
Mathematical modeling of
thermomechanical processes in terrestrial

and planetary icy bodies
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Introduction

This thesis is dedicated to mathematical modeling and computer simulations of
physical processes in terrestrial and planetary icy bodies in the following geophysical
applications:

• Gravity-driven flows of glaciers - formation and evolution of terrestrial
and planetary grounded ice masses, which flow under the action of their own
weight by a mechanism of viscous creep of the polycrystalline ice matrix over
the time span of years to hundreds of thousands of years.

• Tidal deformation of planetary ice shells - periodic or quasi-periodic
elastic or viscoelastic deformation of the ice shells of Europa and Enceladus,
induced by the varying tidal potential raised by their primaries - Jupiter and
Saturn - occurring on the time scale of days.

• Melting and melt transport in planetary ice shells by a reactive two-
phase porous flow involving mechanical coupling between the deformation of
the viscous ice matrix and the Darcy-type flow of the melt, which takes place
on the time scale of hundreds to millions of years within the icy moons’ shells.

Although the three types of physical processes listed above involve one and the
same material - water ice - they differ significantly in its material description and
also in the set of simplifying assumptions adopted in mathematical models of the
processes. When describing glacier flow, ice is treated as a non-Newtonian fluid with
stress and temperature-dependent viscosity. When deformed periodically by tides
on a much shorter time scale of days, ice behaves more like an elastic or perhaps
a viscoelastic solid. Finally, in the last of the three processes, when describing
melting and melt transport, ice is often treated as a porous two-phase medium, i.e.
a mixture of two components - liquid water and ice - which interact thermally and
mechanically.

The general common framework used for the description and formulation of all
the above processes is continuum mechanics and thermodynamics. Building blocks
of continuum mechanics are mathematical abstractions of physical quantities as con-
tinuous and often smoothly differentiable fields. Relationships among these fields
and their evolution are described by systems of partial differential equations (PDEs)
equipped with suitable initial and boundary conditions. From a physical point of
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view, these PDEs arise from generalizations of the traditional conservation (or bal-
ance) laws for mass, linear and angular momentum, energy, and entropy. Depend-
ing on the adopted detail of material description, one distinguishes between the
single and multi-component variants of the continuum theory. In this thesis, the
former framework suffices for capturing the first two models, while the latter - a
two-component mixture model - is required to describe the third of the processes -
melting and melt transport.

The structure of the thesis is the following. In the first chapter, I briefly re-
view some of the physical properties of ice that enter the three discussed processes,
with a particular emphasis on ice rheology. In the second chapter, I lay out the
fundamentals of mathematical modeling of large-scale glacier flows and summarize
the contents of two appended papers concerning this topic. Chapters three and
four focus, in a similar manner, on the tidal deformation and on melting and melt
transport, appending 5 and 4 research papers, respectively. In the last chapter, I
provide an outlook of my short and mid-term future research plans and ideas in the
direction of the three respective topics.



1Water ice rheology

Water ice has been detected or indirectly inferred on most planets and moons
in the Solar System making it one of the most ubiquitous known volatile mate-
rials. Currently, more than seventeen different crystalline structures of water ice are
known (Salzmann, 2019) plus several other amorphous ones. However, terrestrial
cryosphere, i.e. the solid water part of the Earth’s climate system, as well as the
outermost layers of so-called icy moons in the Solar System, addressed in this thesis,
are composed of the low-pressure ice phase Ih - hexagonal ice.

An ice Ih monocrystal is composed of water molecules arranged in a (bi)planar
hexagonal pattern as in Figure 1.1 (left). The layer with hexagonal rings constitutes
so-called basal plane and the axis perpendicular to it is the optical or c-axis. Due to
this arrangement, an ice Ih crystal exhibits hexagonal symmetry with respect to the
basal plane and, due to relatively weak bond between the neighboring basal planes,
also a strong mechanical anisotropy.

Figure 1.1: A diagram of molecular structure of hexagonal ice Ih monocrystal (left)
and a photograph of polycrystalline glacier ice between polarisation filters (right).
Both taken from Greve and Blatter (2009).

In nature, however, ice occurs primarily as a polycrystalline material, i.e. an
aggregate of individual ice grains, see Figure 1.1 (right). Unless arranged by flow or
specific growth conditions, the orientation of the grains is random, so the resulting
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4 1.1. ELASTIC PROPERTIES OF ICE

material behaves as isotropic despite the strong anisotropy of the individual ice
grains.

Even though isotropic, mechanical behavior of polycrystalline ice is still rather
complex. The monocrystals themselves exhibit a wide range of deformation regimes
from elastic and viscoelastic to viscous and plastic, and when combined in a polycrys-
talline structure, additional deformation mechanisms associated with the processes
at grain boundaries or recrystallization add to the complexity. The characteristic
creep response of polycrystalline ice Ih specimen in a simple shear experiment is
sketched in Figure 1.2.

Figure 1.2: Characteristic creep curve of polycrystalline ice (right) in a simple shear
experiment (left), taken from Greve and Blatter (2009).

After an immediate elastic response to the loading, the deformation passes through
several stages. Primary creep is a phase with decreasing rate of deformation at-
tributed to a gradually increasing amount of geometric incompatibilities in the
polycrystalline aggregate with different crystal orientations. After reaching the min-
imum shear rate, the next phase is called a secondary creep which is stationary unless
thermal or stress state of the material allows for so-called dynamic recrystallization,
i.e. structural changes in the polycrystalline material that provide a larger amount
of crystals with orientation favorable to deformation. If this process initiates, the
deformation rate further increases until reaching a new steady state with larger
deformation rate compared to the secondary creep - a phase of tertiary creep.

Let us briefly summarize some of these mechanical properties and describe the
basics of ice rheology.

1.1 Elastic properties of ice

The mechanical response of ice Ih is elastic in the regime of small strains and high fre-
quencies. Under these assumptions, ice can be described as an anisotropic Hookean
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(elastic) solid in terms of a 4-th order tensor of elastic parameters C, which relates
the components of small strain tensor ε = 1

2(∇u + (∇u)T ) (u denoting the dis-
placement), and the Cauchy stress σ by (using Einstein’s summation convention):

σij = Cijklεkl . (1.1a)

Out of the 21 independent coefficients for a general anisotropic solid, only 5 are
independent for the ice Ih monocrystal due to its hexagonal symmetry. The tensor
of elastic parameters is then usually written in the Voigt 6×6 representation as

σ̃α = C̃αβε̃β , α, β = 1, . . . , 6 , (1.1b)

where

(σ̃1, σ̃2, σ̃3, σ̃4, σ̃5, σ̃6) = (σ11, σ22, σ33, σ23, σ13, σ12) , (1.1c)
(ε̃1, ε̃2, ε̃3, ε̃4, ε̃5, ε̃6) = (ε11, ε22, ε33, ε23, ε13, ε12) , (1.1d)

and it holds (Schulson and Duval, 2009):

C̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C11−C12

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.1e)

Elastic response of polycrystalline aggregates of randomly oriented ice Ih monocrys-
tals is isotropic despite their individual anisotropy, as the response gets averaged
out. Consequently, only two elastic Lamé parameters characterize the elastic prop-
erties of polycrystalline ice, for instance the shear modulus µ and the second Lamé
parameter λ, and it holds

σ = (λTrε) I + 2µε , (1.2a)

or, alternatively, using Young’s modulus E and the Poisson ratio ν

σ = Eν

(1 + ν)(1 − 2ν)Trε I + E

(1 + ν)ε . (1.2b)

The two pairs of parameters are related by

E = µ(3λ + 2µ)
λ + µ

, ν = λ

2(λ + µ) , (1.2c)

λ = Eν

(1 + ν)(1 − 2ν) , µ = E

2(1 + ν) . (1.2d)
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Parameter Value Unit
Youngs’ modulus E 9.33× 109 Pa

Poisson’s ratio ν 0.325 -
Lamé parameter λ 6.54 × 109 Pa
Shear modulus µ 3.52 × 109 Pa

Table 1.1: Elastic moduli for isotropic polycrystalline ice at ϑ = −16◦C.

Characteristic values of these parameters, taken from Petrenko and Whitworth
(2002) (at ϑ = −16◦C), are shown in Table 1.1.

The experimentally measured temperature dependence of the elastic parameters
of ice is relatively mild and can be approximated by (Petrenko and Whitworth, 2002)

X(ϑ) = X0(1 − 1.42 × 10−3(ϑ[◦C] + 16)) , (1.3)

where X stands for E, λ, µ and X0 for their reference values at ϑ = −16◦C; Poisson
ratio ν does not change with temperature significantly.

1.2 Ductile creep of ice

When subjected to mechanical forcing by shear stress, ice deforms by a combination
of creep processes and would continue to do so indefinitely – in this regard, on
the long time scales, polycrystalline ice behaves as a viscous fluid, contrary to our
everyday experience with it as a crystalline solid. A number of mechanisms govern
and determine the creep response of ice both at the level of single ice grains or the
polycrystalline aggregate.

1.2.1 Plastic deformation of ice monocrystals

As the individual basal planes of ice Ih monocrystals are relatively distant apart
compared to the distances of molecules and atoms in the basal crystal plane (see
Figure 1.1b)), when the crystal is subjected to a mechanical shear stress with respect
to the basal plane, the neighboring basal planes tend to glide with respect to each
other. As the bond between the individual basal planes is by far the weakest one in
the crystalline structure, this makes the process of basal slip a dominant deformation
mechanism for the ice Ih monocrystal. While possible, deformation in other than
basal planes is much more difficult, so the creep response of Ih monocrystals is
generally anisotropic. Deformation of a single ice crystal is also possible through
creation and motion of dislocations - imperfections in the crystalline structure, which
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allow for deformation even for relatively small applied stresses by the process of
dislocation creep. For practical purposes, it is more important, however, to study
the creep response of polycrystalline ice.

1.2.2 Creep of polycrystalline ice

High-stress regime - Glen’s flow law

In terrestrial glaciers, ice deforms primarily by the secondary creep and the stress-
strain-rate relation most commonly used in modeling is the so-called Glen’s flow law
(Glen, 1952), relating the traceless part S of the total Cauchy stress tensor σ to
the symmetric part of the velocity gradient D(v) (also traceless due to assumed ice
incompressibility). It reads

σ = −pI + S , D(v) = 1
2η

S , with 1
2η

= A(p, ϑ)Sn−1
II , (1.4)

where p denotes the pressure (mean normal stress), η is the ice viscosity, A is a
rate factor depending on pressure and temperature ϑ and SII denotes the second
invariant of S, given (since S is traceless) by

SII =
√
S : S

2 =
√
SijSij

2 . (1.5)

Based on laboratory experiments, the exponent n=3 is traditionally considered for
terrestrial glaciers – this constitutes the Glen’s flow law (Glen, 1952). Recently,
(uniaxial loading) experiments at differential stresses exceeding 1 MPa (i.e. in the
high-stress regime) indicated higher exponents up to n=4 associated with the regime
of dislocation creep, while for slightly lower stresses, transition to a lower expo-
nent n=1.8 and n=2.4 has been observed and attributed to a mechanism of grain-
boundary sliding (GBS)-limited creep and basal slip (BS)-limited creep, respectively
(Durham et al., 2010). From this point of view, Glen’s flow law represents certain
averaged-out flow law over this range of stress regimes.

Relation (1.4) can be inverted, which yields

S = 2ηD(v) , with η = 1
2A(ϑ, p)− 1

nD
1−n

n
II , (1.6)

where DII is the second invariant of D(v). Note that given n=3 for Glen’s flow law,
ice behaves in this regime as a shear thinning material - its viscosity η decreases
with the increasing rate of deformation. The rate factor A in Glen’s flow law is of
Arrhenius type (e.g. Greve and Blatter, 2009):

A(ϑ, p) = A0 e−(E+pV )/Rϑ , (1.7)
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where E is the activation energy, V is the activation volume, R the universal gas
constant and A0 is a parameter. The dependence of rate factor A on the confining
pressure p is basically limited to pressure dependence of the melting point Greve and
Blatter (2009). By introducing temperature relative to the melting point ϑ′ = ϑ −
ϑm(p) + ϑ0, with ϑ0=273.15 K and with the melting point ϑm(p) given by Clausius-
Clapeyron relation ϑm(p) = ϑ0 − βp, where β=7.42×10−8K Pa−1 and 9.8×10−8 K
Pa−1 for pure and air-saturated ice, respectively (Hooke, 2005), the rate factor can
be simplified as follows

A(ϑ′) = Ã0 e−Ẽ/Rϑ′
. (1.8)

Low-stress regime

For differential stresses below 0.1−0.2 MPa which are relevant for the ductile parts
of planetary ice shells (Durham et al., 2001), but probably also for large polar ice
sheets on Earth, the simple Glen’s flow law with n=3 most likely no longer holds, as
indicated by experimental studies (e.g. Dahl-Jensen and Gundestrup, 1987; Goldsby
and Kohlstedt, 2001).

Dislocation accommodated grain boundary sliding becomes the dominant defor-
mation mechanism replacing the dislocation creep. Consequently there is a transi-
tion to an exponent of n=1.8 (GBS-limited creep) and at even lower stresses n=2.4
(BS-limited creep). Furthermore, Newtonian behavior, i.e n=1, has been theoreti-
cally predicted for stresses as low as 75 kPa and attributed to the process of diffusion
accommodated grain boundary sliding or diffusion creep (Durham et al., 2001).

A diagram of various deformation mechanisms based on the stress regime, and
their comparison with Glen’s flow law are shown in Figure 1.3.

Composite creep

The four deformation mechanisms of polycrystalline ice Ih - dislocation creep, grain
boundary sliding, basal slip and diffusion creep are all characterized by a general
viscosity dependence of the form

ηi = 1
2

dmi

Ai Sni−1
II

exp
(

Ei + pVi

Rϑ

)
, (1.9)

where, compared to Glen’s flow law, an explicit dependence on the grain size d is
considered and the remaining parameters are analogous to Glen’s flow law, but the
exponents, activation energies and volumes differ for the individual mechanisms.
The values of these parameters based on Goldsby and Kohlstedt (2001) are listed in
Table 1.2.
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Figure 1.3: Left: a diagram of creep regimes for ice Ih, taken from Goldsby
and Kohlstedt (2001). Right: comparison of Glen’s flow law and dislocation
creep/superplastic flow, taken from Durham et al. (2010).

Mechanism A (Pa−n · mm · s−1) n m E (kJ · mol−1)
Dislocation (ϑ ≤ 258 K) 4.0 · 10−19 4.0 0.0 60
Dislocation (ϑ > 258 K) 6.0 · 104 4.0 0.0 180
GBS (ϑ ≤ 255 K) 6.2 · 10−14 1.8 1.4 49
GBS (ϑ > 255 K) 5.6 · 1015 1.8 1.4 192
BS 2.2 · 10−7 2.4 0.0 60
Diffusion 3.3 · 10−10 1.0 2.0 59

Table 1.2: Values of creep mechanism parameters, based on Goldsby and Kohlstedt
(2001), activation volume for all mechanisms usually considered to be V =−13×10−6

m3 mol−1.

A semi-empirical composite creep flow law combining all of the above mechanisms
has been suggested by Goldsby and Kohlstedt (2001) and formulated in terms of an
effective viscosity ηeff of the form

1
ηeff

= 1
ηdiff

+ 1
ηdisl

+ 1
ηbs + ηgbs

. (1.10)

In applications, this expression is sometimes augmented by a term 1
ηmax

which limits
the viscosity from above by ηmax. In planetary applications, this is necessary to
prevent the models from predicting unrealistically high stresses in the upper very
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cold parts of the ice shells where the standard temperature-viscosity relations predict
extreme viscosity values. In these regions, the active stress release mechanism is
probably brittle failure or plastic deformation rather than viscous creep, which are
not considered in the above model.

A practical simplification of the non-linear composite rheology is sometimes pos-
sible by assuming locally certain fixed stress and grain-size regime while keeping
general temperature dependence. Absorbing the rest of the complexities into a ref-
erence viscosity η0

eff at some reference temperature ϑref , yields the following viscosity
formula

ηeff = η0
eff exp

(
Ei

R

(1
ϑ

− 1
ϑref

))
. (1.11)

1.2.3 Effect of grain size

Noting that both grain boundary sliding and diffusion creep depend strongly on the
grain size (representing so-called grain size sensitive creep), the actual state and
evolution of this ice property is both very important, but unfortunately also largely
unconstrained in most applications. In terrestrial glaciers, the grain size varies
typically between 1 and 10 mm, but much larger grain sizes have been predicted on
Europa (up to 80 mm), unless tidal flexing contributes to recrystallization, in which
case the maximum grain size would be ∼ 1 mm (Barr and McKinnon, 2007).

From the physical point of view, grain size evolution is determined by a dy-
namic equilibrium between two competing processes - spontaneous grain growth
and dynamic grain size reduction by recrystallization. The first process is thermo-
dynamically driven by reducing the interfacial free energy, the other is related with
the free energy of dislocations (e.g. Schulson and Duval, 2009; Barr and McKinnon,
2007). The equilibrium grain size depends on the stress and can be approximated
as (Barr and McKinnon, 2007)

d

b
= D

(
σ

µ

)−1.25

, (1.12)

where b is the Burger’s vector for ice, D is a dimensionless parameter (of the order
10-100), σ is stress amplitude, and µ is the shear modulus. The above holds for pure
water ice. If additional impurities are present, such as dust or clathrates, pinning
of ice grain boundaries at these impurities further reduces the maximum grain size
(Durand et al., 2006).

1.2.4 Effect of melt

Partial melting within the ice matrix enhances its ductile deformation. Since melt is
first produced at grain boundaries, the effect of liquid phase is primarily associated
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with promotion of grain boundary sliding (Schulson and Duval, 2009). When the
melting point is approached, certain weakening and the so-called pre-melting effects
are manifested in the form of a change of the corresponding activation energies and
of the rate prefactors for both the grain boundary sliding and also the dislocation
creep (see Table 1.2). Melt presence characterized by a volume fraction ϕ leads to a
strong reduction of the effective viscosity (De La Chapelle et al., 1999), which may
be parameterized by (Tobie et al., 2003)

ηeff = η0
eff exp (−γϕ) , (1.13)

with γ=45 in order to provide the observed reduction of viscosity by an order of
magnitude for a 5% porosity increase.

1.2.5 Ductile-to-brittle transition

At high-enough differential stresses (and often low-enough temperatures), for in-
stance in the near-surface regions of tidally loaded icy moons or at the surfaces
of glaciers flowing sufficiently fast over undulated bedrock topography, the ductile
creep becomes inefficient in its capacity of accommodating stress within the ice and
another deformation mechanism gets triggered - brittle failure, i.e. creation and
propagation of cracks. Linear elastic fracture mechanics (LEFM) provides energy-
based criteria for cracks initiation and propagation depending on various regimes of
mechanical loading (see e.g. van der Veen, 1998; Schulson and Duval, 2009).

While we shall not pursue this topic here, let us only mention that in planetary
applications, for instance in Europa’s ice shell, a brittle-to-ductile transition, sep-
arating the top brittle and bottom ductile parts, is expected to occur at a depth
characterized by conditions at which the stresses associated with ductile creep be-
come comparable with the fracture toughness of ice at the given temperature (e.g.
Nimmo and Manga, 2009).

1.3 Viscoelastic properties of polycrystalline ice

When subjected to periodic mechanical loading on the time scale of hours and days,
for instance by tides on icy moons raised on them by their primaries, ice is neither
viscous nor perfectly elastic, but rather viscoelastic. This anelasticity of ice in the
process of tidal deformation results in dissipation of mechanical energy, which may
play a significant or even principal role in the energy budget of the moons. Through
mechanical dissipation, the tidal deformation thus greatly contributes to the icy
moons’ internal evolution and may be critical in providing the energy supply for
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creating and maintaining internal oceans (e.g. Tobie et al., 2005; Roberts, 2015;
Beuthe, 2016; Choblet et al., 2017).

Aneleaticity of ice subjected to periodic tidal loading is a consequence of mi-
crostructural changes in the material. This implies that the deformation is not fully
recoverable upon unloading, but contains an irreversible component. There is an
experimental evidence that the mechanisms of the irreversible deformation include
those that have been described in the previous section on ductile viscous creep, such
as the dislocation creep or grain boundary sliding (McCarthy and Castillo-Rogez,
2013; Webb and Jackson, 2003). This then justifies the use of the same notion of
viscosity in the two very different processes - viscous creep on geological time scale
and periodic tidal deformation on the time scale of days. However, some caution
is necessary since the strains induced by tides are very small compared to those
resulting from viscous creep on geological time scales, so the regimes at which these
mechanisms operate differ significantly.

In planetary applications considered here, the viscoelastic response of ice is usu-
ally limited to the shear component of the deformation, while the bulk component is
elastic. Due to the small strain deformation regime, linear models of viscoelasticity
are mostly considered and the complexities of nonlinear viscosity are suppressed or
parameterized. For linear models, viscoelasticity can be characterized in terms of
compliance J relating the deviatoric part of the Cauchy stress S and the deviatoric
part of the strain tensor εd (Efroimsky, 2012):

2εd =
∫ t

−∞
J(t − τ)Ṡ(τ, ·)dτ , (1.14)

or in the frequency domain:

2ε̂d(ω) = J̄(ω)Ŝ(ω) , where J̄(ω)=
∫ ∞

0
J̇(τ)e−iωτ dτ , (1.15)

and the Fourier images of εd and S are denoted by ε̂d, and Ŝ, respectively.
A number of various viscoelastic models have been proposed, see McCarthy and

Castillo-Rogez (2013) for a review. Those most commonly used in applications
discussed here, i.e. for the investigation of tidal dissipation in planetary ice shells,
are the Maxwell and the Andrade models, with the compliances given by

J(t − τ) =

⎧⎨⎩
1
µ

(
1 + t−τ

τM

)
H(t − τ) Maxwell

1
µ

(
1 + t−τ

τM
+
(

t−τ
ζAτM

)α)
H(t − τ) Andrade

(1.16)

or in the frequency domain

J̄(ω) =

⎧⎨⎩
1
µ

(
1 − i

ωτM

)
Maxwell

1
µ

(
1 − i

ωτM
+ (iωζAτM)−αΓ(1 + α)

)
Andrade

. (1.17)
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Here τM denotes the Maxwell time defined by τM= η
µ

with η being viscosity, ζA and
α are parameters, H is the Heaviside function and Γ denotes the Gamma function.

Maxwell model is popular due to its extreme simplicity both in terms of imple-
mentation and also regarding the frequency-characterization of mechanical dissipa-
tion - it has a single global maximum for the frequency ω= 1

τM
. Maxwell model thus

predicts heating maximum when the forcing (tidal) period equals the Maxwell time.
Considering temperature-dependence of viscosity (e.g. as in (1.11)), allows one

to look for a coupled evolution of tidal response and internal dynamics of the bodies
(e.g. Tobie et al., 2005, 2008; Běhounková et al., 2012; Souček et al., 2019). A
deficiency of the Maxwell model is that is seems to underestimate the dissipation for
smaller forcing periods than the Maxwell time. A more accurate parameterization
is provided by the Andrade model (Castillo-Rogez et al., 2011; Běhounková et al.,
2015) or its Maxwell-type approximation (Běhounková et al., 2013; Souček et al.,
2019).
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2Gravity-driven glacier flow

This chapter aims to briefly introduce the framework for mathematical modeling of
gravity-driven flows of glaciers and ice sheets, introduce the traditional shallow ice
approximation and point out its advantages and shortcomings. This is followed by
a summary of the results of two appended papers that concern numerical modeling
of glacial processes.

Figure 2.1: A sketch of an ice sheet, from Greve and Blatter (2009).

The fundamental processes that govern the evolution and dynamics of terrestrial
and planetary ice sheets and glaciers are relatively simple. Local climatic and at-
mospheric conditions - primarily the spatio-temporal temperature and precipitation
patterns - lead, in favorable areas and periods, to annual deposition of snow and ice
that exceed the annual melting and sublimation. This results in gradual snow depo-
sition, compaction by its own weight and subsequent snow-ice transformation and
ice mass build-up, i.e. formation of a glacier. If these favorable conditions persist
for sufficiently long time, the glacier volume increases. The shear stresses gradually
building up within the ice matrix eventually trigger internal creep and the glacier
starts deforming and flowing downstream unless hindered by bedrock topography,
see an illustrative sketch in Figure 2.1.

15



16 2.1. MATHEMATICAL MODEL OF GLACIER FLOW

2.1 Mathematical model of glacier flow

For the description of flows of glaciers and ice sheets on Earth (and possibly other
planets like Mars in its ancient past), ice is usually treated as a non-Newtonian
viscous fluid with viscosity depending on the stress/strain rate, pressure and tem-
perature. The mathematical model describing glacier evolution is formulated in
terms of the balance equations of continuum mechanics - balances of mass, linear
and angular momentum and internal energy. The scaling arguments based on the
identification of characteristic scales of all the involved physical quantities and the
associated dimensionless formulation of the balance equations, allow one to reduce
the general model and arrive at a simpler approximate one. In the given application,
the traditionally adopted assumptions involve incompressibility of the material and
negligible inertial forces (in the sense of negligible Froude number). Consequently,
the resulting system comprising the balances of mass, linear momentum and energy
takes the following form of three partial differential equations for ice velocity v,
pressure p and (absolute) temperature ϑ (Greve and Blatter, 2009):

div v = 0 , (2.1a)
0 = −∇p + div S + ρig , (2.1b)

ρiCv(ϑ)
(

∂ϑ

∂t
+ v · ∇ϑ

)
= div (k(ϑ)∇ϑ) + S : D(v) . (2.1c)

Here g is the gravity acceleration, ρi the ice density, and Cv and k are the heat
capacity and the thermal conductivity of ice, respectively. Mechanical response
(rheology) of ice is described by specifying the dependence of the (symmetric) de-
viatoric stress tensor S on p, ϑ and the symmetric part of the velocity gradient
D(v) = 1

2(∇v + ∇T v). As discussed in the previous chapter, for terrestrial glaciers,
the viscous creep regime is usually considered in the high-stress limit, corresponding
to dislocation creep or its transition to superplastic flow. It is parameterized in
terms of an empirical relationship known as Glen’s flow law (Glen, 1952; Glen and
Perutz, 1955) describing ice as a non-Newtonian power-law fluid by specifying

D(v) = A(ϑ, p)Sn−1
II S . (2.2a)

Written in a more standard (inverse) form using viscosity η, it reads

S = 2ηD(v) , with η = 1
2A(ϑ, p)− 1

nD
1−n

n
II . (2.2b)

Here SII and DII denote the (scalar) second invariants of the two tensors, the power-
law exponent for Glen’s flow law is n=3 and the rate factor A(ϑ, p) is given by (1.7)
or (1.8). The heat capacity of ice depends on temperature linearly in the range of
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terrestrial temperatures and the dependence is moderate and given by (Ritz, 1987)

Cv(ϑ) = (146.3 + 7.253ϑ[K])Jkg−1K−1 . (2.3a)

The temperature dependence of the thermal conductivity reads (Ritz, 1987)

k(ϑ) = 9.828e−0.0057ϑ[K]Wm−1K−1 . (2.3b)

The governing equations, obtained by inserting the rheology (2.2) and the ma-
terial parameters (2.3) into the balance equations (2.1), need to be accompanied by
the boundary conditions at all interfaces of the glacier with its surroundings. These
can be in a very general way formulated as expressions of the form

gi(ϑ, p, q · n, vn, vτ ,Sn) = 0 , i = 1, 2... , (2.4a)

describing relationships among state variables ϑ, p, normal and tangential velocity
components vn, vτ , normal component of the heat flux q = −k∇ϑ and the traction
force Sn (n denoting the outer surface unit normal). A particular example of such
set of boundary conditions for a cold (i.e. non-temperate) grounded glacier with two
distinct interfaces - upper free surface and bottom ice-bedrock interface - would be
as follows.

• Upper glacier surface:

(−pI + S)n = −patmn , ϑ = ϑs , (2.4b)

specifying mechanically free surface (exposed to atmospheric pressure patm)
and surface temperature ϑs (depending explicitly on position and time).

• Ice-bedrock interface:

q · n =

⎧⎨⎩ −qgeo if ϑ < ϑmelting

−qgeo + v · Sn + Lab if ϑ = ϑmelting , (2.4c)

and

vn =

⎧⎨⎩ 0
νn + ab/ρi ,

, vτ =

⎧⎨⎩ 0 if ϑ < ϑmelting

−α(Sn)τ if ϑ = ϑmelting . (2.4d)

Both the thermal and the mechanical basal conditions distinguish between
the “frozen” base regime (ϑ<ϑmelting) and the “temperate” base regime (ϑ =
ϑmelting) in which melting/freezing may take place.

The first condition (2.4c) specifies either continuity of the normal heat flux
with the geothermal heat flux qgeo or relates the melting/freezing rate ab (pos-
itive for melting) at the bottom interface (L denoting the latent heat of melt-
ing) with the jump of the heat fluxes and frictional heating power at the glacier
base (term −v · Sn).
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The second condition (2.4d) determines the normal and tangential components
of the ice velocity at the glacier base. The normal component is zero for
frozen bed conditions, or, is given by the melting rate ab and the normal
component of the bedrock velocity vector νn at a temperate base. The latter
is an independent quantity that can be obtained, for instance by coupling
the glacier model with a model of deformation of the underlying medium
(Earth’s lithosphere) in a process of so-called glacial isostatic adjustment (see
e.g. Tarasov and Peltier (2002); Tarasov et al. (2012)). The tangential part of
(2.4d) is a stick/slip sliding law in glacilogy often considered to be of Weertman
type (Weertman (1957), Boulton and Hindmarsh (1987)), in which case the
sliding coefficient α is of the form

α = α0
|(σn)τ |p

|(σn)n|q
, (2.4e)

i.e. depending on p, q, powers of the tangent and normal tractions (σn)τ =
σn − (n · σn)n, (σn)n = n · σn.

After providing the initial conditions in terms of initial temperature distribution
and initial geometry of the glacier, the problem of glacier thermo-mechanical evo-
lution comprises the solution of the above system of governing equations alongside
with the kinematic condition, i.e. evolution equation for ice geometry. If the ice
geometry is described by an elevation function f s (describing the elevation of the
glacier surface over some fixed reference plane surface), the kinematic condition (in
global Cartesian coordinate system) reads

∂f s

∂t
+ vx

∂f s

∂x
+ vy

∂f s

∂y
− vz = as(t, x, y, z) . (2.5)

The source term as on the right-hand side, so-called surface accumulation/ablation
function, describes another component of the climatic input, the rate of supply of
new ice by accumulation, or, conversely the rate at which ice is melted away from
the surface.

Mathematically, the problem has a structure of a set of quasi-static (mass &
momentum balances) and evolutionary (energy balance) PDEs solved in an evolving
geometry (kinematic condition). This makes the problem in its full generality rather
challenging both from the analytical and numerical point of view and thus further
simplifications are often necessary.

2.2 Shallow ice approximation and beyond

To solve analytically the system of equations governing glacier evolution as presented
above is impossible except for several extremely special cases. Consequently, numer-
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ical simulations play a critical role in present-day glaciology. Interestingly, even with
the capabilities of modern supercomputers, solution of the so-called full-Stokes (or
full Stokes-Fourier) model specified above remains challenging especially for long-
term and large-scale simulations of ice sheets such as the Antarctic or Greenland
ones. In those cases, further simplifications must be imposed that allow one to re-
duce the computational requirements and to make the computations feasible. For
grounded glaciers and ice sheets, i.e. ice masses resting on some bedrock (unlike
the floating ice masses - so-called ice shelves), the popular and widely employed
simplification is based on a formal asymptotic expansion of the system of governing
equations in terms of a small parameter - an aspect ratio ε=H

L
- expressing the

“flatness” of the glacier in terms of a ratio of its characteristic thickness H and its
characteristic lateral dimension L. For large glaciers and ice sheets on Earth like
the Greenland or Antarctic ice sheet, this parameter is typically ≤ 10−2.

A particularly important is the zeroth-order limit of this formal asymptotic ex-
pansion, so-called shallow ice approximation (SIA), introduced by Hutter (1983) and
Morland (1984). It stems from the hydrostatic approximation by assuming S33 ≃ 0,
which allows one to integrate the vertical component of the momentum balance.
SIA further imposes the following a-priori scaling of the extra stress components

Sxz,Syz = O(ε)ρigH, Sxx,Syy,Sxy = O(ε2)ρigH , (2.6)

which means that the vertical shear stresses dominate the longitudinal stresses (and
also the horizontal shear stress). Introducing this scaling into the governing equa-
tions and taking only the highest-order terms in the power expansion in ε, this set of
assumptions allows one to explicitly identify the horizontal shear stress components
in a closed form

Sxz ≃ −ρig(f s − z)∂f s

∂x
, (2.7a)

Syz ≃ −ρig(f s − z)∂f s

∂y
, (2.7b)

proportional to the local surface gradient. A great advantage of the SIA approxima-
tion is that it admits a semi-explicit evaluation of the velocity field based on (2.7)
by integrating the corresponding tensorial components of Glen’s flow law rheology
(2.2). This yields in particular the following formulae for horizontal components of
the velocity field:

vx(t, x, y, z) = vb
x − 2(ρg)n|∇hf s|n−1 ∂f s

∂x

∫ z

fb
A(ϑ′)(f s − z′)n dz′ , (2.8a)

vy(t, x, y, z) = vb
y − 2(ρg)n|∇hf s|n−1 ∂f s

∂y

∫ z

fb
A(ϑ′)(f s − z′)n dz′ , (2.8b)
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where vb
x, vb

y are the components of velocity at the base, n is the Glen’s flow law
exponent and ∇hf s =

(
∂fs

∂x
, ∂fs

∂y

)
. The remaining velocity component vz can be

obtained by integrating the mass conservation (2.1a), and from the complete velocity
field, all the remaining stress components can be recovered based on (2.2b).

Consequently the numerical implementation of the mechanical part of the SIA
problem becomes matrix-free and thus computationally essentially trivial - limited
to one-dimensional (vertical) quadratures. Notably, the evolution equation for the
surface topography (2.5), which is originally hyperbolic, admits under the SIA as-
sumptions reformulation to the form

∂f s

∂t
+ ∇h · (K(|∇hf s|)∇hf s) = as . (2.9)

If explicit time discretization is employed in the numerical implementation of this
equation, and the nonlinear diffusivity K(|∇hf s|), is evaluated from the surface slope
in the previous time step, the kinematic equation becomes linear parabolic. This of
course greatly improves numerical stability of the numerical solution of the geometry
evolution. Combination of these performance and stability advantages has led to
a great popularity of the SIA and its intense applications especially in the paleo-
simulations of large ice sheets, i.e. in simulations spanning hundreds to thousands of
milenia (e.g. Hughes, 1981; Holmlund and Fastook, 1995; Ritz et al., 1996; Tarasov
and Peltier, 2002; Kirchner et al., 2011; Kusahara et al., 2015; Souček et al., 2015).

The validity of the shallow ice approximation unfortunately relies on the specific
scaling assumptions on the components of the stress field (2.6) which become to a
lesser or greater extent violated in many important cases (e.g. Ahlkrona et al., 2013).
For this reason, the SIA is known to fail in describing for instance ice streams, fast
flowing regions close to the glacier outlets, whose motion is typically sped up by
sliding on a water-lubricated base. It also does not hold for ice shelves - floating ice
masses where the longitudinal not shear stresses dominate their dynamics. Neither
does it describe the transition zones between grounded ice sheets and ice shelves
which determine the grounding line dynamics - a phenomenon which is critical for
understanding and predicting destabilization of ice shelves, observed recently with
an increasing rate all around the world. Last but not least, the SIA assumptions
are problematic in smaller alpine-type glaciers, for which the flatness ratio is much
higher than for the large ice sheets and the formal asymptotic expansion probably
does not make sense.

A remedy in these cases has been sought by a number of different approaches. For
instance, by introducing different apriori scaling assumption, a model of the same
order of accuracy but yielding different governing equations was designed to capture
shallow shelf dynamics - so-called Shallow Shelf Approximation (SSA) (Morland,
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1987; MacAyeal, 1989). Hybrid models have then been designed that combine the
SIA with the SSA in order to capture both the grounded and marine ice sheet/ice
shelf dynamics (e.g. Pollard and DeConto, 2012). Higher-order models have been
designed either as formal continuation of the asymptotic expansion corresponding to
the SIA (and SSA) such as First or Second-Order SIA (FOSIA, SOSIA) (e.g. Hutter,
1983; Baral et al., 2001). Alternatively, different class of higher-order models has
been derived directly from the full Stokes model by neglecting certain terms indicated
by scaling but not employing the asymptotic expansion. Most of these models retain
the deviatoric stresses neglected in the SIA, the most popular among them is perhaps
the Blatter-Pattyn model (Blatter, 1995; Pattyn, 2003), a systematic hierarchy of
higher order models has been given in Hindmarsh (2004). Finally, with the increasing
computational power of modern computers, full-Stokes models are also being used
more and more extensively (e.g. Gillet-Chaulet et al., 2012; Seddik et al., 2012;
Rückamp et al., 2022).

A community effort gradually led to a development of a series of benchmark
exercises (e.g. Pattyn et al., 2008, 2012, 2013) that have been devised to elucidate the
accuracy of the approximate models when compared to the full-Stokes solutions and
to quantify the effect of these approximations on phenomena such as the grounding
line migration. The higher-order approximation effects have been studied also in the
context of thermomechanical instabilities (Souček and Martinec, 2011) or in large-
scale paleoglacial simulations (Kirchner et al., 2016). Interestingly, the latter study
indicates that the use of second-order SIA, contrary to what has been expected, does
not provide a sufficient accuracy improvement compared to the SIA solution. With
an alternative such as the Pattyn-Blatter or the full-Stokes model being significantly
more demanding in terms of required computational power, suitable alternatives still
ought to be looked for.

Iterative improvement of the shallow-ice approximation

In Souček and Martinec (2008), we have aimed at contributing to the search of
approximations extending the shallow ice approximation in terms of accuracy but
keeping some of its advantages in terms of the lower computational requirements
compared to the full-Stokes solution. We devised a relatively simple algorithm
(called “SIA-I”), which provides an iterative improvement of the SIA solution in a
series of steps whose computational cost is comparably as low as the solution of the
SIA itself. The iterative improvement is moreover straightforward implementation-
wise, allowing for the technique to be implemented into any existing SIA-based
codes. Moreover, as a first iteration the algorithm provides the classical SIA solution.
Since the algorithm is used in the appended manuscript [P1], we briefly recapitulate
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its basic structure here.
The algorithm is based on the following strategy (assuming isothermal setting

for simplicity). We consider the mass, linear momentum and rheology equations
characterized formally by operators Amass, Almom, Arheo so that these governing
equations read

Amass(v) = 0 , Almom(p,S) = 0 , S = Arheo(v, p) . (2.10)

Given an estimate of the fields vk, pk, Sk in a k-th step of the algorithm, we look
for increments δv, δp, δS such that the exact solution of (2.10) reads

v = δv + vk , p = δp + pk , S = δS + Sk .

Linearity of the momentum balance admits to write it as an equation for the in-
crements which, in the algorithm, is replaced by its SIA counterpart. Formally, we
consider an incremental linear momentum balance of the form

ASIA
lmom(δp, δS) = −Almom(pk,Sk) .

The left hand side admits a simple inversion by the solution of SIA problem with the
given right-hand side. The updated stresses are used to infer an updated velocity
field by integrating the rheology equation and the mass balance in a procedure again
analogous to the the corresponding SIA step, so written formally, one solves

(vk+1
x , vk+1

y ) = (ASIA
rheo)−1(Sk + δS, pk + δp) , vk+1

z = A−1
mass(vk+1

x , vk+1
y ) .

From the velocity field, the remaining components of the stress field (which have
not been updated yet) are computed

Sk+1 = Arheo(vk+1, pk+1) , pk+1 = pk + δp .

The process is iterated, and, in order to achieve convergence, certain under-relaxation
is performed.

The algorithm was implemented in a Fortran90 code, using the staggered grid
finite difference scheme with the vertical coordinate mapped on the actual shape of
the ice sheet (essentially an Arbitrary-Langrangian-Eulerian (ALE) approach). The
code admits the use of both the Cartesian and the spherical coordinates and includes
also the evolution equation for temperature and geometry. The thermo-mechanical
coupling aspects have been tested in an evolutionary benchmark exercise EISMINT
(Huybrechts and Payne, 1996) (European Ice Sheet Modeling IniTiative) and also in
EISMINT Greenland models benchmark focused on long-term large-scale Greenland
ice sheet evolution simulation spanning several glacial cycles.
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With an implementation of the SIA-I algorithm, we participated in an influen-
tial benchmark experiment focused on comparison of the higher-order approaches
to the approximations of flow equations ISMIP-HOM (Benchmark experiments for
higher-order and full-Stokes ice sheet models), whose results are summarized in
Pattyn et al. (2008) (co-authored). Up to an aspect ratio ε= 1

10 , our algorithm was
comparable to the exact full-Stokes solution in terms of accuracy but with the com-
putational requirements reduced by 1-2 orders of magnitude (Souček and Martinec,
2008; Gagliardini and Zwinger, 2008).

2.3 Brief summary of the results in P1 and P2

[P1] - ISMIP-HEINO experiment revisited: Effect of higher-order ap-
proximation and sensitivity study

In [P1], we exploited the favorable accuracy-to-speed ratio of the SIA-I algorithm in
an attempt to quantify the role of higher-order approximation of the flow equations
on modeling thermo-mechanical cyclic instabilities of glaciers - so-called Heinrich
events (Heinrich, 1988). In particular, we revisited the ISMIP-HEINO benchmark
experiment (Calov et al., 2010), which was designed to capture the essence of this
instability by a “binge-purge” mechanism of thermally-triggered sliding at the base of
the glacier. Due to enormous computational requirements, none of the participants
provided a full-Stokes solution. We recomputed the results of this experiment with
and without the iterative improvement of the SIA solution with the goal to assess
the importance of higher-order approximation on the formation and characteristics
of the instabilities.

In order to interpret the results in view of the apparently large variability of
the published numerical solutions of the benchmark exercise, we devised in [P1] a
wavelet-type processing strategy of the resulting time series. This tool allowed us
to observe that the higher-order approximation of the flow equations plays only a
relatively minor role in the experiment compared to the implementational details of
the thermo-mechanical coupling. We have concluded that SIA-based models do not,
in this case, lack the ability to reproduce Heinrich-type instabilities, but at the same
time, we showed that reliable modeling of Heinrich events might be problematic even
for full-Stokes solvers and even in terms of just statistical characteristics.

[P2] - A 3 Ga old polythermal ice sheet in Isidis Planitia, Mars: dynamics
and thermal regime inferred from numerical modeling

Guidat et al. (2015) (co-authored) have proposed a glaciological interpretation of
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a set of geomorphological features located in the region of Isidis Planitia - a large
equatorial impact basin on the surface of Mars. In order to verify their hypothesis,
in [P2] we have adapted the numerical code introduced above to simulate the condi-
tions on the ancient Mars, approximately 3 Ga ago, and to investigate the glaciation
in the region. The idea was based on the previously published results of the Mar-
tian global circulation model (GCM) by Madeleine et al. (2009), which showed that
during the periods of high obliquity (rotational axis tilt) that are believed to have
occurred in Martian history (Laskar et al., 2004), conditions in the Isidis region may
have been favorable for ice accumulation and thus glacier formation. Adopting the
synthetic accumulation data and surface temperatures from the GCM and supple-
menting them with the synthetic geothermal heat flux model based on Grott and
Breuer (2010), our simulations revealed that a massive ice sheet with the thickness
of several kilometers may have formed in the Isidis basin consistently with the an-
cient climatic conditions. The thermal insulation effect of the ice cover together with
the geothermal cold spot in the heat flux model, led in our simulations to reach-
ing the melting point in an ring-like region of the basin. This provided wet-based
conditions at a portion of the glacier base and, together with the simulated ice flow
pattern, provided support for the interpretation of the present-day observed geomor-
phological features as the remnants of an ancient subglacial hydrological network
and associated glacial relicts.



3Tidal deformation
of planetary ice shells

This chapter focuses on mathematical modeling of tidally induced deformation of
outer ice shells of Saturn’s moon Enceladus and Jupiter’s moon Europa.

Figure 3.1: Left: A sketch (to scale) of the present day view of the structure of Europa
and Enceladus. Right: A visualisation of our mathematical model of Enceladus with the
finite element mesh refined in the vicinity of tiger stripes - four prominent faults on the
south pole. Enceladus surface image credits NASA/JPL/SSI/USRA/LPI.

For the glaciers and ice sheets discussed in the previous chapter, the primary
mode of deformation was the viscous creep which was accommodating gravity in-
duced shear stresses within the ice. In planetary ice shells, such gravity-driven
viscous flow analogous to that of glaciers may occur as well in the form of viscous
or viscoelastic relaxation of non-equilibrium shapes caused for instance by crater
formation (Kihoulou et al., 2022) or by freezing/melting heterogeneities at the in-
terface with the internal ocean (e.g. Ashkenazy et al., 2018; Čadek et al., 2019).
Apart from such deformation regime occurring on a geological time scale, another
forcing agent is often active, operating on a much shorter - orbital - time scale, whose

25
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importance for the internal and also orbital evolution of these bodies, as well as its
role in determining their interior structure, cannot be overestimated - the tides.

3.1 Tides on Enceladus and Europa

Both Europa and Enceladus experience forcing due to the tides raised on them by
their primaries - Jupiter and Saturn. Tidal forces arise due to a local disbalance
between the gravity from the companion body or bodies (primaries in the case of
Europa and Enceladus) and the centrifugal force on the adjacent and faraway sides
of the moon/planet. Despite the fact that both Europa and Enceladus are locked in
the synchronous rotation (i.e. facing their primaries with the same side as our Moon
does with respect to the Earth), the tidal potential varies in time due to non-zero
eccentricity of the moons’ orbits.

These variations of tides induce a periodic forcing on the orbital time scale of
days. In response to this short-periodic forcing the moons react by mainly elastic (i.e.
reversible) deformation, but inelastic effects attributed to viscoleasticity, plasticity
or internal friction arise as well. These cause a phase lag between the tidal forcing
and the moons’ mechanical response and, more importantly, lead to dissipation of a
part of the mechanical energy in the moons’ interiors. For Europa and Enceladus,
such internal heating source is an important ingredient of their energy budgets,
which may be responsible for the creation and sustainability of their liquid oceans,
thus making them primary targets of planetary research of prominent astrobiological
potential.

Both Europa and Enceladus are differentiated (see the structure in Figure 3.1
(left)) and the tidal response and the associated dissipation in each of the layers
differ. Mechanical dissipation in the unconsolidated silicate interior of Enceladus was
hypothesized to be the most important source of internal heating for this tiny moon
dominating its energy budget (Roberts, 2015; Choblet et al., 2017). On Europa,
dissipation in its silicate mantle may be responsible for maintaining volcanic activity
until present (Běhounková et al., 2021). Dissipation in the liquid oceans was also
considered and modelled (Tyler, 2014; Beuthe, 2016; Matsuyama et al., 2018; Rovira-
Navarro et al., 2019) with the conclusion that while it probably plays only a negligible
role with the current state of the moons’ hydrospheres, its importance may become
more profound if the oceans become very thin (for instance as the result of gradual
freezing as the bodies cool down). Finally, tidal dissipation in the outer ice shells
was suggested to be important (Tobie et al., 2005, 2008; Běhounková et al., 2012),
which motivated our own research and led to a series of numerical studies that will
be presented after briefly introducing the basic mathematical framework of these
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models.

3.2 Mathematical model of tidal deformation and
heating

Mechanical part - tidal deformation

The mechanical part of the mathematical model describing tidal deformation of
planetary ice shells is represented by a quasi-static equilibrium between the forcing
by the disturbing potential V and the deformation of the shell inducing incremen-
tal Cauchy stress σ (incremental with respect to the reference hydrostatically pre-
stressed state). Unlike the deformation of glaciers with the strains easily exceeding
unity, the strains caused by tidal deformation of planetary shells are of the order of
2×10−5 for Europa and Enceladus (Tobie et al., 2003; Nimmo et al., 2007). This
allows one to neglect the density variations due to volume changes so that the mass
balance need not be considered in the problem. The mechanical problem thus reads

div σ − ρi∇V = 0 , (3.1)

where ρi denotes ice density and the disturbing potential can be decomposed as

V = V tidal + δV tidal . (3.2)

The first term represents the exerted (loading) tidal potential by the primary (Sat-
urn or Jupiter) and the second term describes self-gravitation - change of the gravity
potential of the moon itself resulting from its deformation by tides. The tidal po-
tential can be approximated, for bodies in a synchronous rotation like Enceladus or
Europa, to a first order in eccentricity, by an explicit function of time t, radius r,
co-latitude θ and longitude ϕ as follows (Kaula, 1964):

V tidal = r2ω2e
{3

2P 2
0 (cos θ) cos ωt − 1

4P 2
2 (cos θ) [3 cos ωt cos 2ϕ + 4 sin ωt sin 2ϕ]

}
,

(3.3)
where ω is the orbital angular frequency, and P 2

0 and P 2
2 are the associated Legendre

functions. For a radially symmetric, isotropic elastic body, which is often a good
approximation of the real structure, the self-gravitation effects can be parameterized
in terms of potential Love numbers kℓ (Love, 1907), relating the induced potential
and the loading potential at the surface of the body (r=R) at a given spherical
harmonic degree ℓ

δV tidal
ℓ

⏐⏐⏐
r=R

= kℓ V tidal
ℓ

⏐⏐⏐
r=R

. (3.4)
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This expression can be generalized to linear viscoelastic models by replacing the real
Love numbers by complex ones. Often the bulk changes in density are negligible
and thus the primary self-gravitating effect arises due to deformation of boundaries
of the body, i.e. change of shape - the corresponding self-gravitation potential is
then sought typically using the Helmert condensation method (e.g. Martinec et al.,
1993).

The fact that the tidal deformation is small allows one to formulate the problem
in an Eulerian setting but on a fixed undeformed domain on which the effect of
shape change is replaced by displacement-dependent boundary conditions. These
boundary conditions on the two underformed interfaces of the shell - the upper free
surface Γtop and the ice-ocean interface Γbot can be formulated, after linearization
with respect to the displacements, as follows (Souček et al., 2019):

σn + urρign = 0 , at Γtop (3.5a)
σn − ur(ρw−ρi)gn = nρwV , at Γbot . (3.5b)

Here n denotes the outer unit normal, ρi and ρw are the ice and water densities,
respectively, g is the (magnitude of) gravity acceleration and ur is the radial dis-
placement of the given surface. The terms involving ur correspond to the effective
weight of the undulated interface and the term on the r.h.s in the second equation
represents an incremental pressure in the internal ocean due to tides.

Ice rheology, i.e. the dependence of the incremental Cauchy stress σ on the
deformation, can on the time scale at which tides operate on Europa and Enceladus
(3.55 and 1.37 days, respectively) be often approximated by a Hookean elastic solid.
More accurately, linear viscoelastic models for the shear deformation have been
introduced to comply with the phase lag between the observed deformation and tidal
loading. The two most commonly considered viscoelastic models are the Maxwell
and Andrade linear viscoelasticity. Both models consider viscoelastic response only
in the shear component of the deformation, while considering the bulk response of
ice as elastic.

The three cases correspond to the following constitutive relations for the incre-
mental Cauchy stress in the time domain (see Section 1.3 for the corresponding
expressions in the frequency domain), (Efroimsky, 2012):

• Elastic model

σ = K div uI + 2µεd , (3.6a)

Here εd is the deviatoric part of the symmetric gradient of displacement, I
is the identity tensor, and K and µ are the bulk and shear elastic moduli,
respectively.
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• Viscoelastic models
σ = K div uI + S , (3.6b)

where the deviatoric part of the incremental Cauchy stress S satisfies

2εd =
∫ t

−∞
J(t − τ)Ṡ(τ, ·)dτ (3.6c)

with the compliance J defined as

J(t − τ) =

⎧⎨⎩
1
µ

(
1 + t−τ

τM

)
H(t − τ) Maxwell

1
µ

(
1 + t−τ

τM
+
(

t−τ
ζAτM

)α)
H(t − τ) Andrade

(3.6d)

Here τM is the Maxwell time defined as τM= η
µ

with η denoting ice viscosity,
ζA and α are parameters and H is the Heaviside function.

Since the deformation induced by tidal forcing is small, ice viscosity in both
the Maxwell and Andrade models is sometimes considered to be Newtonian of Ar-
rhenius type (taking into account only diffusion creep out of the four deformation
mechanisms described in Section 1.2.2):

η = η0 exp
(

E

R

(1
ϑ

− 1
ϑb

))
(3.7)

Here E is the activation energy of diffusion creep, R is the universal gas constant, ϑb

is the temperature at the ice-ocean interface, i.e. local melting point in the interior
of Enceladus. The prefactor η0 represents the lowermost viscosity (viscosity at the
melting point), and is a free parameter as it depends on the unknown grain size -
typically only some bounds can be inferred from indirect arguments. For example
in Čadek et al. (2019), we have shown, that values smaller than 3×1014 Pa s for
Enceladus would be inconsistent with the assumption that the present-day shape of
the shell is in a (dynamic) steady state.

Thermal part - heat transfer

The temperature distribution within the shells of icy moons, which strongly affects
their viscosity, depends critically on the regime of the heat transfer, mainly on
whether or not thermal convection takes place. While convection is considered
unlikely for the minuscule Enceladus, the ice shell of much larger Europa probably
contains a convecting layer below the upper cold conductive stagnant lid (e.g. Barr
and Showman, 2009).

The two cases differ tremendously in terms of the difficulties of coupling the
mechanical model of tidal deformation with the thermal evolution of the bodies. In
the conductive case, the temperature profile is essentially one-dimensional and can
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be relatively simply approximated by an analytical or semi-analytical solution or
by a numerical solution of an additional scalar partial differential equation for the
temperature. In the latter - convective case - the temperature must be sought for
by a numerical solution of the thermo-mechanical equations describing the convect-
ing system. This includes momentum and mass balance for solid state convection,
usually formulated in the Boussinesq approximation, see below. Since the ther-
mal convection and the tidal processes occur on very different time scales (millions
of years vs. days), some time-scale splitting strategies are in this case necessary.
Equations governing the thermal state for the two discussed cases are the following:

Conductive heat transfer

The (steady-state) temperature field ϑ is sought as a solution of stationary heat
equation

− div (k(ϑ)∇ϑ) = h , (3.8)

where k(ϑ) is the heat conductivity considered in the planetary ice shell applications
of the form (Petrenko and Whitworth, 2002)

k(ϑ) = k0

ϑ
, k0 = 651W m−1 . (3.9)

The internal heating h represents the time-averaged (over the tidal period P ) dissi-
pative heating due to the tidal deformation, i.e.

h = 1
P

∫ P

0
S : D(v)dτ . (3.10)

This system is supplemented with the boundary conditions

ϑ = ϑmelt at Γbot , and ϑ = ϑtop at Γtop , (3.11)

specifying the melting temperature ϑmelt at the bottom ice-ocean interface Γbot and
the effective surface temperature (given by radiation equilibrium) at the upper sur-
face Γtop.

Convective heat transfer

For a convecting system, the thermal structure is typically sought by solving the
coupled system of mass, momentum and heat transfer equations, often considered
in the extended Boussinesq approximation (e.g. King et al., 2010):

div v = 0 , (3.12a)
0 = −∇p + div(2ηD(v)) − ρiα(ϑ − ϑ0)g , (3.12b)

ρ0Cp

(
∂ϑ

∂t
+ v · ∇ϑ

)
= div (k(ϑ)∇ϑ) + 2η|D(v)|2 + ρ0αϑv · g + h , (3.12c)
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where v denotes the convection velocity, p is the dynamic pressure, η the ice viscos-
ity, α the thermal expansion coefficient, ϑ0 the reference temperature, Cp the heat
capacity of ice at constant pressure and tidal heating h is given by (3.10) from the
solution of the tidal part of the problem. Thermal boundary conditions can be the
same as in the conductive state unless significant melting or freezing takes place
at the ice-ocean interface. In that case, alternative Stefan-type boundary condition
must be considered, relating the jump of normal heat flux and the melting across
the interface and the melting rate, see (4.8). Concerning the linear momentum bal-
ance, typically the free-slip boundary conditions are prescribed (see, e.g. King et al.,
2010).

3.3 Brief summary of the results in P3–P7

Together with colleagues from the Department of Geophysics and from the Mathe-
matical Institute at the Faculty of Mathematics and Physics, Charles University, and
also in collaboration with colleagues from Laboratoire de Planétologie et Géosciences
Nantes, France, we have been since 2016 developing a finite-element (FE) code for
numerical simulations of tidal deformation of planetary ice shells with Enceladus
as the primary target of our research. The core of the code is based on the FEn-
iCS open source FEM library (Alnaes et al., 2015), but currently, it also utilizes
external Fortran90 and Python routines for calculation of self-gravitation and for
postprocessing of simulation data. The use of finite element spatial discretization
allowed us to study the effects of very localized features such as the system of
prominent faults - so-called Tiger Stripes - in the south-polar region (SPR) of Ence-
ladus, which is impossible with the more traditional spectral-based methods (e.g.
Moore and Schubert, 2000; Tobie et al., 2008). Through the FEniCS library, the
code utilizes the computational and MPI parallelization capabilities of PETSc and
MUMPS libraries. We have greatly benefited from participation in a series of open
access competitions of IT4Innovations National supercomputing center in Ostrava,
Czech Republic (https://www.it4i.cz). This allowed us to perform evolutionary
simulations with up to 106−107 degrees of freedom.

[P3] - Effect of the tiger stripes on the deformation of Saturn’s
moon Enceladus

In [P3], we focused on the first-order effects associated with the presence of a system
of four prominent faults in the south-polar region (SPR) of Enceladus (see Figure 3.1
(right)) on the tidal deformation of its outer ice shell. Considering for simplicity

https://www.it4i.cz
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a shell of uniform thickness and described by a model of homogeneous isotropic
Hookean elastic solid, we modelled the faults as narrow zones of significantly (by 6
orders of magnitude) reduced elastic moduli, passing through the whole shell. As this
setting corresponds to frictionless faults (representing a scenario, when the faults are
hydrostatically flooded by water from the ocean and/or lubricated by water vapor),
it provides an upper estimate of the faults’ impact on tidal deformation of the shell.
Our results revealed that the stress and deformation field in the SPR in this case
becomes dominated by the presence of the faults, which determine both the spatial
distribution of these fields and also their magnitude and lead to a several-times
fold magnification of tidal displacement in the vicinity of the faults. Consequently,
it appears that the tectonic interpretations of SPR geomorphology cannot rely on
the traditional spectral-based estimates of the stress field, due to their inability to
incorporate the fault’s presence.

[P4] - Plume activity and tidal deformation of Enceladus in-
fluenced by faults and variable ice shell thickness

In a follow-up study [P4], the effect of presence of faults was combined with a
realistic model of the shell thickness variations. The thickness model was based on
the study by Čadek et al. (2016) and included significant thinning of the shell in the
south-polar region.

We showed that the combined effect of shell thinning and presence of faults in the
SPR of Enceladus is synergetic, leading to an increase of the tidal displacement in
the SPR by an order of magnitude compared with the case with uniform thickness
and without faults. Our calculations were made for an elastic body, but scaling
arguments provided maximum estimate of the total tidal heating power due to tidal
deformation of the shell for a Maxwell viscoelastic shell. We concluded that deeper
heat sources must be present in the interior of Enceladus in order to allow for
maintaining a global internal ocean unless the ice viscosity at the base of the shell
is unrealistically low. A possible hypothesis was then expressed in a study with
our French colleagues (Choblet et al., 2017) (not appended) where we advocate
the missing dissipative mechanism to be tidal dissipation in the unconsolidated
porous core of the moon. We also showed that while the presence of faults and
the shell thickness variations affect the predicted activity of the plume in the SPR
of Enceladus, it still cannot explain its observed phase lag.



CHAPTER 3. TIDAL DEFORMATION OF PLANETARY ICE SHELLS 33

[P5] - Tidal dissipation in Enceladus’ uneven, fractured ice
shell

The previous study was extended in [P5] by a series of numerical experiments in
which, for the first time, we included also the anelastic effects. We implemented
Maxwell viscoelastic rheology with temperature-dependent viscosity and, in addi-
tion, we considered also a variant of the Maxwell model tuned to best approximate
the Andrade model (in terms of matching the corresponding quality factor). In ad-
dition, the conductive temperature equation (3.8) including dissipative heating was
solved along with the mechanical system describing tidal deformation and thus the
obtained temperature-viscosity-dissipation structure of Enceladus was fully consis-
tent with the mechanical state.

This model allowed us to improve the quantitative prediction of the upper bound
of dissipative heat power in the SPR of Enceladus to be 1.1 GW and the total tidal
dissipative heating in the whole shell less than 2.1 GW, strengthening the conclusion
of our previous paper on the importance of deeper heating sources within Enceladus.
A weak point in this study remained in the absence of realistic treatment of friction
at the faults themselves, which were still considered as frictionless.

[P6] - Enceladus’ tiger stripes as frictional faults: Effect on
stress and heat production

A partial remedy with respect to that weak point was achieved in the study [P6].
Here our model was modified in order to allow for quantification of the first order
effects of the presence of friction at the faults on the tidal deformation and associated
dissipative heating power in the SPR of Enceladus. This was achieved by mimicking
Coulomb-type friction at the faults by imposing an effective pseudo-plastic rheology
in the narrow fault zones employing effective viscosity of the form

ηeff = η∗(
1 +

(
2η∗∥Dd

visc(v)∥
σY

)m) 1
m

. (3.13)

Here η∗ represents some auxiliary large background viscosity and Dvisc refers to
the viscous (irreversible) part of the viscoelastic deformation and m is a numerical
parameter. The yield stress σY depends on the normal stress and on the effective
pressure (characterizing equilibrium normal loading of the fault) in such a way,
that it drops to zero if the fault is under tension and is of Coulomb-type if under
compression. This rheology provides the viscosity equal to the background value η∗

for small stresses. With increasing stress, the effective viscosity drops down in such
a way that the yield stress σY is never exceeded in the material.
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With such a model, we were able to inspect the first-order effects of the inclusion
of friction on tiger stripes for a wide range of the friction coefficients. In particular,
our study revealed that friction delays the mechanical response of the faults to tidal
loading and introduces an asymmetry between the phase of loading and unloading in
the normal direction (closing and opening phases). A consequence of this asymmetry
is the emergence of certain static background stress in the SPR with a magnitude
comparable with the dynamic stresses caused by tides. This effect may have an
important impact on the interpretation of Enceladus’s SPR tectonics. For the first
time in the series of our modeling efforts related to Enceladus, we were also able to
provide a quantitative estimate of the frictional heating power due to the strike-slip
motions at the faults - a contribution to the energy budget that has been missing in
our estimates so far. We concluded that the overall frictional heating power over the
tiger stripes probably does not exceed 1 GW. This conclusion further strengthened
the hypothesis of other important heating sources in deeper interior of Enceladus
in order to counteract the heat losses and allow for the long-term stability of its
internal ocean.

[P7] - Tidal walking on Europa’s strike-slip faults - insight
from numerical modeling

Finally, [P7] is a standalone project standing aside the above series on Enceladus,
as it was focused on modeling of tidal deformation on Jupiter’s moon Europa. In
particular, we have tried to numerically verify a geological hypothesis for the pro-
duction of lateral offset on fault systems on Europa by a process that has been
nicknamed tidal walking (Hoppa et al., 1999). In this hypothesis, lateral offset is
assumed to gradually accumulate at a fault which is periodically loaded both in
normal and tangential direction (with a mutual phase shift), assuming that part of
the tangential slip is irreversible as a result of this phase shift.

In order to test this hypothesis, we modelled a cross-section of Europa’s shell
perpendicular to a preexisting fault. In a Cartesian 2d model, we investigated
the regime of deformation due to a periodic strike-slip and normal forcing with the
Coulomb-type frictional behavior at the fault while considering viscoelastic Maxwell-
type rheology for ice. We focused on studying the role of the phase shift between
the strike-slip and normal forcing of the fault and of their amplitudes. We have
shown that under favorable conditions, an irreversible slip of the order of several km
(i.e. consistent with the observations) may accumulate at the faults over many tidal
periods. However, in the model, this required a stress forcing magnitude exceeding
the estimated present-day one. On the other hand, such conditions may have been
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active in the past history of Europa during epochs of increased eccentricity, making
the tidal walking mechanism a plausible explanation of the observed geomorphology.
In the model, we also focused on the role of tidal heating by mechanical dissipation
on weakening the fault zones and we confirmed that a mechanism of thermal run-
away might have been responsible for triggering the tidal walking mechanism. The
numerical FE code was again developed in the FEniCS library and was an extension
of a code that will be described in more detail in the next chapter in the context of
modeling of partial melting and porous media flow in Europa’s ice shell.



36 3.3. BRIEF SUMMARY OF THE RESULTS IN P3–P7



4Melting and melt transport
in planetary ice shells

In this chapter, we discuss another important physical process influencing planetary
ice shell dynamics, modulating the transport of heat and promoting exchange of
volatiles - ice melting/meltwater freezing and the melt transport in ice.

Figure 4.1: Left: Types of liquid water inclusions in polycrystalline ice - (a) intracrys-
talline, (b) two-grain intersection, (c) air bubbles, (d) three-grain intersection inclusions.
From Lliboutry (1971). Right: Detailed sketch of a three-grain intersection, from Mader
(1992) after Nye (1989).

In the outer ice shells of icy moons like Enceladus or Europa, melting and freezing
occurs primarily in two contexts. For moons with internal oceans a phase change
takes place at the interfaces between the ice layers and the oceans as a result of
local imbalance between the heat outflux from the ocean and its extraction rate by
conduction or convection in the ice layer. The thermo-mechanical coupling between
the phases and the evolution of their mutual interface involve solution of the so-
called Stefan problem or its more involved generalizations (see e.g. König-Haagen
et al. (2017)). The shell thickness variations induced by melting/freezing may drive
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large scale viscous flow within the shells, salinity variations associated with phase
change may dominate internal ocean dynamics (e.g. Soderlund et al., 2014; Kvorka
et al., 2018; Ashkenazy et al., 2018; Ashkenazy and Tziperman, 2020).

Alternatively, meltwater may be produced also in the bulk of the shell, for in-
stance at tidally loaded strike-slip faults on Europa, as a result of frictional heating
(Nimmo and Gaidos, 2002), or in the low-viscosity regions of ascending plumes sev-
eral kilometers below the surface as a result of enhanced tidal heating (Sotin et al.,
2002; Tobie et al., 2003). The process of near subsurface phase change has been
hypothesized as a possible explanation for a number of geomorphological features
on icy moons, such as the double ridges (Dombard et al., 2013) or chaos terrain
(Schmidt et al., 2011) on the surface of Europa. A critical question in these scenar-
ios concerns stability of such subsurface water reservoirs, which is closely connected
with the time scale for which the meltwater “pockets” or lenses could persist as
there are at least two mechanisms possibly triggering their instability and draining
meltwater away from the surface.

The first one is caused by the negative buoyancy of meltwater with respect
to the surrounding ice (for the outer ice I layers) which tends to form Rayleigh-
Taylor instability, the resulting turnover driving the melt downwards. The second
mechanism is related to ice permeability - as the ice matrix starts melting and the
volume fraction of meltwater increases, after reaching a threshold of a few percent,
the matrix becomes permeable to water which then gets drained by porous flow in
the direction of effective pressure gradient (downwards for outer ice I layers).

Interestingly, these mechanisms of meltwater drainage are very different from
the one we observe in terrestrial glaciers. The reason is that on Earth the hydraulic
channel and crevasse system is typically open from above where the meltwater is
primarily produced and from where it penetrates downwards by the process of hy-
drofracturing (Fountain and Walder, 1998). In the case of planetary ice shells, the
surface is typically very cold (<100 K for Europa and ∼ 60 K for Enceladus) so no
liquid water is present on the surface. So with a possible exception of Enceladus’
tiger stripes - south-polar faults penetrating probably the whole shell, most melt-
water in the interior of the icy moons’ shells is separated from the surface by a layer
of impermeable compact solid ice.

As a consequence, the permeability-driven water transport in partially molten
regions of the ice layers occurs by a process analogous to silicate melt transport in
the Earth’s mantle (e.g. McKenzie, 1984; Spiegelman and McKenzie, 1987). Melt
transport follows Darcy-type dynamics, but in contrast with the traditional near-
subsurface terrestrial porous media hydrology, here, an additional mechanical cou-
pling between the surrounding matrix and the flow of the melt is present. This
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coupling results from the fact that extraction of the melt from the matrix must be
accompanied by deformation of the matrix material filling the space evacuated by
the outflowing melt. This results in an emergence of the so-called compaction pres-
sure enriching the Darcy-type flow dynamics and bringing in additional dependence
of the flow also on the matrix properties such as its viscosity.

4.1 Mathematical model - porous flow of water in
temperate ice

In addressing the meltwater transport in planetary ice shells, we employ the math-
ematical model of meltwater flow in a viscously deforming temperate ice (i.e. ice at
the melting point). The system of governing equations comprises two balances of
mass and two balances of linear momentum for the two phases and, since both phases
have the same equilibrium melting point temperature, only one energy balance for
the mixture as a whole.

The system of governing equations can be derived from the first principles of the
theory of multicomponent interacting continua (Drew and Passman, 1998; Bercovici
et al., 2001; Šrámek et al., 2007). After model reduction by problem-tailored scaling
arguments, the system can be recast to the following form, closely resembling the
traditional two-phase equations of melt propagation in silicates, well established in
Earth mantle dynamics (McKenzie, 1984; Spiegelman and McKenzie, 1987):

• Balances of mass:

∂ϕ

∂t
+ div (ϕvf ) = r

ρf

, (4.1a)

div vm + div (ϕ(vf−vm)) = r

(
1
ρf

− 1
ρm

)
. (4.1b)

Here ϕ denotes porosity (i.e. volume fraction of fluid), vf and vm denote the
fluid and matrix velocities, respectively, r denotes the melting/freezing rate
(positive for melting) and ρf , ρm are the fluid and matrix (constant) densities,
respectively.

• Balances of linear momentum

c(ϕ)(vf−vm) = −ϕ (∇Π + (ρm−ρf )g) , (4.2a)
∇Π = −ϕ(ρm−ρf )g − ∇((1−ϕ)P) + div

(
2(1−ϕ)ηmDd(vf )

)
.

(4.2b)
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4.1. MATHEMATICAL MODEL - POROUS FLOW OF WATER IN

TEMPERATE ICE
Here Π is the dynamic pressure (defined as the total matrix pressure minus the
hydrostatic pressure), g is the gravity acceleration, ηm matrix shear viscosity
given in the considered applications by the effective viscosity (1.10) and P is
the compaction pressure defined as (Bercovici et al., 2001)

P = −ηm

ϕ
div vm . (4.3)

The symbol c(ϕ) denotes the drag coefficient, related to matrix permeability
κ(ϕ) through

c(ϕ) = ηfϕ2

κ(ϕ) , where typically κ(ϕ) = κ0ϕ
n , (4.4)

with n between 2 and 3 (e.g. Golden et al., 2007). Sometimes a percolation
threshold ϕc is introduced (Golden et al., 1998), such that the matrix perme-
ability drops by orders of magnitude (or to zero) for ϕ<ϕc, while for ϕ≥ϕc, it
follows a power-law relationship as in (4.4)2.

• Balance of energy

ϕCf

(
∂ϑ

∂t
+ vf · ∇ϑ

)
+ (1−ϕ)Cm

(
∂ϑ

∂t
+ vm · ∇ϑ

)
+ Lr

= div (k(ϕ)∇ϑ) + h + c(ϕ)|(vf−vm)|2 + (1−ϕ)σm : Dd(vm)−(1−ϕ)P div vm ,

(4.5)

where Cf and Cm are the heat capacities of the two phases, h are external heat
sources and k(ϕ) is the heat conductivity of the two-phase porous medium
given by an implicit relation (Budiansky, 1970; McKenzie, 1984)

ϕ

2 + kf

k

+ 1−ϕ

2 + km

k

= 1
3 , (4.6)

where kf and km are the fluid and matrix heat conductivities, respectively.

The above system is relatively complex so few comments are perhaps in order.
First, let us mention that in the vanishing melt limit, i.e. for ϕ→0+, and in the
absence of phase change, i.e. for r=0, the above system reduces to the standard
incompressible Stokes-Fourier system for the viscous ice matrix.

If melt is present, its transport is given by a Darcy-type equation (4.2a). This
equation represents a mechanical quasi-static equilibrium between the drag force
caused by the flow (l.h.s. of (4.2a)) and the gradient of dynamic pressure and the
gravity force (r.h.s. of (4.2a)). Melt transport and phase change may lead to volume
changes of the matrix as the pores close or open and porosity changes accommo-
dating the flow and melting/freezing. These two phenomena are captured by the
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mass balances (4.1). The non-zero divergence of the matrix velocity introduces an
additional coupling in both mechanical equations through the presence of the com-
paction pressure P in (4.2b), expressing the dynamic difference of pressure in the
two phases. This difference is related to the compaction of the matrix through a
“singular” effective bulk viscosity η

ϕ
. Through the dynamic pressure Π, the com-

paction pressure P in turn affects the melt separation in (4.2a). The energy balance
(4.5) describes an advective transport of heat by both phases (first two terms on
the l.h.s. of (4.5)) and the latent heat exchange (last term on the l.h.s. of (4.5)),
which are balanced by (in the order in which they appear on the r.h.s. of (4.5)):
heat diffusion by Fourier law, external heat sources, mechanical dissipation due to
friction between the flowing melt and the matrix, mechanical dissipation by shear
deformation of the matrix and mechanical dissipation by bulk deformation of the
matrix.

Numerical solution of the above system is non-trivial for many reasons. For
instance, in addition to a Stokes-type problem for matrix deformation with nonlin-
ear matrix viscosity, it contains a hyperbolic equation for porosity transport. Since
the porosity field may exhibit very steep spatial gradients, preventing spurious os-
cillations is challenging for most numerical approaches. Another challenge is that
the divergence of the matrix velocity is constrained by a non-trivial term. Next,
the compaction pressure involves an expression div vm

ϕ
, which is regular for ϕ→0+,

but switching between the partially molten and the cold-ice regime requires spe-
cial treatment. Last but not least, presence of the compaction pressure induces a
small-scale pattern formation - creation of so-called porosity waves (see e.g. Scott
and Stevenson, 1984; Spiegelman, 1993), whose presence tremendously increases the
resolution requirements both in space and time. The wavelength of the porosity
waves is related with the compaction length given by

δ =

√κ(ϕ)
(
ζm + 4

3ηm

)
ηf

, (4.7)

with ζm = ηm

ϕ
being the effective bulk viscosity of the matrix. In practical ap-

plications, the above system is often further simplified in a number of ways. For
instance small porosity approximation or so-called zero compaction length limit have
been formulated (e.g. Scott and Stevenson, 1989; Spiegelman, 1993), or a compaction
Boussinesq approximation (Schmeling, 2000), to name a few.
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4.2 Brief summary of the results in P8–P11

Since 2014, with colleagues from the Department of Geophysics and from LPG
Nantes, we have been developing finite-element based numerical tools for solution
of the above system in the context of partial melting in the interiors of shells of icy
moons. The presented calculations were implemented in Fortran90 codes and in an
open source finite element platform FEniCS (Alnaes et al., 2015).

[P8] - Water transport in planetary ice shells by two-phase
flow - a parametric study

In [P8], we have derived the two-phase formalism (i.e. the themo-mechanical govern-
ing equations) for ice-water mixture within planetary ice shells. In this regard, we
followed the well-established methodology stemming from the works of Drew and
Passman (1998); Bercovici et al. (2001); Šrámek et al. (2007), which starts from
the general framework of the two-phase continuum balance equations for mass,
momentum, and energy. By employing also the entropy balance and the second
law of thermodynamics, constitutive relations are identified in the spirit of linear
irreversible thermodynamics (de Groot and Mazur, 1984). We performed a non-
dimenzionalization and scaling analysis of the final system of governing equations
and by introducing a scaling tailored for the ice shell of Europa, we arrived at the
reduced model.

For this model, in a simplified one-dimensional geometry, we investigated numer-
ically how the model parameters affect the character of downward gravity driven
extraction of meltwater by porous flow. We focused on the role of permeability
(porosity exponent and permeability prefactor, percolation threshold, background
porosity), ice rheology (composite vs. simple, temperature effects, porosity weak-
ening), surface tension and compaction length. We confirmed numerically that the
most critical parameter with respect to the determination of the melt extraction
time scale is the ice permeability, while the other parameters played a minor role.
Interestingly, a reasonable approximation of the extraction time scale was obtained
also when the mechanical coupling between the two phases was neglected in the
so-called zero compaction length limit. The spatial character of the melt flow was
very sensitive to the compaction length. The cases with small compaction length
produced highly oscillatory porosity wave trains, while the zero compaction length
limit case produced a single propagating porosity discontinuity. A correspondence
between the two cases could only be established in a weaker sense of spatial aver-
ages, indicating possible relationship in the context of generalized solutions (in the
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sense of distributions).

[P9] - Ice melting and downward transport of meltwater by
two-phase flow in Europa’s ice shell

In [P9], we applied the two-phase model established in [P8] in a study of the stability
of shallow subsurface meltwater reservoirs in the outer ice shell of Jupiter’s moon
Europa. We considered in particular two scenarios for the formation of observed
surface geomorphological features, which both have been associated with hypotheses
involving near-subsurface melting: (i) Chaos terrains resulting from melting in the
heads of ascending ice plumes and (ii) double ridges forming as a results of melting
at tidally loaded strike-slip faults within the shell.

We employed a simplified one-dimensional setting of the porous flow equations
described above and we solved the system numerically using a combination of finite
element and finite volume techniques implemented in a Fortran90 code (Kalousová,
2014). We showed that within the ascending plumes, any meltwater formed at their
heads would be transported very rapidly (on the time scale of ≤100 kyr) to the
internal ocean by the mechanism of two-phase flow in the form of porosity waves.
Consequently, long-term stability of meltwater pockets in ascending plumes was
shown to be unlikely. On the other hand, our simulations indicated that stable
(over Myr) meltwater reservoirs could exist in connection with the strike-slip faults
underlain by cold impermeable ice. This identified the double ridges - ubiquitous
geomorphological features on Europa’s surface - as the potential candidates for the
detection of shallow subsurface water lenses by ice-penetrating radar instrument in
future satellite missions to the Jovian system.

[P10] - Water generation and transport below Europa’s strike-
slip faults

In the follow-up study [P10], we revisited the favorable case (from the point of
view of water stability) - the strike-slip faults - using a two-dimensional Cartesian
finite element model for the water-ice system in an impermeable limit, which we
implemented in the FEniCS library Alnaes et al. (2015). This allowed us to further
constrain the meltwater extraction time scale and to estimate the amount of accu-
mulated stable subsurface meltwater. Contrary to the one-dimensional case, the 2d
simulations allowed us to incorporate and to quantify the melt extraction effective-
ness of another mechanism - formation of Rayleigh-Taylor instabilities, caused by
the density contrast between water and ice.
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In our simulations, the Rayleigh-Taylor instabilites formed typically withing sev-
eral Myr, draining efficiently the melt downwards and thus preventing formation of
totally molten shallow subsurface reservoirs (water lenses). Consequently, the max-
imum predicted meltwater volume fraction rarely exceeded 10%. Interestingly, by
evaluating the volume changes associated with ice melting, meltwater transport and
refreezing, we were able to predict formation of surface topography above the strike
slip faults consistent with the observed characteristics of the double ridges.

[P11] - Semi-analytical benchmark for the Stefan problem -
assessing accuracy of enthalpy-based methods

Paper [P11] is a slightly standalone project, where we investigated melting of ice
from a different perspective. Alternatively to the cases described above, where the
melt was produced within the ice matrix and transported by porous flow, melting or
freezing can also occur at the phase-change interface between the ice layer and the
internal ocean. Here, the primary role is played by the so-called Stefan condition
- local surface energy or enthalpy balance - which relates the jump in the normal
heat flux from the two sides of the interface and the rate at which melting/freezing
occurs:

Lρi(v − ν) · n = (qi − qo) · n , (4.8)

here L is the latent heat of melting, ρi the ice density, v the material velocity of ice
at the interface and ν is the velocity of the interface. The left hand side of (4.8)
thus expresses the rate of mass flux through the interface (i.e. melting/freezing rate)
multiplied by the latent heat. This is equal to the difference between the normal
heat influx into ice and qi · n heat outflux from the ocean qo · n, where n denotes
the unit normal to the interface.

When designing a computational strategy to solve the thermomechanical evolu-
tion of the two phases coupled thermally by the Stefan condition, as a first step, we
focused on development of a robust and reliable testing methodology. In [P11], we
devised a semi-analytical benchmark experiment for conductive radially symmetric
Stefan problem in arbitrary dimension, i.e. for the situation when the two subdo-
mains adjacent to the phase change interface are purely conductive single-component
media (e.g. water and ice) with the heat conductivities given by Fourier’s law.

We were interested in a comparison of two standard enthalpy formulations of
the energy balance, that allow one to avoid explicit tracking of the phase change
interface while incorporating the latent heat of melting/freezing. This feature makes
the enthalpy methods particularly suitable for applications involving coupling of
phase change with the flow of one or both phases. By implementing the methods in
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a finite-element setting using the FEniCS library Alnaes et al. (2015), we studied also
the stability of the methods with respect to the choice of discretization parameters.
Our results allowed us to inspect the trade-off between the spatial and temporal
resolution and the temperature scale characterizing the “width” of the smeared
(diffuse interface) transition between the two phases. The computational code was
made public as a testbed for benchmarking other computational approaches to the
Stefan problem.
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5Conclusions
and future outlooks

In this thesis and in the appended papers, I summarized a portion of my research
dedicated to three different fields of computational geophysics unified by the mate-
rial involved in the processes - water ice. I believe that together with my colleagues,
we have contributed to all these three branches on a general level by development of
novel modeling approaches that have been previously missing in the fields. This was
accompanied by designing dedicated numerical tools and, by using these tools in par-
ticular applications, also by addressing a number of challenging physical questions
through often extensive computer simulations.

In all of the three geophysical fields I am still active at present and in each of
them I intend to pursue new scientific goals. Let me mention some of the current
short and mid-term ones.

Concerning the topic of gravity driven glacial flows, we have recently revived the
collaboration with the geological/geomorphological group in LPG Nantes (Stéphane
Pochat and Olivier Bourgeois) with the goal to reconstruct the glaciation during the
last glacial maximum (LGM) in the Massive Central region in Cantal, France. The
new field data mapping the extent of the LGM extent that have been gathered
recently by the French colleagues, have confirmed our earlier preliminary modeling
results. With these data, we have gained tools to better constrain the climatic
input and to simulate the last ice age glacier growth in the region followed by the
successive deglaciation.

Concerning the topic of partial melting and porous flow - we have an on-going and
long-lasting project with Dr. Klára Kalousová from the Department of Geophysics,
focused on the incorporation of the effect of salts into her two-phase code with an
application to the transport processes within planetary ice shells. Salts (like NaCl,
MgSO4) play a significant role in the dynamics of these layers due to their antifreez-
ing effect and could dramatically change our view of the conditions for existence of
shallow subsurface water reservoirs on bodies like Europa. The incorporation of salts
is a challenging task both from the modeling point of view and also from the point
of view of numerical approach. It will require to reformulate our current two-phase
single-component formalism to a two-phase two-component formalism. In this di-
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rection, we have already developed the mathematical and physical model using the
enthalpy-based approach and we have also implemented it within the finite-element
FEniCS environment. Currently we are extensively testing the numerical tool. In
another project with my Ph.D. student, Jǐŕı Maĺık, we have recently developed a
finite-element numerical tool that allows us to couple the motion of a rigid-obstacle
which serves as a heat source and is immersed in a thermo-mechanically evolving
two-phase ice-water environment. The target application here are numerical simu-
lations of the operation of cryobots - ice penetrating instruments planned to melt
through planetary ice shells on Europa and possibly Enceladus and reach and sam-
ple their internal oceans. We are currently in the phase of testing the numerical
tool.

The core of my current geophysical research remains in further development of
the finite-element framework for modeling planetary ice shells of Europa and primar-
ily, of Enceladus in collaboration with Dr. Marie Běhounková from the Department
of Geophysics. With the Enceladus Orbilander recently identified as the second
highest priority NASA Flagship mission for the upcoming decade by the Solar Sys-
tem Decadal Survey committee, we plan to further intensify our goals mainly in the
following directions:

• Studying the dynamic evolution of Enceladus’s ice shell shape by coupling the
heat transfer through the internal ocean and the ice shell via Stefan condition
(phase change interface evolution) and computing the associated large scale
viscous flow within the shell. With the huge temperature-induced viscosity
contrast across the shell, and given the shell thickness variations, this process
cannot be studied with the traditional spectral based methods and requires
the use of tailored techniques such as the FEM approach developed in our
group.

• The internally-driven shape evolution of the shell is expected to have an impact
on the global rotational dynamics of the whole moon and might even trigger
its dynamic reorientation. We intend to study the process and to assess its
importance for Enceladus and other icy moons by coupling the above internal
dynamics FEM tool with the polar wander numerical code developed in the
group at the Department of Geophysics.

• By employing more advanced descriptions of ice rheology in combination with
the free-surface evolution, we plan to study surface geomorphologic signatures
of the internal dynamics of icy moons. This involves studying of damage-
induced fracture initiation within the shell - a proof of work has been done in
this direction during a bachelor project of my student Daniel Broško, where we
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confirmed the capacity of the deformation driven damage mechanics suggested
by Duddu and Bassis (2020) to serve as a continuum alternative to linear
elastic fracture mechanics. We intend to study the process of tiger stripes
formation on Enceladus with this approach. Alternatively, by adopting into
our two-phase flow model (Kalousová et al., 2016) the near-surface plasticity
and the free surface evolution by a methodology tested in Kihoulou et al.
(2022), we also plan to revisit our hypothesis on the origin of double ridges on
Europa by subsurface melting at the strike-slip faults and subsequent freezing
of percolated meltwater, articulated in Kalousová et al. (2016).
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sive benchmark of fixed-grid methods for the modeling of melting. Interna-
tional Journal of Thermal Sciences, 118:69–103, 2017. ISSN 1290-0729. doi:
https://doi.org/10.1016/j.ijthermalsci.2017.04.008.

J. Laskar, A.C.M. Correia, M. Gastineau, F. Joutel, B. Levrard, et al. Long term
evolution and chaotic diffusion of the insolation quantities of mars. Icarus, 170
(2):343–364, 2004. ISSN 0019-1035. doi: https://doi.org/10.1016/j.icarus.2004.
04.005.

L. Lliboutry. Permeability, brine content and temperature of temperate ice. Journal
of Glaciology, 10(58):15–29, 1971. doi: 10.3189/S002214300001296X.

A. E. H. Love. Lehrbuch der Elastizität. B.G. Teubner Verlag, Leipzig, 1907.

D. R. MacAyeal. Large-scale ice flow over a viscous basal sediment: Theory and
application to ice stream b, antarctica. Journal of Geophysical Research: Solid
Earth, 94(B4):4071–4087, 1989. doi: https://doi.org/10.1029/JB094iB04p04071.



BIBLIOGRAPHY 57

J.-B. Madeleine, F. Forget, J.W. Head, B. Levrard, F. Montmessin, et al. Amazonian
northern mid-latitude glaciation on mars: A proposed climate scenario. Icarus,
203(2):390–405, 2009. ISSN 0019–1035. doi: https://doi.org/10.1016/j.icarus.
2009.04.037.

H. M. Mader. The thermal behaviour of the water-vein system in polycrystalline ice.
Journal of Glaciology, 38(130):359–374, 1992. doi: 10.3189/S0022143000002240.

Z. Martinec, C. Matyska, E. W. Grafarend, and P. Vańıček. Helmert’s 2nd conden-
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O. Souček and Z. Martinec. Iterative improvement of the shallow-ice approximation.
Journal of Glaciology, 54(188):812–822, 2008. doi: 10.3189/002214308787779924.
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P11 Maĺık, J., Souček, O. (2022). Semi-analytical benchmark for the Stefan prob-
lem in arbitrary dimension - assessing accuracy of enthalpy-based methods, Int.
J. Numer. Methods Heat Fluid Flow, ahead of print, https://doi.org/10.1108/HFF-
09-2021-0647.



P1

ISMIP-HEINO experiment revisited: Effect
of higher-order approximation and sensitivity

study
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Published in International Journal of Numerical Methods for
Heat & Fluid Flow, ahead-of-print, (2022)

doi: https://doi.org/10.1108/HFF-09-2021-0647.

85

https://doi.org/10.1108/HFF-09-2021-0647. 


86


	Preface
	Water ice rheology
	Elastic properties of ice
	Ductile creep of ice
	Plastic deformation of ice monocrystals
	Creep of polycrystalline ice
	Effect of grain size
	Effect of melt
	Ductile-to-brittle transition

	Viscoelastic properties of polycrystalline ice

	Gravity-driven glacier flow
	Mathematical model of glacier flow
	Shallow ice approximation and beyond
	Brief summary of the results in P1 and P2

	Tidal deformation of planetary ice shells
	Tides on Enceladus and Europa
	Model of tidal deformation and heating
	Brief summary of the results in P3–P7

	Melting and melt transport
	Mathematical model - porous flow of water in temperate ice
	Brief summary of the results in P8–P11

	Conclusions
	Bibliography
	Collection of publications
	Author’s contribution to the publications
	List of appended publications

	ISMIP-HEINO experiment revisited: Effect of higher-order approximation and sensitivity study
	A 3 Ga old polythermal ice sheet in Isidis Planitia, Mars: dynamics and thermal regime inferred from numerical modeling
	Effect of the tiger stripes on the deformation of Saturn's moon Enceladus
	Plume activity and tidal deformation of Enceladus influenced by faults and variable ice shell thickness
	Tidal dissipation in Enceladus' uneven, fractured ice shell
	Enceladus' tiger stripes as frictional faults: Effect on stress and heat production
	Tidal walking on Europa's strike-slip faults – insight from numerical modeling
	Water transport in planetary ice shells by two-phase flow – a parametric study


	Ice melting and downward transport of meltwater by two-phase flow in Europa's ice shell
	Water generation and transport below Europa's strike-slipfaults

	Semi-analytical benchmark for the Stefan problem in arbitrary dimension - assessing accuracy of enthalpy-based methods



