti-
mized with the intention of minimizing the effect of 3-body nucleon forces [EBF+13].
We demonstrated that NNLOopt potential provides HF solutions, which account for
≈ 40-56 % of total binding energy for light, as well as heavy nuclei (Fig. 1.6).

EMPM calculation showed that missing contribution to ground-state energy of
4He, 16O, 40Ca comes mainly from the coupling between HF and 2-phonon states,
but corrections due to the correlations to radii remained tiny and insufficient to
describe discrepancies with experimental data. Further, we demonstrated that the
2-phonon components of ground-state wave functions were spread over many states
with small individual contributions, but their combined effect produced significant
correlation energies. We concluded that the inclusion of coupling between 2- and
4-phonon states would further improve the agreement with the data. However, large
dimensions of 4-phonon spaces prohibited such extended EMPM calculations.

NNLOopt potential fails in the description of bulk properties of heavier systems
similarly like other soft potentials (UCOM [RPP+06], Daejeon16 [SSK+16], poten-
tials softened by similarity renormalization group approach [RRH08]). It is apparent
that a trend of overbinding heavier systems is linked with an underestimation of nu-
clear radii. From a practical point of view, soft potentials are a preferred choice
in many-body calculations because they exhibit a faster convergence of observables
in smaller model spaces. A typical undesired feature, however, is an unsatisfactory
description of giant resonances in RPA calculations. The energy centroids tend to
be systematically shifted to higher energies particularly in heavier nuclei [PPHR06].

Such behavior is typical for all softened nucleon potentials and can be partially
cured by introducing a phenomenological density-dependent correction to the in-
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Fig. 1.6: Systematic of ground-state energies calculated from realistic potential
NNLOopt within HF approximation and HF + second-order many-body perturba-
tion theory (HF+PT2) . Different colors represent results obtained for several val-
ues of ℏω parameter of initial harmonic oscillator single-particle basis. For details see
[DGHK+17](reprint A.5).

teraction, which mimics omitted 3-body forces [HPR11, PVK21]. Therefore we
adopted such correction in the HF(B)+(Q)RPA and (Q)TDA studies of strength
distributions for selected oxygen and tin isotopes [BKI+14] (reprint A.1).

EMPM was initially designed as a method for studying fine structures of collec-
tive states, especially giant resonances. Calculations up to 2-phonons with NNLOopt

potential were carried out to investigate low-lying dipole responses and the spread-
ing widths of IVGDR in 132Sn [KLIV+14] (reprint A.3) and 208Pb [KLIV+15]. As
already pointed out, soft interactions provide single-particle spectra with large en-
ergy gaps between major shells resulting in incorrect predictions for GDR energies.
Therefore, phenomenological corrections mimicking the effects of 3-body interaction
were fitted to reproduce GDR centroids in the abovementioned EMPM calcula-
tion. The width and shape of GDR were predicted in EMPM calculations with
small smoothening parameter, as the effect of the strong coupling between the 1-
and 2-phonon configurations which caused considerable fragmentation of transition
strength. Calculated TDA transitions (left panel (a) of 1.7) exhibit several peaks
with the most collective part around 13 MeV, whereas EMPM strength function is
spread over thousands of states in the same energy region, with significant (or even
dominant) 2-phonon components (left panel (b) of 1.7).

The low-lying states around 6 − 8 MeV remain predominantly 1-phonon, but
EMPM predicted many more states. Details, especially in the low-energy part of
spectra, depend critically on HF single-particle levels. Therefore EMPM calculations
provide an additional information for constructing and fine-tuning of realistic nu-

24



Fig. 1.7: B(E1) strength distributions in 208Pb calculated within TDA (left panel (a))
and EMPM (left panel (b)). Transition densities of selected states corresponding to PDR
(right panel (a)) and GDR (right panel (b)) energy regions. Adopted from [KLIV+15].

cleon potentials. Comparison of calculated and experimental photoabsorption cross
sections shown in fig. 1.8 demonstrates that EMPM calculation provides better
agreement with experimental data than QRPA. Moreover, it is comparable to shell
model (SM) calculation with empirical single-particle energies and phenomenological
adjustments of effective interaction.

Transition densities calculated within EMPM support a picture of low-lying E1
transitions as oscillations of neutrons against N = Z core (see right panel of 1.7).
This picture of PRD resonance is undoubtedly an oversimplification, as demon-
strated by Repko et al. [RRNK13], within the Skyrme+RPA model. Their analysis
of transition currents revealed that low-energy 1− states in 208Pb are mixtures of
toroidal, compression, and linear flows. EMPM offers an opportunity to investi-
gate how the presence of complicated multiphonon states would alter them. Such
investigations are planned for the near future.

Applications of EMPM in open-shell nuclei

So far, the discussion has been reduced to ph formalism, limiting thus EMPM to
closed-shell systems. In most cases, microscopic models for open-shell nuclei are
rooted in the quasiparticle formulation of RPA (TDA) - QRPA(TDA). However,
even-even open-shell nuclei exhibit low-energy positive parity valence excitations
of different multipolarities, which can be strongly coupled to core excitations of
ph type. Such states can be effectively described as 2-phonon configurations with
unperturbed energies comparable to 1-phonon energies, and therefore the influence
of multiphonon configurations on spectra and transitions can be more pronounced
than in closed-shell systems.

A generalization of EMPM for open-shell systems is quite straightforward, and
the derivation proceeds similarly to the ph case discussed before. We start with
HFB approximation and calculate the quasiparticle canonical basis. Further, we
need to construct QTDA phonons as superpositions of elementary 2qp excitations.
QTDA phonons serve as building blocks for the construction of a multiphonon ba-
sis. To evaluate the Hamiltonian matrix in a multiphonon basis, we adopt the same
technique, based on commutator equation 1.32, and we derive analogous generalized
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Fig. 1.8: Comparison of photoabsorbtion cross section in 208Pb calculated within QRPA
(blue line), SM (black line), and EMPM (red line). Experimental data were extracted
from (γ, γ′) (red points) and (γ, n) (green points) reactions. The plots were taken and
adapted from [SMB+10].

eigenvalue problem 1.33. The derivation of matrix elements of Hamiltonian is rather
involved, especially in the J− coupled case. However, final equations possess the
same simple structure as in ph formulation, though numerical implementation be-
comes much more involved due to the larger configuration spaces needed in realistic
calculations. Quasiparticle EMPM formalism was presented in [DGKLIV16b]. As
an illustration of its performance and limitations, we investigated spectra and E1
strength in the neutron-rich nucleus 20O. More details can be found in the appendix
A.4.

1.3.2 EMPM for systems with valence particle(hole)

This section outlines an extension of EMPM for systems with an odd number of
nucleons, precisely, nuclei with one particle (hole) outside a close (sub-)shell. The
lowest states of such nuclei are expected to have a predominantly single-particle
character, which can be considerably disrupted due to the core polarization effects.
Since the lowest excitations of spherical nuclei are mainly collective vibrations, cou-
pling between low-lying single-particle states and collective phonons plays a crucial
role in the distortion of spectra and response functions.

The idea employed in EMPM for odd nuclei is similar to the even-even case, i. e.
an expansion of the wave function describing a state with total angular momentum
J to a series of n− phonon states |νn, J⟩ and pre-diagonalization of the Hamiltonian
in the subspaces spanned by such states.

In odd-A nucleus n−phonon basis can be constructed iteratively by an action of
particle creation operator â†p ≡ a†jpmp

on a state |αn, J
′⟩ describing an n− phonon

excitation of the even-even core, i. e.,

|νn, J⟩ =
∑︂
pαn

Cνn
pαn

|p× αn, J⟩ =
∑︂
pαn

Cνn
pαn

[â†p × |αn, J
′⟩]J . (1.40)

If |αn, J
′⟩ is the eigenstate of Hamiltonian corresponding to the neighboring even-

even nucleus in the n− phonon subspace, in virtue of equation 1.31 we can write
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Fig. 1.9: Comparison of experimental and theoretical levels of 17O calculated with
EMPM in different multiphonon spaces with maximum phonon number Nph. Dashed
lines are levels with unassigned spin and parity. Adapted from [DGKLIV16a].

equation of motion

⟨αn, J | [[âp, Ĥ]× |νn, J ′⟩]J = (Eνn − Eαn) ⟨αn, J | [ap̂ × |νn, J ′⟩]J , (1.41)

where Eαn is the energy of the even-even core. A similar equation can be written
for a valence hole. In that case, we expand the wave function into

|νn, J⟩ =
∑︂
pαn

Cνn
hαn

|h× αn, J⟩ =
∑︂
hαn

Cνn
hαn

[b̂h × |αn, J
′⟩]J , (1.42)

where b̂h ≡ (−1)jh+mhajh−mh
creates a hole state in a j− shell, and from 1.31 we get

⟨αn, J | [[b̂
†
h, Ĥ]× |νn, J ′⟩]J = (Eνn − Eαn) ⟨αn, J | [b̂

†
h × |νn, J ′⟩]J . (1.43)

The expansion of the commutators by virtue of the partitioning 1.38 allows
us to rewrite equations 1.41 and 1.43 to generalized eigenvalue problem 1.33 with
eigenvaules Eνn describing odd-system with A+ 1 and A− 1 nucleons, respectively.
The Hamiltonian is again given by AnDn, where overlaps of the basis states define
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Fig. 1.10: Photoabsorption cross sections in 16O (left panel (a)) and 17O (left panel
(b)) calculated in spaces with maximum phonon number Nph. Smoothed contributions
from different transitions (left panel (c)) were obtained from discrete E1 strength (right
panel) with a Lorentzian of width ∆ =2 MeV. The transitions of single-particle nature
are plotted as dashed bars. Adopted from [DKLV17].

the matrix elements of the metric matrix Dn

(Dn)iαn,i′α′
n
= ⟨(i× αn), J |(i× α′

n), J⟩ , i = p, h. (1.44)

It is to be stressed that formal derivation does not impose any approximations and
fully respects the Pauli principle and fermionic structure of phonons.

The formulas for calculation of matricesAn and Dn and full Hamiltonian in space
spanned by a particle(hole)×n−phonon states were, for the first time, presented in
[DGKLIV16a]. All entering quantities were expressed in terms of n− phonon den-
sities 1.36 and effective potentials between (multi-)phonon and single-particle(hole)
states. Such interaction can be easily derived from the original nucleon potential
and multiphonon eigenstates of the even-even core.

EMPM for odd systems was firstly employed in calculations of electric quadrupole
and magnetic dipole moments and the photoabsorption cross-section in 17O. To be
consistent with previous calculations of closed-shell nuclei, we used NNLOopt po-
tential. We found that the inclusion of 1-phonon states improved, in general, the
description of low-lying positive parity states, but agreement with experimental
levels remained unsatisfactory. The coupling to 2-phonon states did not alter the
low-lying spectrum but enhanced the density of states in the region 9 − 15 MeV.
The inclusion of 3-phonon states would not be feasible without considerable approx-
imations. Due to the enormous number of configurations, the exact calculation of
Hamiltonian was too time-consuming. To simplify the calculation, i) we adopted
diagonal approximation (i. e., we ignored interaction terms in the matrix elements
An), ii) we neglected exchange terms in the overlap matrix D, iii) we included only
a subset of 2- and 3-phonon states with lowest energies. The overall effect of 1-, 2-
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Fig. 1.11: Experimental and theoretical levels of 22O and 23O calculated with EMPM
up to 2-phonons. Adopted from [DKLV18].

and 3-phonon configurations on the spectrum of 17O is depicted in fig. 1.9. Com-
prehensive explanation and all formulas can be found in the reprint of the paper
A.6.

Further, EMPM was exploited in several theoretical studies of selected medium-
heavy odd nuclei. The reprints of two papers are included in Appendix A. In
[DKLV17] (reprint A.6) we performed a comparative study of spectra, electro-
magnetic moments, dipole transitions and beta transitions in neutron(proton)-odd
nuclei 17O and 17F. Photoabsorption cross-section and electric dipole strength dis-
tribution in 17O computed in different approximations are shown on the left panel
of fig. 1.10. The inclusion of 3-phonon components significantly pushed dipole
strength to lower energies and improved agreement with experimental data, though
not enough.

Other papers related to this topic include the study of low-energy levels, dipole
strength of 23F, 23O and beta decay of 23F [DKLV18] and investigation of nuclei
with valence hole in the oxygen region [DGKLIV19].

In addition, we extended the formalism to Hamiltonians with 3-body nucleon
interactions, treated in the normal-ordered two-body approximation. This modifi-
cation allowed us to test modern 2+ 3−body nucleon interactions such as NNLOsat

[EJW+15], within EMPM framework. In principle, such interactions can provide
more suitable single-particle spectra and radii without additional phenomenological
corrections. In the paper [DGKLIV20] (reprint A.7) we investigated odd nuclei
around double magic cores 16O and 40Ca with NNLOsat interaction within a re-
fined version of the EMPM which cured a mirror-symmetry violation caused by an
incomplete treatment of Pauli principle due to the truncation of phonon basis.
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1.3.3 Center-of-mass problem in EMPM

Nuclear theory practitioners are familiar with the problem of the existence of spu-
rious modes related to the symmetry breaking of Hamiltonian in microscopic calcu-
lations. In microscopic models, we introduce a mean-field referred to a fixed origin,
which leads to the violation of translational invariance and, consequently, to the ap-
pearance of spurious center-of-mass (CM) excitations and their mixing with physical
states. Although many methods for obtaining spurious-free states can be found in
the literature, complete decoupling of CM motion from physical excitations is in re-
alistic calculations mostly impossible. The exceptions are calculations of few-body
systems carried out in Jacobi coordinates and NCSM calculations in complete Nℏω
model spaces. This section explains how the CM problem is treated within EMPM.

The indisputable advantage of RPA is the decoupling of spurious states and
physical excitations if a self-consistent mean field and corresponding residual in-
teraction are used. In such case, spurious states with zero energy are separated
from the rest of the spectrum [Tho61]. However, the finiteness of model spaces in
numerical implementations prohibits exact decoupling, and the energy of spurious
CM peak approaches zero only if large cutoff energy of unperturbed configurations
(100− 300 MeV) is used [CCVC13], [PPHR06]. The CM contamination affects not
only excitation energies but influences even more transition probabilities. Typical
examples are isoscalar dipole transitions for which a modified transition operator

M̂
IS

E1 =
A∑︂
i=1

(rî
3 − 5

3
⟨r2⟩)Y1M(rî) (1.45)

have to be used [VS81] in calculations. The second term in 1.45 effectively subtracts
spurious CM strength but does not cure wave functions, which remain contaminated,
especially if the energy of the CM state significantly differs from zero. Therefore,
various methods to eliminate the spuriosity from RPA spectra were suggested [D0̈5],
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Fig. 1.13: Isoscalar E1 strength functions in 40Ca calculated with different methods by
employing UCOM potential. The strengths with (TDA-CMO and EMPM-CMO) and
without center-of-mass orthogonalization procedure (TDA, EMPM, STDA, SRPA) are
shown for comparison. A single line is drawn for STDA and EMPM since they yield
identical results. Arrows indicate states with significant spuriosity.

[RKN19]. Unfortunately, for methods beyond RPA, like extended RPA or SRPA,
no simple recipe for the elimination of spurious states exists.

EMPM multiphonon states are constructed from a single-particle basis; there-
fore, EMPM wave functions would be contaminated by CM motion without special
treatment. Our procedure for CM elimination consists of several steps. At the
mean-field level, we subtract the CM kinetic energy term and assume the intrinsic
Hamiltonian Ĥ intr = Ĥ − T̂CM . It is to be noted that such correction can be imple-
mented in two ways leading to different single-particle states [JHVB92]. Although
HF energy is the same in both cases, second-order perturbative corrections depend
on CM treatment. In contrast, EMPM includes complete residual interaction, and
EMPM results do not depend on the CM subtraction at the mean-field level.

EMPM basis is built from TDA phonons; therefore, unlike RPA, spurious exci-
tations are mixed with physical states. To avoid this mixing CM state is explicitly
constructed from ph configurations, and Gramm-Schmidt orthogonalization is used
for building a spurious-free TDA basis. Such procedure, described in [BKI+14]
(reprint A.1), provides clean elimination of CM states from TDA spectra in Jπ = 1−

channel. The inclusion of multiphonon states makes the CM problem more tricky.

The advantage of using a phonon basis is that we can easily identify all spurious
CM components. Multiphonon states 1.28 are created by the action of TDA phonon

operator Q̂
†
λ on a state belonging to a subspace with the lower number of phonons.
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Fig. 1.14: E2 strength functions in 16O and 40Ca calculated with different methods by
employing UCOM potential. The strengths with (TDA-CMO and EMPM-CMO) and
without center-of-mass orthogonalization procedure (TDA, EMPM, STDA, SRPA) are
shown for comparison. A single line is drawn for STDA and EMPM since they yield
identical results. Arrows indicate states with significant spuriosity.

Clearly, if we isolate the CM state in TDA, all configurations [Q̂
†
CM × |αn−1, J

′⟩]J ,
where Q̂

†
CM is the spurious CM phonon, are spurious too and have to be discarded

from the basis.

Because CM phonon corresponds to Jπ = 1−, all 2-phonon states [Q̂
†
CM ×

|αn−1, J⟩]0
+
, [Q†

CM × |αn−1, J⟩]2
+
, [Q†

CM × |αn−1, J⟩]3
−
, allowed by angular momen-

tum coupling are spurious, and 0+, 2+, 3− spectra become also contaminated. Thus,
in numerical calculations, we have to eliminate all states containing spurious phonon

Q̂
†
CM from the basis prior to diagonalization. Such reduction can effectively eliminate

the majority of CM contamination in severely truncated model spaces. Neverthe-
less, due to the nonorthogonality of the multiphonon basis, spurious and physical
subspaces remain mutually coupled, and the spectrum can be contaminated even
if we reduce the basis by omitting the spurious phonon state. This happens espe-
cially in large model spaces where spurious states can be reconstructed due to the
overcompletness of multiphonon basis.

To cure this issue, we proposed an effective and easily implementable method
based on the singular value decomposition (SVD) of metric submatrix 1.35 between
spurious and physical states. We showed that by using SVD, we could transform
Hamiltonian to a new basis, decoupled from all spurious excitations. The method
was introduced in [DKLV21] (reprint A.8 ), and elaborated in [DKLV22] (reprint
A.9) in the study of spectroscopic properties of 4He.

The importance of CM decoupling is apparent from fig. 1.12. Without CM
orthogonalization, the spectrum is contaminated with many spurious states, which
do not correspond to intrinsic excitations. The most insightful are 0+2 and 2+1 states,
which are almost degenerate with the ground state. The analysis of their structure

revealed that they are mainly composed of 2-phonon spurious excitations [Q̂
†
CM ×

32



Q̂
†
CM ]0,2 |HF⟩, as expected.
The elimination of CM spuriosity is equally urgent in the calculation of transi-

tions. Figure 1.13 shows isoscalar E1 strength function in 40Ca calculated within
EMPM (up to 2-phonons) without CM orthogonalisation procedure, STDA, SRPA
and the EMPM with CM removal. Although transition operator 1.45 with CM cor-
rection was used, a small transition to the lowest spurious state is seen even in the
RPA spectrum. SRPA strength function contains a spurious state with negative
energy and, moreover several spurious peaks at energies around 20-30 MeV.

Even pronounced discrepancies can be seen in quadrupole strengths functions
(figure 1.14). In the energy below 15 MeV, several spurious peaks are present in
STDA, and while some disappear in SRPA (precisely, energies become imaginary),
the spectrum remains contaminated in the region of 10 − 15 MeV. High-energy
bumps are similar in all approaches but differ in details.

Compared to other methods, the decisive advantage of EMPM is the use of a
phonon basis, which allows for isolating spurious components of model spaces prior
to the diagonalization of the Hamiltonian. To our knowledge, there is no solid recipe
for eliminating unphysical spuriosities within SRPA.

So far, EMPM calculations of odd nuclei were carried out with CM orthogonal-
ization applied to TDA only, but extending the SVD approach to obtain complete
CM motion elimination in odd systems is straightforward. The SVD procedure can
be further adapted to exclude spurious states connected with particle number viola-
tion in quasiparticle EMPM, which, for open-shell nuclei, is of the same importance
as removing CM spuriosity.

The above examples emphasize the need of methods which go beyond RPA that
provide reliable results, free of unphysical contaminations. We think that more
attention must be devoted to comparing theoretical predictions with experimental
data, notable for such phenomena as PDR, whose calculations might be affected by
the presence of spurious states.
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2. Shell model calculations

The interacting shell model (SM) is one of the cornerstones of nuclear physics, which
has been used for decades as a universal tool for understanding the structure of low-
lying excitations in nuclei (for a comprehensive review, see [CMPN+05]). In SM,
one assumes that low-lying spectra of nuclei can be described with configuration
interaction mixing of many-body states, which correspond to particles distributed
to only a few orbitals around the Fermi level. This assumption drastically reduces
the dimensions of Hamiltonian matrices but requires a calculation of effective inter-
actions adapted to the restricted spaces. Nevertheless, model spaces necessary for
calculating spectra in heavy nuclei are still beyond the reach of state-of-the-art SM
codes, and therefore, an additional basis reduction is indispensable.

During my post-doctoral stay at Instituto Nazionale di Fisica Nuclear, Sezione
di Napoli, I participated in developing the importance sampling (IS) approach for
reducing SM model spaces invented by the Naples group. Later, the idea of IS turned
out to be very effective in the ab-initio no-core shell model (NCSM) calculations.
Therefore, in collaboration with the group of T. Dytrych from Institute of Nuclear
Physics in Řež, we implemented similar truncation method in the Symmetry-adapted
no-core shell model (SA-NCSM).

The following section is a short recap of this work which resulted in the publi-
cation of several papers.

2.1 Shell model with important sampling

Model spaces in SM calculations of heavy nuclei easily exceed the limits of present-
day numerical codes, which nowadays can solve eigenvalue problems in spaces en-
compassing up to 1010 states. Fortunately, not all basis states are equally important
for describing a particular physical observable.

The relative weights of configurations can be examined a posteriori, but it is
helpful to estimate their relevance and eliminate them from the model space if
possible. Within the SM context, an original diagonalization method of Andreozzi
et al. [API02] was invented and later supplemented with IS algorithm [AIP03],
which can significantly reduce model space dimensions.

The method was later modified and adapted to a more versatile version employ-
ing the uncoupled M-scheme [BAI+11] (B.1). The idea of the proposed sampling
procedure is to start with a diagonalization of SM Hamiltonian in a subspace of rela-
tively small dimension and, in subsequent iterations, enlarge the space by including
new configurations which update the lowest eigenvalues and corresponding eigen-
vectors. However, not all states from the enlarged model space are kept, just those
that lead to considerable changes in eigenvalues. In the optimal case, a convergence
of observables for the lowest states is obtained with a small fraction of model space
configurations. Thorough description of the algorithm can be found in [BAI+11]
(reprint B.1) and will not be repeated here. Instead, an overview of the applications
of IS method is given below.

The example of SM calculation with IS is shown in fig. 2.1. The calculation
of low-energy levels in 130,132Xe was carried out in the valence space spanned by
{2d5/2, 1g7/2, 2d3/2, 3s1/2, 1h11/2} orbitals, both for protons and neutrons. Protons
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Fig. 2.1: Experimental and theoretical energy spectra of 130,134Xe obtained within SM
with IS algorithm. Taken from [BALI+11].

were included as particles above Z=50 core whereabouts neutrons were treated as
holes with respect to N=82 core. Our study showed that ≈ 10% of states was enough
for achieving a reasonable convergence of energies in 130,132,134Xe, but the calculation
of E2 and M1 transitions in 130Xe required a much larger portion of the model space.

The performance of IS was further tested in the study of low-lying properties
of N=80 isotones [BALI+12] (reprint B.2). The convergence rate and efficiency of
sampling were much better than in the case of Xe isotopes. Only a few % of sampled
states were necessary to get converged energies. The difference was ascribed to the
fact that with an increasing number of neutron holes in Xe isotopes, the deformation
of the systems becomes larger. We concluded that a smaller number of configurations
is required for nearly spherical shapes; therefore, the sampling is expected to be more
effective in regions near magic numbers.

Properties of mixed-symmetry states in Tellurium isotopes were studied in sub-
sequent paper [BLIA+12] (reprint B.3). The calculation required consideration of
more than 20% of the entire model space. Despite severely truncated calculations,
we determined collective features of the lowest 2+ states and their relation to IBM
description. Further, systematics of lowest 2+ states, E2 and M1 transitions in
neutron-rich Tellurium and Xenon isotopes were investigated in [BLIA+13] (see
fig. 2.2).

2.2 Importance truncation in SA-NCSM

An alternative to IS was suggested by Roth [RN07, Rot09] within NCSM. Here the
sampling criterion is inspired by many-body perturbation theory. The idea is to
define a reference state |Ψref⟩ which is an eigenstate of effective Hamiltonian Ĥ0

in reasonably small (reference) model space, i. e. Ĥ0 |Ψref⟩ = ϵref |Ψref⟩. For a

36



Fig. 2.2: Systematics of 2+1 states and B(E2,2+1 → 0+0 ) in Xe and Te isotopes calculated
within SM with IS algorithm. Transition probabilities are given in Weisskopf units.
Taken from [BLIA+13].

basis state |Φν⟩ outside the reference model space, one can evaluate an importance
measure parameter according to equation

κν = −⟨Φν | Ĥ |Ψref⟩
ϵν − ϵref

, (2.1)

where ϵν = ⟨Φν | Ĥ |Φν⟩. The state |Φν⟩ is included into enlarged model space if
|κν | > κmin > 0, where κmin is an numerical threshold controlling an acceptance
limit, and thus the dimension of the model space. Clearly, all states are included in
the model space for κmin → 0. The size of κν is correlated with the size of amplitude
Cν = | ⟨ψ|Φν⟩ |, where the state |ψ⟩ is an eigenstate of the Hamiltonian obtained in
the full model space.

The evaluation of parameter 2.1 prior the diagonalisation can be used to sample
only relevant states and, thus, drastically reduce model space dimensions while
keeping a reasonable precision of calculated wave functions. This technique, denoted
as the Importance-Truncated NCSM (IT-NCSM), was widely employed in NCSM
calculations of heavier nuclei which would be prohibited in the complete model
spaces. Moreover, a typical monotonic convergence of eigenvalues in IT-NCSM is
suitable for using extrapolation techniques and estimating errors introduced by the
truncation. [KJN+13].

We implemented an analogous sampling procedure in SA-NCMS. SA-NCSM is
an ab-initio many-body configuration approach that uses SU(3) coupling scheme for
generating basis states and calculation of Hamiltonian matrix elements [LDD16].
Unlike the standard NCSM, SA-NCSM employs physically relevant many-body
states with a specific structure (large deformation, minimal total intrinsic spin of
protons and neutrons) to reduce model spaces. The selection of basis states is based
on physical arguments and qualified guesses which configurations are expected to
contribute to nuclear properties under study.
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Fig. 2.3: Convergence of spectrum (left) and transitions (right) in 6Li obtained in
SA-NCSM with the importance truncation of basis. Horizontal lines indicate values of
importance measure parameter threshold κmin corresponding to 5% and 10% of basis
states (= NIT /Ntot×100, where NIT denotes number of sampled states and Ntot is total
number of states. JISP16 nucleon potential was employed in the calculation.

The importance measure parameter 2.1, instead, offers a precise numerical cri-
terion for the selection of basis states. The efficacy of the importance truncation
in SA-NCSM was illustrated on ”proof of principle” calculation of energy spectrum
of 6Li [KDLO18], and later, on the calculation of ground-state rotational band in
12C [KDLO19] (reprint B.4). We showed that only a fraction of total model space
(≈ 3%) was needed to get ≈ 96% of binding energy, and an even smaller portion
of basis vectors (≈ 9%) was sufficient for the description of excitation energies of
lowest states. It is noteworthy that this approach performs similar reductions of the
basis as the sampling method discussed in the previous subsection, regardless of the
different definitions of sampling criteria.

For illustration, a typical convergence plot in SA-NCSM calculation with impor-
tance truncation is shown on the left panel of fig. 2.3, where the evolution of the
low-lying spectrum of 6Li with decreasing threshold κmin is depicted. The accuracy
of wave functions is essential in the calculations of transition probabilities. Right
panel of 2.3 shows fast convergence of quadrupole transitions from the ground state
to lowest 1+2 and 3+1 excited states.

The potential of importance truncation in SA-NCSM calculations has not been
fully exploited so far, but we believe that the method can significantly extend the
applicability of SA-NCSM to much heavier nuclei. An effective implementation,
however, requires an involved on-fly calculation of Hamiltonian matrix elements in
SU(3) basis on large high-performance computing systems, a task that will hopefully
be accomplished in the future.
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Conclusion

This thesis summarized my work devoted to the theoretical modeling of atomic nu-
clei. I was primarily focused on developing microscopic many-body methods for the
description of low-energy collective vibrations and giant resonances. With my col-
laborators, we developed a new computational scheme designed to treat anharmonic
effects and multiphonon excitations in spherical nuclei near magic numbers. In our
investigations of nuclear spectra and electromagnetic responses, we employed real-
istic nucleon potentials and provided complementary insight into several unsolved
problems related to the construction of nucleon forces.

Another class of models discussed in the thesis is the shell model and symmetry-
adapted no-core shell. This part of our work was devoted to investigations of trun-
cation schemes that would push the limits of shell model calculations to heavier
systems. We demonstrated that such truncation algorithms effectively reduce model
spaces, but nontrivial technical issues in the implementation of massively parallelized
computer codes must be solved in the future to exhaust their potential.

Several directions for further investigations are offered. In the near future, we
plan EMPM calculations of energy spectra and giant resonances in odd-nuclei in
the lead region, with an emphasis on low-lying dipole strength below the neutron
separation energy. Optimization and parallelization of present computer codes and
investigation of various truncation strategies which grasp physically relevant states
will be necessary for that purpose.

Our preliminary studies show that a promising strategy how to extend EMPM
calculations is the employment of alternative single-particle bases, e. g. natural
orbitals, recently introduced in several approaches [FCC+22, HTH+21]. As a first
step, we plan to benchmark EMPM formulated in natural orbitals basis in light
systems with our previous calculations.

Further, we plan to develope a selfconsistent multiphonon scheme for systems
with two valence nucleons that would allow us to study the interplay between pair-
like and core excitations in semi-magic nuclei.

For completeness, I attach the list of papers that I co-authored and are related
to topics discussed in the thesis.

• Equation of motion phonon method

Physical Review C 85, 014313 (2012)
Physical Review C 86, 044327 (2012)
Journal of Physics G: Nuclear and Particle Physics 41, 025109 (2014)
Physical Review C 90, 014310 (2014)
Physical Review C 92, 054315 (2015)
Physical Review C 93, 044314 (2016)
Physical Review C 94, 061301(R) (2016)
Physical Review C 95, 024306 (2017)
Physical Review C 95, 034327 (2017)
Physical Review C 97, 034311 (2018)
Physical Review C 99, 014316 (2019)
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Physical Review C 101, 024308 (2020)
Physics Letters B 821 136636 (2021)
Physical Review C 105, 024326 (2022)

• Shell model

Journal of Physics G: Nuclear and Particle Physics 38, 025103 (2011)
Physical Review C 84, 024310 (2011)
Physical Review C 85, 034332 (2012)
Physical Review C 86, 044325 (2012)
Physical Review C 88, 024303 (2013)
Acta Physica Polonica B 50, 541 (2019)

Complete list of publications can be found in ORCID:
https://orcid.org/0000-0002-7708-6290.
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helmy, and A. Zilges. Microscopic structure of the low-energy electric
dipole response of 120Sn. Phys. Rev. Lett., 127:242501, 2021.

49



[Yan87] Constantine Yannouleas. Zero-temperature second random phase
approximation and its formal properties. Phys. Rev. C, 35:1159–
1161, 1987.

[YBSZ21] M. J. Yang, C. L. Bai, H. Sagawa, and H. Q. Zhang. Effects of
the skyrme tensor force on 0+, 2+, and 3− states in 16O and 40Ca
nuclei within the second random-phase approximation. Phys. Rev.
C, 103:054308, 2021.

[YDG83] C. Yannouleas, M. Dworzecka, and J.J. Griffin. Microscopic nuclear
dissipation: (ii). damping of collective states in subspaces which
include 2p-2h states. Nuclear Physics A, 397(2):239–295, 1983.

50



A. EMPM original papers

A.1 A self-consistent study of multipole response

in neutron-rich nuclei using a modified real-

istic potential

D. Bianco, F. Knapp, N. Lo Iudice, P. Veselý, F. Andreozzi, G. De Gregorio and A.
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