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Introduction

One of the fundamental properties of light is its polarization. Historically, the first
scientific presentation of a phenomenon related to light polarization is credited to Eras-
mus Bartholin, who in 1669 studied the double refraction of light in a crystal of Iceland
spar. Since then, within three centuries, many great scientists have contributed to the
description, understanding, and application of light polarization (for a detailed historical
survey, refer, for example, to Refs. [1, 2, 3]).

At the end of the nineteenth century, Paul Drude [4, 5, 6] extensively studied the
change in the polarization upon light reflection from a sample surface and its correlation
with sample optical properties. This technique was later named ellipsometry since el-
liptical polarization is the most general polarization state of light. Drude also rederived
Fresnel’s formulas from Maxwell’s equations and thus laid the theoretical foundation of
ellipsometry. Furthermore, he constructed the very first ellipsometer – an instrument
capable of measuring the polarization change in reflected light. Therefore, it is no wonder
that Drude is known as the father of ellipsometry.

Optical interaction with a matter depends on its electronic structure. If this interaction
is influenced by an external magnetic field or internal magnetic ordering, then we talk
about magneto–optical effects. These effects played an important role in clarifying the
electromagnetic nature of light, in the development of both classical and quantum theory
of electronic structure, and in the discovery of electron spin. In 1845, it was Michael
Faraday who first observed rotation of the plane of polarization of linearly polarised
light propagating in a glass rod along the direction of an external magnetic field [7]. 30
years later, in 1876, John Kerr detected a similar but considerably weaker effect when
the light was reflected from a ferromagnetic mirror magnetized perpendicularly to its
surface [8]. Faraday and Kerr effects depend on the polarity of the magnetic field and this
makes them particularly different from the change of polarization observed by Drude on a
non–magnetized sample surface. Other, well–known magneto–optical phenomenon, linear
birefringence of light induced by a magnetic field oriented perpendicularly to the direction
of light propagation was first observed by W. Voigt in 1897. He also published the very
first book about magneto–optics [9]. Voigt effect is quadratic (even) in magnetization,
whereas Faraday and Kerr effects are in magnetization linear (odd), which is important for
applications. The theoretical frame for the understanding of magneto–optical effects was
laid down by P. Zeeman by his discovery of atomic spectral line splitting due to external
magnetic field [10]. Soon after this discovery, classical microscopic models were proposed
to clarify the origin of magneto–optical effects. However, these early models did not take
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into account the quantum nature of these effects and therefore, were not satisfactory. On
the other hand, macroscopic formal description of the magneto–optical effects that was
pioneered by C. G. Darwin [11] had no such limitations.

During the last century, numerous researchers significantly improved both the theo-
retical concepts and instrumentation of optical and magneto–optical ellipsometry. Simul-
taneously, materials databases with accurately determined optical and magneto–optical
constants were considerably expanded. This effort was particularly triggered by the needs
of the semiconductor and data storage industry for the production of high-quality micro-
electronics and high capacity (magneto)–optical discs. The increased performance of
personal computers, in turn, made possible further improvements in the numerical treat-
ment of ellipsometry data and automation of fast spectroscopic ellipsometers. Presently,
ellipsometry is a highly accurate and precise surface characterization tool that is routinely
used for the determination of bulk, single, and multilayer optical and structural parame-
ters and their magnetic ordering. Moreover, it is worth noting that ellipsometry recently
gave evidence of its potentiality in the characterization of modern nanostructured mate-
rials such as gratings, photonic crystals, or plasmonic materials (see [12] and references
therein). This opens promising perspectives for further development of these methods.

This thesis consists of two parts. The first part aims to provide a brief introduction to
optical and magneto-optical ellipsometry, starting with an overview of light polarization,
light–matter interaction, the definition of measurable quantities, and instrumentation.
The applications of ellipsometry (optical and magneto–optical) to “standard” systems
such as bulks, single layers, and multilayers are also provided. The key theoretical for-
mulas and approaches are supported by selected case studies that I carried out on real
samples. The final sections in both optical and magneto–optical chapters deals with
scatterometry. Described is one of its particular applications, id est, characterization of
linear gratings. The advantages and disadvantages together with the complementarity
of optical and magneto–optical ellipsometry with respect to conventional techniques are
continuously mentioned to underscore the real value of these methods. As far as I know,
this introductory text covering both spectroscopic ellipsometry and magneto-optics that
are closely related is not available. I hope it will be of interest to students and newcom-
ers in the field. The ellipsometry section is an expanded version of book chapter that
I published in [13]. The second part of the thesis summarizes my main contributions
to the presented field, particularly in (i) determination of new or refinement of existing
optical and magneto–optical constants of selected materials, (ii) characterization of var-
ious nanostructures, (iii) theoretical approach refinement, and (iv) contribution to the
application motivated research with industrial partners. The thesis is concluded by an
overview of future perspectives and acknowledgments. The attached appendices cover (i)
explicit representation of reflection matrix derived for single interface and general form of
permittivity tensor and (ii) my selected papers.



Part I

Spectroscopic ellipsometry and
magneto–optics
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Chapter 1

Light polarization

Within the framework of electromagnetic theory, light propagating in a vacuum can be
described as a transverse electromagnetic wave. The spatial and temporal dependencies
of electric and magnetic field vectors, which are transverse to each other and are perpen-
dicular to the direction of propagation, are important contributors to light polarization.
Several approaches have been developed to describe different polarization states (see, e.g.
[1]). Here, we briefly introduce basic ideas that will be employed in the following chapters.
To keep the formalism (and figures) as simple as possible, we assume a plane monochro-
matic wave propagating in a vacuum along the z-axis. Plane monochromatic wave is a
solution of the wave equation (1.1), derived from Maxwell equations1 (1.2-1.5).

∆E =
1

c2
∂2E

∂t2
(1.1)

∇ ·E = 0 (1.2)

∇×E = −∂B
∂t

(1.3)

∇ ·B = 0 (1.4)

∇×B = ε0µ0
∂E

∂t
(1.5)

Vacuum phase velocity of light c is equal to (ε0µ0)
− 1

2 , where ε0 and µ0 are electric
permittivity and magnetic permeability of a vacuum, respectively. We usually select the
electric intensity E of an electromagnetic wave to represent the light behavior. The main
reason for this is that the magnetic induction B can always be calculated from the electric
field using Maxwell’s equations [2]; also, in optical frequencies, the magnetic field is often
less important than the electric field when considering light interaction with the matter
[14, 15].

The most general case of spatial dependence of the electric field vector in the wave is

1No charge and current density is considered in a vacuum. Maxwell equations and constitutive relations
for solids are introduced and discussed in the following chapter.
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12 CHAPTER 1. LIGHT POLARIZATION

Fig. 1.1: Spatial dependence of an electric field in an ellipticaly polarized wave (a). Its
orthogonal components and their relative phase shift (b). Ellipse of polarization
in the observation plane (c).

schematically presented in Figure 1.1a. Its orthogonal components Ex and Ey

Ex = E0x e
i(ωt−kz+δx) (1.6)

Ey = E0y e
i(ωt−kz+δy) (1.7)

mutually shifted in phase by δ = δy − δx and with amplitudes E0x and E0y are presented
in Figure 1.1b. Here ω is the wave angular frequency, and k is the wavenumber of the
plane wave. The absolute phases of the x and y components are denoted as δx and δy,
respectively. In a plane perpendicular to the z-axis (let us call it the observation plane),
the time dependence of the electric field vector E(t) can be imagined as a superposition
of the two orthogonal electric vibrations Ex(t) and Ey(t) and It can be shown [16] that
Eqs. (1.6) and (1.7) can be reorganized there to the equation of an ellipse(

Ex

E0x

)2

+

(
Ey

E0y

)2

− 2
cos δ

E0xE0y

ExEy = sin2 δ (1.8)

Hence, the endpoint of the electric field vector E(t) traces in the observation plane an
ellipse (cf. Figure 1.1a and 1.1c) as the wave propagates, and we call this electromagnetic
wave elliptically polarized.

In ellipsometry and magneto-optics, it is the shape of the ellipse and its orientation
(with respect to the system of coordinates) that is important. Therefore, the light intensity

I =
1

2
cε0
(
E2

0x + E2
0y

)
,

which is related to the size of the ellipse, is usually normalized to unity and then only two
real parameters are sufficient to define the polarization state (for example relative phase
shift δ and amplitude ratio E0x/E0y).
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Fig. 1.2: Linear(pink), elliptical (blue), and circular (green) polarization together with
the relative shift δ. The component amplitudes E0x and E0y are considered to
be equal.

The linear (δ = 0,±π,±2π, . . .) and circular (E0x = E0y and δ = ±π
2
,±3π

2
, . . .) polar-

izations are special cases of the general elliptical polarization state. Selected cases of light
polarization are shown in Figure 1.2. Note that the sign of δ determines the handedness
(for example, left-handed or right-handed circular polarization). In fact, it is not only
the spatial dependence of electric field E but also its temporal dependence in terms of
its handedness that plays important role in light interaction with a medium (cf. Section
2.2.2).

As all useful information on the polarization state lies in its component amplitudes and
phases, it is convenient to combine them into a single quantity: the complex amplitudes

Êx = E0x e
iδx (1.9)

Êy = E0y e
iδy (1.10)

Any change in the polarization is then solely expressed by these complex amplitudes of
the wave. However, there are many other parameters that can be used for the description
of the polarization state as well (for an exhaustive review on this topic refer, for example,
to [1]). Given the focus of this work, we introduce here parameters that are closely related
to ellipsometric and magneto-optical measurable quantities. In ellipsometry we encounter
angles α and δ whose definition are mentioned in Tab. 1.1. Angle δ, as it was already
pointed out, gives phase shift of the x and y wave component, and angle α expresses the
ratio of their amplitudes (cf. Fig. 1.3). On the other hand, in the field of magneto–optics,
we use angles θ and ϵ. Parameter θ, known as azimuth, gives an angle between Cartesian
axis x and major semi–axis of the polarization ellipse (cf. Fig. 1.3). Parameter ϵ is called
angle of ellipticity and is defined as

tan ϵ = ±a
b
, (1.11)

where a and b stands for minor and major semi–axis, respectively. The sign plus cor-
responds to the right-handed polarized wave for which the electric field vector rotates
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Fig. 1.3: Geometric meaning of polarization ellipse parameters used in ellipsometry and
magneto-optics.

clockwise when looking into the beam. For the left-handed wave, we set the minus sign.
It is obvious that all parameters describing light polarization are inter–related. Re-

lation between ellipsometric and magneto–optical parameters and amplitudes and phase
difference of x and y light components are listed in Tab. 1.1.

Ellipsometry Magneto-optics

tanα =
E0y

E0x

δ = δy − δx

tan 2θ =
2E0xE0y

E2
0x + E2

0y

cos δ

tan 2ϵ =
2E0xE0y

E2
0x + E2

0y

sin δ

cos 2α = cos 2ϵ cos 2θ

tan δ = tan 2ϵ(sin 2θ)−1

tan 2θ = tan 2α cos δ

sin 2ϵ = sin 2α sin δ

Tab. 1.1: Parameters of polarization ellipse used in ellipsometry and magneto-optics and
their inter–relation [3].

We do not deal with unpolarized or partially polarized light here, even though these
polarization states become important when a depolarizing sample comes under examina-
tion. Partially polarized light and its interaction with solids are treated in more detail,
for example, in Ref. [3].

Given the forthcoming discussion of the microscopic origin of magneto–optical effects
in Section 2.2.2, it is worth giving a note here about spin and helicity of photons. The
concept of light polarization is in quantum electrodynamics associated with the spin mo-
mentum of a photon. Photons can exist in two states with angular momentum projection
m = ±1 (the helicities), and their moment magnitudes are ±ℏ. These photons are asso-
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ciated with electromagnetic waves having left (right) circular polarization2. Elliptically
and linearly polarized light is, in the quantum concept, a superposition of photons with
different helicities.

2The handedness of the waves, helicities of photons, and sign convention applied in magneto–optics is
discussed, for example, in [17].





Chapter 2

Light-matter interaction

As it was already mentioned in Introduction, the optical and magneto–optical proper-
ties of a matter are strongly related to its electronic structure. Light–matter interaction
can be treated in macroscopic or microscopic frames. The macroscopic approach is gov-
erned by Maxwell’s equations coupled with constitutive relations, whereas the microscopic
approaches are based on classical or semi–quantum electrodynamics. With increasing
computer power, the electronic band structure of solids can be calculated from the first
principles as well. Recent significant progress in the ab–initio calculations allowed theo-
retical prediction of optical and magneto-optical effects with reasonable accuracy.

2.1 Macroscopic approach

In this section, we present Maxwell’s equations and constitutive relations in the form
they usually appear in optics and magneto–optics. Particular care is devoted to applied
approximations when deriving optical and magneto–optical material constants. The work
of Wooten [18] and Collins [19] (optics), and Wettling [20] (magneto–optics) is mostly
followed.

2.1.1 Maxwell’s equations and constitutive relations

Assuming no external charges and currents in a solid, Maxwell equations get the form
presented in Table (2.1). Induced charge density ρ and current density j are mainly
due to light interaction with bound electrons from valence band (ρbound, jbound) and with
free electrons from conduction band (jcond). These are usually approximated by induced
polarization P and magnetization M of a medium1

ρ = ρbound = −∇ · P , (2.1)

j = jbound + jcond =
∂P

∂t
+∇×M + jcond . (2.2)

1Mentioned are only the first terms of multipole moments expansion [21, 22].
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18 CHAPTER 2. LIGHT-MATTER INTERACTION

Tab. 2.1 Tab. 2.2 Tab. 2.3

∇ ·E =
ρ

ε0

∇×E = −∂B
∂t

∇ ·B = 0

∇×B = µ0(ε0
∂E

∂t
+ j)

∇ ·Dr = 0

∇×E = −∂B
∂t

∇ ·B = 0

∇×H =
∂Dr

∂t
+ jcond

∇ ·D = 0

∇×E = −∂B
∂t

∇ ·B = 0

∇×H =
∂D

∂t

We can formally eliminate the appearance of bound charges ρbound and related currents
jbound from Maxwell equations introducing the electric displacement Dr and magnetic
intensity H by relations

Dr = ε0E + P , (2.3)

H =
1

µ0

B −M . (2.4)

With the help of these quantities, Maxwell’s equations get the form mentioned in Table
2.2. Both, the electric displacement and magnetic intensity, are real vectors, and we
label the displacement vector Dr by a subindex r to distinguish it from its complex value
counterpart D that is defined later in Eq. (2.10).

Within the approximation of linear optics, we can further express the polarization P
and magnetization M by the electric χe and magnetic χm susceptibility, respectively

P = ε0χeE , (2.5)

M = χmH . (2.6)

Constitution relations (2.3) and (2.4) that supplements Maxwell’s equations from Tab.
2.2 can be written in a compact form introducing the relative electric permittivity εr and
the relative magnetic permeability µr of a medium

Dr = ε0εrE , (2.7)

B = µ0µrH , (2.8)

jcond = σrE . (2.9)

A complete set of these constitutive relations includes also Ohm’s law, Eq. (2.9), with
the electric conductivity σr of a medium. All the material constants εr, µr, and σr are
real quantities, and this is indicated by subindex r. In the range of optical frequencies,
the relative permeability µr gets for most of materials value close to unity [14, 15, 21].
Therefore, only the electric field of the lightE is considered in the light–matter interaction.

It is further convenient to introduce the complex electric displacement D that covers
both effects of bound and free charges

D = Dr −
i

ω
jcond . (2.10)
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As a result, we can combine the two material relations (2.7) and (2.9) into one complex

D = ε0εrE − i

ω
σrE , (2.11)

= ε0εE , (2.12)

where the electric permittivity ε of a material becomes a complex quantity with real εr
and imaginary εi parts

ε = εr − iεi , (2.13)

= εr − i
σr
ε0ω

. (2.14)

Introducing the complex displacement D into the Maxwell’s equations (Tab.2.2), these
can be rewritten into the final form presented in Tab. 2.3. The corresponding constitutive
relations are then

D = ε0εE , (2.15)

B = µ0H . (2.16)

To conclude this section, it is worth noting complex optical conductivity σ that is in
some cases (for example, in theoretical ab–inition calculations) preferred quantity over
the electrical permittivity ε. Both complex material constants are related to each other
by relation

σ = iε0ω(1− ε) , (2.17)

that can be reformulated in terms of its real σr and imaginary σi parts

σ = σr − iσi , (2.18)

= σr − iε0ω(1− εr) . (2.19)

In the following sections, we treat light propagation in isotropic, anisotropic, and
magneto-optical media, taking into consideration the particular form (scalar or tensor) of
their complex electric permittivity ε.

2.1.2 Light propagation

The wave equation derived for vacuum, Eq. (1.1), is no longer valid for a solid that is
characterized by electric permittivity ε. Maxwell’s equations (cf. Tab. 2.3)

∇×E = −∂B
∂t

, (2.20)

∇×H =
∂D

∂t
, (2.21)

together with the constitutive relations (2.15), (2.16), and with help of vector algebra
identity

∇×∇× V = ∇(∇ · V )−∆V , (2.22)
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leads to the wave equation

∆E −∇(∇ ·E) =
ε

c2
∂2E

∂t2
. (2.23)

Assuming a plane wave solution

E(r, t) = Ê0 e
i(ωt−k·r) , (2.24)

the wave equation (2.23) can be transformed to the form

k2E0 − k(k ·E0) =
ω2

c2
εE0 , (2.25)

that is also known as the Fresnel equation [2].

Optically isotropic medium

The electric permittivity ε of optically isotropic media (amorphous, polycrystalline,
and crystalline solids with cubic symmetry) is a scalar quantity. An electromagnetic wave
propagating in such media carries an electric field E that is parallel to the displacement
vector Dr and perpendicular to the wave vector k. In this case, the Fresnel wave equation
(2.25) reduces to

k2 =
(ω
c

)2
ε , (2.26)

and can be further rewritten to the form

k =
ω

c
N , (2.27)

where the complex refractive index N = n− iκ was defined by relation

N =
√
ε . (2.28)

Here n is the usual refractive index which determines the phase velocity vp = c/n and κ
is the extinction coefficient which is related to the absorption coefficient α by

α =
4πκ

λ
. (2.29)

The inverse of the absorption coefficient, 1/α, is the penetration depth of the light, i.e.,
estimated distance where the light penetrates under the sample surface (in case of normal
incidence). The real and imaginary parts of the electric permittivity and refractive index
are inter–related by the following formulas

εr = n2 − κ2 , (2.30)

εi = 2nκ , (2.31)
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and

n =

√
εr +

√
ε2r + ε2i
2

, (2.32)

κ =

√
−εr +

√
ε2r + ε2i

2
. (2.33)

Due to the isotropic nature of the medium, any polarization state of the light is the proper
mode, i.e., it does not change during light propagation and does not depend on the light
direction in a material. The latter holds for the refractive index as well.

Optically anisotropic medium - linear birefringence and dichroism

Electric permittivity of crystals with lower structural symmetry takes form of a second–
rank tensor

ε =

 ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

 . (2.34)

For materials that are not optically or magneto–optically active, the tensor is symmetric
(this holds even for the spectral range where the material is absorbing). For crystals where
the reference frame can be oriented along the main crystallographic axes, the permittivity
tensor becomes diagonal

ε =

 ε11 0 0
0 ε22 0
0 0 ε33

 . (2.35)

The number of its independent elements, and thus, the uniaxial or biaxial nature of
material optical anisotropy, depends on its structural symmetry. For more details refer,
for example, to Refs. [19, 22, 2].

Let us consider the orientation of the reference system where the permittivity tensor
becomes diagonal (so–called principal axes frame), and let us suppose that the light
propagates along the direction defined by a unity vector s. Introducing reduced wave
vector N̄

N̄ ≡ c

ω
k = Ns , (2.36)

where N is the complex refractive index, the wave equation (2.25) for anisotropic media
can be reformulated to the Fresnel’s equation of wave normals

s2x
N2 − ε11

+
s2y

N2 − ε22
+

s2z
N2 − ε33

=
1

N2
. (2.37)

This equation gives, in general, two solutions of refractive index N for every direction
vector s. Thus, every s corresponds to two waves with different phase velocities c/n
and extinctions. It can be further shown that these waves (proper modes) are linearly
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polarized and can propagate in any given direction alone or superposed to each other.
Optical effects that arise from the difference of real and imaginary parts of the refractive
indices are known as linear birefringence and linear dichroism, respectively2.

Alternatively, one can get the solution of the Fresnel equation (2.25) in the form of
so-called index ellipsoid (or optical indicatrix) defined by the relation

x

ε11
+

y

ε22
+

z

ε33
= 1 . (2.38)

Cross–section of the indicatrix with the plane normal to the direction of light propagation
s (colinear with the wave vector k) gives an ellipse (cf. Figure 2.1a). Its two semi–axes
define two orthogonal directions of proper linear modes (indicated by electric displacement
D1 and D2). These two modes experience two different refractive indices N1 and N2 (cf.
Figure 2.1b). If the wave propagating along direction s contains contributions of both
proper modes, then, due to the difference of their refractive indices, it encounters a change
of polarization as indicated in Figure 2.1c.

Fig. 2.1: Fresnel indicatrix a), its cross-section b), and linearly polarized proper modes
propagating in an optically anisotropic medium c). Refractive indices N1 and N2

and polarization change due to linear birefringence nan dichroism are indicated
as well.

Magneto-optical medium

Phenomenological description of light interaction with an optically isotropic but mag-
netically ordered media or media placed in an external magnetic field has a lot in common

2Circular birefringence and circular dichroism refer to chiroptical effects of optically active media.
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with crystal optics. That is because the net magnetization or the applied magnetic field re-
duces the spatial symmetry of the system. In the case of isotropic non–absorbing medium
subjected to a static magnetic field3 with magnetic intensity H the constitutive relation
(2.15) gets more elaborated form [21, 22]

D = ε0εE + i f · [E ×H ] , (2.39)

where ε is electric permittivity of isotropic medium and f is a material factor4. Equation
(2.39) can be formally rewritten to the compact form

D = ε0εE . (2.40)

However, ε is no more scalar quantity. It becomes a tensor whose diagonal elements
are equal to isotropic permittivity ε and antisymmetric off–diagonal elements emerge
from vector product of the electric and magnetic fields on the right-hand side of Eq.
(2.39). Consider, for comparison, permittivity tensors associated with polar, Eq. (4.11),
longitudinal, Eq. (4.19) and transverse, Eq. (4.24), linear magneto–optical effects.

In the general case of magnetically ordered absorbing crystalline solids, permittivity
tensor ε can be decomposed into two contributions,

ε = ε(0)+∆ε(M) . (2.41)

where the second contribution ∆ε(M) arises from magnetic ordering and therefore is de-
pendent on magnetization M . It can be shown that ∆ε(M) contains Hermitian (relating
to dispersion) and anti–Hermitian (relating to absorption) parts [20]. As it is often en-
countered in the experiment, the influence of magnetic ordering on permittivity elements
is relatively weak. Therefore, it is appropriate to expand them to the McLauren series

εij = εij(0) +

(
∂εij
∂Mk

)
M=0

Mk +
1

2

(
∂2εij

∂Mk∂Ml

)
M=0

MkMl + . . . (2.42)

= εij(0) +KijkMk +GijklMkMl + . . . (2.43)

= εij(0) + εij(1) + εij(2) + . . . , (2.44)

where εij(0) stands for permittivity tensor elements without magnetization, Kijk and and
Gijkl are components of so called linear and quadraticmagneto–optical tensor, respectively,
and M is magnetisation vector. Indices i, j, k, l represent Cartesian’s coordinates.

In magneto–optics Onsager’s general principle of microscopic reversibility [23] leads to
the important relation

εij(M ) = εji(−M) , (2.45)

3Relatively low magnetic field intensity is expected here to meet requirements for linear approximation
discussed later in the text.

4This constitution relation is formally similar with a chiral medium that manifests optical activity.
The imaginary part f · [E ×H] is in the chiral case replaced by β · [k ×E].



24 CHAPTER 2. LIGHT-MATTER INTERACTION

Onsager principle, structural crystal symmetry, and orientation of magnetization vector
determines which of permittivity tensor elements εij(0), Kijk, Gijkl become null [24]. For
crystalline medium with cubic symmetry we get

ε(0) =

 ε1 0 0
0 ε1 0
0 0 ε1

 , (2.46)

 ε23(1)
ε31(1)
ε12(1)

 =

 K123 0 0
0 K123 0
0 0 K123

 M1

M2

M3

 , (2.47)


ε11(2)
ε22(2)
ε33(2)
ε23(2)
ε31(2)
ε12(2)

 =


G11 G12 G12 0 0 0
G12 G11 G12 0 0 0
G12 G12 G11 0 0 0
0 0 0 2G44 0 0
0 0 0 0 2G44 0
0 0 0 0 0 2G44




M2

1

M2
2

M2
3

M2M3

M3M1

M1M2

 . (2.48)

It can be proved that εij(1) = −εji(1) and εij(2) = εji(2) [25]. The first term in McLauren
expansion ε(0) and lineal magneto–optical tensor of the third rank Kijk is independent
on the orientation of crystallographic axes. Nevertheless, the quadratic magneto–optical
tensor Gijkl that is of the fourth rank is on this orientation sensitive. That can be taken as
an advantage and applying this phenomenon for accurate characterizations of crystals with
cubic symmetry (for more detail refer to Section 4.3.3). The present form of the quadratic
magneto–optical tensor Gijkl corresponds to the case when the main crystallographic and
Cartesian axes coincide. A more detailed discussion of quadratic magneto–optical tensor
properties in cubic crystals can be found, for example, in Refs. [26, 27, 28, 29].

Next, we describe light propagation in a cubic crystal that is magnetized either parallel
or perpendicular to the wave vector. In the former case, one observes the Faraday rotation,
also known as magnetic circular birefringence (MCB), and magnetic circular dichroism
(MCD). The latter case refers to the Voigt effect, id est, magnetic linear birefringence
(MLB), and magnetic linear dichroism (MLD). Magneto–optical effects in reflection will
be treated later in Chapter 4.

Faraday effect - circular magnetic birefringence and dichroism

Let’s suppose that both the magnetization vector M and the wave vector k are ori-
ented along z-direction. Then the permittivity tensor ε(M ) expanded up to the second
order, cf. Eq. (2.42), takes form

ε =

 ε1 +G12M
2
3 KM3 0

−KM3 ε1 +G12M
2
3 0

0 0 ε1 +G11M
2
3

 , (2.49)

=

 ε11 ε12 0
−ε12 ε11 0
0 0 ε33

 , (2.50)
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where we have used Eqs. (2.46) – (2.48) and simplified notation of the linear magneto–
optical tensor considering Kijk = K. Magnetization, in this particular configuration,
induce the gyrotropic effect that is manifested by the off–diagonal permittivity tensor
elements ε12, ε21, and uniaxial optical anisotropy by means of inequality ε11 = ε22 ̸= ε33
of the diagonal tensor elements. The gyrotropic effect is due to linear, whereas the uniaxial
anisotropy is due to quadratic magneto–optical tensor. Inserting permittivity tensor (2.50)
to the wave equation (2.25) yields

(N2 − ε11)E01 − ε12E02 = 0 , (2.51)

ε12E01 + (N2 − ε11)E02 = 0 , (2.52)

from which immediately follows

N2
± = ε11 ± iε12 , (2.53)

and
E02 = ±iE01 . (2.54)

It means that proper modes of light propagation in this configuration are left (–) and
right (+) circularly polarised waves with different dispersion and absorption.

Fig. 2.2: Faraday effect. The proper modes of the left and right circular polarizations
are indicated together with Faraday rotation and ellipticity arising from circular
magnetic birefringence and dichroism.

A linearly polarised light entering the crystal can be considered as a superposition of
left and right circularly polarised contributions as indicated in Fig 2.2. The difference
in their dispersion values results in a rotation of the polarisation plane of the linearly
polarised wave as it propagates through the crystal. The rotation angle per unit thickness,
known as Faraday rotation or MCB, is equal to

θF =
π

λ
ℜ(N+ −N−) =

π

λ

K ′′M3

N̄
, (2.55)
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where N̄ = (N+ +N−)/2 and moderate absorption ℜN̄ ≫ ℑN̄ is assumed. On the other
hand, the difference in absorption (MCD) induce an ellipticity in the polarization of the
propagating wave that is given per unit thickness as

χ = (α+ − α−)/4 =
π

λ
ℑ(N+ −N−) =

π

λ

K ′M3

N̄
, (2.56)

where α+(α−) is the absorption coefficient for right circularly polarized (left circularly
polarized) wave. Faraday ellipticity ϵF then relates to MCD by relation [30]

tan ϵF = tgh

[
1

4
(α+ − α−)

]
. (2.57)

It is worth noting the non–reciprocity of the Faraday effect that is due to brak-
ing time-reversal symmetry of the system by virtue of magnetic field (cf. note in Sec-
tion 2.2.2). This non–reciprocity manifests itself when the light travels back in magneto–
optical medium, tracking the original path. Then, the Faraday rotation and ellipticity do
not compensate but instead continuously increase their values. This phenomenon, fun-
damentally different from the chiroptical effects of optically active media, finds numerous
applications, for example, in optical circulators, isolators, and rotators [21]. The key per-
formance parameter of these devices, so–called figure of merit, is the ratio of the Faraday
rotation and optical absorption. Materials possessing high values of the figure of merit in
the specific spectral region are constantly searched (refer, for example, to Ref. [31]).

Voigt effect - linear magnetic birefringence and dichroism

Similarly, as it was done in the previous paragraph for the Faraday configuration, we
can get proper modes for the light propagating perpendicularly to magnetization vector
M . These are linearly polarized waves with polarisation parallel or normal to magneti-
zation vector and encountering refractive indices N∥ and N⊥, respectively. Therefore, if
a linearly polarised wave with polarization vector at 45◦ to M enters the crystal, it will
experience the birefringence and dichroism (cf. Fig 2.3). The former one is due to the
difference in their dispersions and is called Voigt or Cotton–Mouton effect or magnetic
linear birefringence

β =
2π

λ
ℜ(N∥ −N⊥) , (2.58)

whereas the latter one is due to difference in their absorptions and is called magnetic
linear dichroism

(α∥ − α⊥) =
4π

λ
ℑ(N∥ −N⊥) . (2.59)

In contrast to the Faraday configuration, rotation of the polarization plane, as the wave
propagates, relates here to the dichroism and not to the birefringence. For small values
of the MLD the rotation of the polarization direction is expressed by an angle

θ =
(α∥ − α⊥)

4
. (2.60)
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Explicit expressions for MLB and MLD depend on the orientation of magnetization vector
M with respect to the crystallographic axis. When M is parallel to [100] direction we
get

ℜ(N∥ −N⊥) = (G′
11 −G′

12)M
2/2N̄ , (2.61)

ℑ(N∥ −N⊥) = (G′′
11 −G′′

12)M
2/2N̄ , (2.62)

whereas when M is parallel to [111] direction we get

ℜ(N∥ −N⊥) = (G′
44)M

2/N̄ , (2.63)

ℑ(N∥ −N⊥) = (G′′
44)M

2/N̄ . (2.64)

Here we have set N̄ = (N∥+N⊥)/2. From the above relations it is clear that Voigt effect is
quadraticly dependent on magnetisation and also sensitive on direction of vector M with
respect to crystallographic axis, contrary to the Faraday effect that is on magnetization
dependent linearly with no direction sensitivity in cubic crystals.

Fig. 2.3: Voigt effect. The proper modes of the mutually orthogonal linear polarizations
are indicated together with azimuth rotation and ellipticity arising from linear
magnetic dichroism and birefringence.

In the reflection, the analog effect to the Voigt effect is equally observable. Neverthe-
less, experimentally it is more difficult to access it as the normal incidence is required.
More details about quadratic magneto-optical effects in reflection is provided in Section
4.3.3.

2.1.3 Dispersion and Kramers-Kronig relations

Electric displacement D(r, t) at a position r and at a time t that appears in the
constitutive relation (2.15) depends, in its general form, on the electric fields E(r′, t′)
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at all times t′ < t (temporal dispersion, taking into account the causality), and at any
neighboring position r′ (spatial dispersion). Considering this, Eq. (2.15) takes an integral
form

D(r, t) = ε0

∫ ∫
ε(r − r′, t− t′)E(r′, t′)dr′dt′ , (2.65)

where the electric permittivity becomes a response function in space and time .
Fourier transform of Eq. (2.65) yields

D(k, ω) = ε0ε(k, ω)E(k, ω) , (2.66)

where ω and k denote angular frequency and wavevector, respectively, of a monochromatic
wave. The non-local behavior in both variables, space and time, manifests here by the
permittivity dependence on the frequency ω and wavevector k.

In optics, the space non–local response is usually ignored due to the fact that light
wavelength is much longer than atomic scale where the optical processes in solids take
place. That is also known as long wavelength limit. On the other hand, there is a
class of solids for which this approximation does not hold. The particular example is an
optically active medium that presents space non–local behavior due to the chirality. In
this case, the wave vector dependence of the permittivity needs to be taken into account.
Other examples are interfaces between different media and metallic objects with a size
comparable to mean–free path of electrons [32]. In the long wavelength limit Eq. (2.66)
simplifies to

D(ω) = ε0ε(ω)E(ω) . (2.67)

The principle of causality establishes between the real and imaginary parts of the complex
electric permittivity ε(ω) an inter–relations that are known as the dispersion relations
(or Kramers–Kronig relations). In other words, the real and imaginary parts of electric
permittivity are not independent, and one can be evaluated by the other. That also holds
for other complex optical constants as, for example, electric susceptibility, refractive index,
conductivity, etc.

Considering optically anisotropic or magneto–optical media where the electric permit-
tivity has tensorial form, the Kramers–Kronig relations for each tensor element εij become
[33]

ℜεij(ω)− δij =
2

π
℘

∫ ∞

0

ω′ℑεij(ω′)

ω′2 − ω2
dω′ , (2.68)

ℑεij(ω)−
σij(0)

ε0ω
= −2ω

π
℘

∫ ∞

0

ℜεij(ω′)− δij
ω′2 − ω2

dω′ . (2.69)

In case of optically isotropic medium, the real refractive index n and extinction coefficient
κ are Kramers-Kronig related by

n(ω)− 1 =
2

π
℘

∫ ∞

0

ω′κ(ω′)

ω′2 − ω2
dω′ , (2.70)

κ(ω) = −2ω

π
℘

∫ ∞

0

n(ω′)− 1

ω′2 − ω2
dω′ . (2.71)
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Similar relations can be derived also for differences of refractive indices (N+ −N−) of left
and right circular polarizations in Faraday configuration or for differences of refractive
indices (N∥−N⊥) of parallel and perpendicular linear polarizations in Voigt configuration
[33] (cf. Section 2.1.2). Kramers–Kronig relations applied to normal reflectivity enables
the determination of complex optical constants of bulk samples although only one real
quantity (reflectivity) is recorded. This is demonstrated for the case of PZT in Sec-
tion 3.3.3. It is also worth noting that Kramers–Kronig relations are frequently employed
in ellipsometry, where they are used for calculation of real part of permittivity of a given
material, for which solely imaginary part was approximated by an analytic function (for
example, Tauc–Lorentz parameterization, cf. Section 3.4.1). Last but not least, we note
that Kramers-Kronig relations are an important verification of the causality consistency
of real and imaginary parts of determined optical or magneto–optical constants.

2.2 Microscopic approach

The macroscopic electric and magnetic fields, together with charge and current densi-
ties, treated so far, are averaged quantities of their microscopic counterparts. Averaging
is performed over a volume ∆V having linear dimensions of tens of nanometers. Such
dimensions are small compared to the light wavelength but sufficiently large with respect
to atomic dimensions. For example, the macroscopic charge density ρ is related with
microscopic charge density ρmicro by the relation:

ρ =
1

∆V

∫
∆V

ρmicro(r + r′)d3r′ . (2.72)

The microscopic quantities ρmicro and jmicro are obtained by summing contributions from
the individual electrons and atomic nuclei (in classical models) or from the electronic
wavefunctions of the system (in quantum mechanical models). The fundamental classi-
cal and quantum mechanical microscopic models are outlined in the following sections
focusing on optical and magneto–optical properties of solids. The concept of ab–initio
calculations is introduced as well.

2.2.1 Optical constants

Lorentz and Drude theoretically predicted spectral dependencies of complex dielectric
function ε(ω) of different solids including metals, semiconductors, and insulators (for a
review refer, for example, to Refs. [18, 34, 19, 35, 36]). These classical theories that
provide an insight into the correlation of microscopic behavior of electrons in solids with
their optical properties are based on classical mechanics and electrodynamics.

The Lorentz oscillator model [37] of an elastically bound electron in the oscillating
electric field is based on the equation of motion

me
d2x

dt2
= −meγ

dx

dt
−meω

2
0x− eE0e

(iωt), (2.73)
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where me and −e are mass and charge of an electron, respectively. The displacement x
of the electron from a nucleus with infinite mass and charge +e is driven by the force
−eE0e

(iωt) generated by microscopic electric field 5 of an electromagnetic wave with fre-
quency ω. The second term on the right side of Eq. (2.73) is a Hooke restoring force with
resonant oscillator frequency ω0. The first term stands for viscous–like damping with a
frictional constant γ representing energy dissipation through interaction with neighboring
atoms. Solution of this equation is complex charge displacement x(ω) that can be corre-
lated with atomic electric dipole moment p(ω) and further with macroscopic polarization
density P (ω). Finally, the electric permittivity leads to

εLorentz(ω) = 1 +
e2

ε0m

N

(ω2
0 − ω2) + iγω

, (2.74)

where N is the number of identical atoms per unit volume (number of oscillators). The
Lorentz oscillator model of elastically bound electrons is mainly applicable to inter-band
electronic transitions in semiconductors and insulators but it reasonably well describes
also excitation of surface plasmons (for example, on metallic discontinuous thin films in
an early stage of deposition before the percolation limit is reached [38, 39]). Composite
bulk materials consisting of metallic particles embedded within an insulator matrix show
Lorentz dispersion and absorption characteristics as well [12]. Moreover, the vibration of
ions in ionic crystals, amorphous glasses, and polymers that gives contribution to ε(ω) in
the infrared range can be also described by the Lorentz oscillators [40].

On the other hand, the Drude model is designed for the free (id est, not bounded)
electrons in metals. This yields electric permittivity relation in the form

εDrude(ω) = 1− Ne2

ε0m

1

(ω2 − iγω)
, (2.75)

with zero resonant frequency ω0. It is noteworthy that the intra–band transitions, realized
by photon absorption by free charge carriers in metals or doped semiconductors, can,
thus, indirectly provide the carrier concentration N in a complementary way to electric
transport measurements (refer, for example, to [41] or [42]).

But as most metals and equally heavily doped semiconductors or insulators exhibit
contributions of both bond and free electrons within the same frequency range, electric
permittivity ε(ω) contains, in general, Lorentz and Drude terms simultaneously (see for
example [43])

ε = εDrude +
∑
n

εLorentz , (2.76)

where the summation of the Lorentz contributions is effectuated over all spectrum–
relevant bond electrons with different oscillation frequencies. This relation represents
the most general form of the dispersion equations presented so far as they can be applied
to metallic, semiconductor, and insulating material and are the starting points from which
one can model optical spectra of solids.

5spatially averaged over the electron cloud
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The classical models (Lorentz and Drude) have quantum mechanical analogs that lead
to the same mathematical expressions for dielectric functions, but with the reinterpreta-
tion of the parameters

N −→ Nf0, where f0 =
2mω0

ℏ
|x0|2 . (2.77)

Thus, the concentration of bound electrons N is associated with the product of the atomic
concentration and the oscillator strength f0. The resonance frequency ω0 simulates the
frequency ω0 = (En−E0)

ℏ connecting the ground (0) and excited (n) states. The frictional
constant γ is inversely proportional to the lifetime of the transition from state ϕ0 to ϕn,
and x0 is the dipole matrix element

x0 = ⟨ϕ0|x|ϕn⟩ . (2.78)

The influence of the optical electric field on the localized electronic wave function ϕ
associated with each atom of the solid is treated in frame of first-order time-dependent
perturbation theory. The dielectric function is then calculated from the wavefunction
characteristics using quantum mechanical expressions for the complex polarization or the
complex conduction current.

The Lorentz expression for the dielectric function can be extended to describe delo-
calized electrons in crystalline solids. Here, delocalized one-electron wave functions, or
Bloch wave functions, are used. The dielectric function, in this case, depends explicitly
on the joined density of electronic states in the crystal. There are approaches [44, 45],
where parameterization of joined density of states, rather than the dielectric function, is
employed for optical constants calculation, thus, providing a closer insight into the band
structure of solids.

In crystalline solid, direct transitions that conserves the momentum of an electron
in a crystal, neglecting the momentum of the absorbed photon, lead to different spectral
behavior of absorption with respect to these encountered in indirect semiconductors where
indirect electronic transitions are accompanied by the emission or absorption of phonon
[46]. Therefore, examination of the onset of the absorption edge reveals not only material
bandgap energy Eg but also the nature of the electronic transition (direct or indirect,
allowed or forbidden). This knowledge is often important for material opto–electronic
applications. The quantum mechanical analogy of the classical Drude free electron model
exists, as well, and can be derived regarding light interaction with the free electrons as
a quantum mechanical process. Here, intraband transitions involving electrons in the
partially filled bands in metals and degenerate semiconductors are considered.

Actually, an accurate determination of materials optical constants is one of the main
goals of ellipsometry, with fundamental and practical importance. Optical constants are,
as already mentioned, the response function of a material to an electromagnetic wave and,
apart from optical properties, they can indirectly reveal information about other (such
as for example, mechanical, electrical, and structural) material properties, as well. The
wider spectral range of optical constants is available, the deeper knowledge of material
properties and their potential application is being gained. Figure 2.4 schematically shows



32 CHAPTER 2. LIGHT-MATTER INTERACTION

Fig. 2.4: Schematic spectral dependence of the imaginary part of the dielectric function
ε2(ω).

spectral dependence of imaginary part of electric permittivity ε2(ω) of a material, where
various types of light-matter interactions are indicated.

It is worth noting extrinsic and quantum confinement effects that can modify mate-
rial optical constants. For example, dependency on temperature due to lattice parameter
dilatation and electron—phonon interaction enables contactless optical monitoring of sam-
ple surface temperature. Application of this phenomenon is presented in Ref. [47] and
later in Section 8.2. Other effects, as for instance, light [48], electron [49] or ion [Jagrova]
beam irradiation or induced internal strain in a material [50] influence optical proper-
ties as well. In addition, the quantum confinement of materials is nowadays frequently
used as an effective way for tuning their optical properties. As an example, we can men-
tion transition metal dichalcogenides which in bulk form manifest behavior of indirect
semiconductors but, when deposited or exfoliated in a form of ultrathin two–dimensional
film (with a thickness of a few atomic monolayers), their electronic band structure gets
modified transforming into direct bandgap material [51].

Last but not least, we should note the effect of external electric and magnetic fields
(or magnetic ordering). The latter one has been already examined by introduction of the
macroscopic magneto–optical constants. Its microscopic origin is briefly discussed in the
following section.

2.2.2 Magneto-optical constants

The classical Lorentz model can be extended even for magneto-optical medium. That
is done by taking into account an additional effect of the static magnetic field B on
the electrons. In other words, by introducing additional force, magnetic Lorentz force
F = ev ×B, v being electron velocity, into the equation of electron motion (2.73).
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Let’s consider the Lorentz picture in Faraday experimental configuration where linearly
polarised light propagates along a static magnetic field. In this case, induced electric
polarization P is no more oscillating co-linearly with the light electric field, as is the case
for optically isotropic medium, but, instead, contains an orthogonal component as well
that is due to the magnetic Lorentz force. This is macroscopically manifested by the
appearance of the off-diagonal permittivity tensor elements ε12 and ε21 (cf. Eq. (2.50))
and by rotation of light polarization as the wave propagates through the material. This
was discussed in more detail earlier in this Section. Furthermore, since a magnetic field
is involved, time–reversal symmetry must be treated with particular care. The reason is
that the Lorentz force, which is involved in the interaction, is a vector product of particle
velocity and the magnetic field, and therefore, one must reverse both particle velocities
and the magnetic field to ensure the particles retrace their paths [33]. The consequence
of this is already mentioned as the non-reciprocity of magneto–optical effect.

It can be shown that in the frame of the classical Lorentz model, the diagonal and
off-diagonal permittivity tensor elements get the following spectral dependencies [33]

ε11 = ε22 = 1 +
Ne2

mε0

ω2
0 − ω2 + iγω

(ω2
0 − ω2 + iγω)2 − ω2

cω
2
, (2.79)

ε33 = 1 +
Ne2

mε0

1

ω2
0 − ω2 + iγω

, (2.80)

ε12 = −ε12 =
Ne2

mε0

iωωc

(ω2
0 − ω2 + iγω)2 − ω2

cω
2
. (2.81)

Note that ε33 is not affected by a magnetic field and is equal to the permittivity of optically
isotropic medium (Eq. (2.74)). Nevertheless, other terms ε11, ε22, ε12 and ε21 depend
on magnetic field through cyclotron frequency ωc = −eB/m. When magnetic fields
disappear, the off–diagonal terms disappear as well, and the diagonal ones get identical
and equal to the isotropic material. Although some authors (see, for example, Refs.
[52, 53]) used the classical Lorenz model for estimation of magneto–optical constants of
selected materials, generally, application of the quantum mechanical approach is necessary.

Quantum models relating interband electronic transitions with the magneto–optical ef-
fects were gradually developed from the 1930s. In 1932 Hulme [54] showed that the origin
of significant magneto-optical activity in ferromagnetic materials is spin-orbit interaction.
This interaction indirectly couples electron spins with light wave through electron orbital
momentum. Later, Kittel [55] pointed out that the modification of electron wave func-
tions due to spin-orbit interaction plays an important role as well. Afterward, Argyres
[56] derived in 1955 relation of magneto-optical effects working on the perturbation theory
and current density calculations. An alternative approach that stems from an elabora-
tion of electron transition probabilities when magnetized matter interacts with circularly
polarized light was done by Bennett and Stern [57], Pershan [15] and Kahn [58]. In this
concept, right or left circularly polarised waves excite electrons which, in accordance with
the law of angular momentum conservation, change the projection of their angular mo-
mentum by ∆m = ±1. Off-diagonal elements of the dielectric permittivity in the electric
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dipole approximation and consequently the Faraday effect is defined by the difference be-
tween the contributions of the ’right’ and ’left’ transitions (id. est., the transitions with
∆m = +1 and ∆m = −1 ). In non-magnetic materials at H = 0, these processes have
become equalized, and therefore, no magneto-optical effects take place. In a magnetic
field and magnetically ordered materials, the balance between the total contributions of
the right and left processes to the permittivity is broken; this results in a rotation of the
plane of polarization of light or in a difference between the absorption coefficients of the
light with different circular polarizations.

Kahn showed that the off-diagonal tensor element ε12, which is responsible for Faraday
rotation and MCD, can be expressed in terms of the difference of right circular polarized
(rcp) and left circular polarized (lcp) transition matrix elements. For an electronic dipole
transition between a ground state and excited states, ε12 is given by

ε12 =
2πNe2

m

∑
e,v

f+e(v) − f−e(v)

ω2 − ω2
e(v) − γ2e(v) − iγe(v)

ω − iγe(v)
ωe(v)

, (2.82)

where
f±e(v) =

mωe(v)

ℏ
⟨g|x± iy|e(v)⟩2

are the oscillator strengths for rcp and lcp transitions, resp., N is the number of spins,
ωe(v) is the transition frequency to the excited state |e(v)⟩, where v numbers the sublevels
of |e⟩ which are split by spin-orbit coupling and exchange.

As mentioned above, the dominant contribution to the Faraday rotation results from
spin-orbit splitting of excited states. In a magnetic crystal, the exchange splitting far
exceeds the Zeeman splitting of the energy levels. However, the exchange acts only on the
spin levels, not on the orbitals, and therefore, cannot give rise to magneto–optical effects.
It is only the spin-orbit coupling that allows the orbitals to sense the polarization of rcp
and lcp waves via the selection rules for electronic transitions [20].

Analogously to the optical constants, also in a static magnetic field, the classical
Lorenz model of the elastically bound electron, Eqs. (2.79)–(2.81), transforms to the
Drude formula of free electrons when the resonant frequency gets zero value. It can be
shown that quantum mechanical calculations of the light interacting with the free electrons
yield in the high frequency limit the same dispersion relation as its classical counterpart,
except for non-classical spin–orbit–induced polarization [59].

2.3 Ab-initio calculations

Complex electric permittivity, ε(ω), characterizing optical and magneto-optical inter-
actions in solids can be calculated also from the first principles, id est, ab–initio. The
Schrodinger equation with many–electron Hamiltonian of interacting electrons moving
in the field of the nucleus and external magnetic field cannot be solved exactly to get
closed–form expression for energy eigenvalues and eigenvectors. However, two relatively
simple approximations exist for obtaining a qualitative picture of the multielectron wave-
functions: Hartree–Fock method [60] and Thomas Fermi theory [61, 62]. The latter, an
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approximate method for finding the electronic structure of complex systems (including
solids) using the one–electron ground state density, ρ(r), is much easier to implement and
therefore was intensively developed. The modern version of this approach is Kohn-Sham
density functional theory, which defines self-consistent equations that must be solved for
a set of orbitals whose density, ρ(r), is defined to be exactly that of the real system. The
simplest approximation of the exchange correlation energy (given in terms of ρ(r)) is the
local density approximation (LDA) [63] which became the popular standard in calculation
on solids in the 1970s and 1980s.

To study magnetic effects including magneto–optical phenomena, one needs access to
quantities such as spin and orbital moments. The most suitable for these calculations
turned out to be the spin density functional theory [64, 65] combined with relativistic
Kohn-Sham equations, so–called local spin density approximation (LSDA). Macroscopic
conductivity, σ(ω), that is the preferred quantity with respect to dielectric permittivity,
in the theoretical calculations is derived from Kubo formula [66]. It is worth mentioning
here that for the successful calculation of optical and magneto-optical effects one needs a
precise solution of not only the ground state of the system that is usually well described,
but also of the excited states, that were a long time, and still remains, a challenge for
calculation.

The first success in ab-initio calculation can be considered the determination of the
conductivity tensor of ferromagnetic Ni by Wang and Callaway in 1974 [67]. Other works
followed with increasing theoretical reliability with respect to experimentally obtained
data (see, for example, Oppeneer [68], and Kunes [69, 70]). Ab-initio calculations can

Fig. 2.5: Real part of the diagonal (left) and imaginary part of off–diagonam (right) ele-
ment of the conductivity tensor calculated for bulk Fe (solid line) and Fe mono-
layer (broken line). Modified from Kuneš and Mistŕık [71].

be relatively easily extended also for low dimensional systems, which are promising in
modern applications. As an example, we refer to Fig. 2.5 and paper by Kunes and
Mistrik [71] where optical and magneto-optical constants are calculated for mono-atomic
Fe and compared with bulk b.c.c. Fe.





Chapter 3

Ellipsometry

3.1 Measurable quantities

Ellipsometry measures the polarization change in light induced by its non–normal
reflection from a sample surface. This change is often expressed as the ratio of the
reflection coefficients. For oblique incidence, we distinguish s– and p– waves. The s–wave
is linearly polarized with the vector of the electric field E perpendicular to the plane of
incidence, whereas the p– wave is linearly polarized with the vector E parallel to the
plane of incidence. Measurable quantities for isotropic and anisotropic samples will be
treated separately.

3.1.1 Isotropic case

When the s– and p– waves are reflected from an optically isotropic sample, they
remain s– and p–polarized, respectively, but their amplitude and phase are changed due
to light interaction with the sample (cf. Figure 3.1). These changes are expressed by the
reflection coefficients rs and rp, which are defined as the ratio of the complex amplitudes

of the reflected Êr and incident Êi waves at the same point on the sample surface. For
p– and s– waves we get

rp ≡
Êr

p

Êi
p

=
Er

0p e
iδrp

Ei
0p e

iδip
, (3.1)

rs ≡ Êr
s

Êi
s

=
Er

0s e
iδrs

Ei
0s e

iδis
. (3.2)

Change of the polarization is in isotropic case conveniently expressed by the ratio of
the reflection coefficients rp and rs. This complex number is usually further rewritten in
terms of ellipsometric parameters Ψ and ∆

rp
rs

≡ tanΨei∆ . (3.3)

37
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Fig. 3.1: S– and p–polarised waves reflected from an optically isotropic sample.

The geometric meaning of the introduced ellipsometric angles Ψ and ∆ is worth dis-
cussing. Consider an incident light with equal components of s– and p– waves that are
in phase. In other words, the incident light is linearly polarized with the electric vector
E oscillating at an angle 45◦ to the incidence plane (cf. Figure 3.2). When the light gets
reflected from the sample surface, the s– and p– components change their amplitudes and
phases, and, as a result, the reflected wave becomes elliptically polarized, in general. It
can be shown that parameters of this elliptical polarization1 relates to the ratio rp

rs
because

rp
rs

=

Er
0p e

iδrp

Ei
0p eiδ

i
p

Er
0s e

iδrs

Ei
0s e

iδis

=
Er

0p

Er
0s

ei(δ
r
p−δrs) . (3.4)

1Parameters α and δ defined in Tab. 1.1.
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Fig. 3.2: Geometrical meaning of the ellipsometric parameters Ψ and ∆.

And with help of Eq. (3.3) we get ellipsometric relations

tanΨ =
Er

0p

Er
0s

, (3.5)

∆ = δrp − δrs . (3.6)

Accordingly, Eq. (3.3) determines, through the ellipsometric parameters Ψ and ∆, changes
in amplitudes and phases of the s– and p– waves in their reflection from the sample surface
(cf. Figure 3.2). It is noteworthy that the phase change of the reflected p– or s– wave is, in
general, difficult to measure independently, but its relative change δp−δs is accessible when
polarization measurements are considered. Therefore, ellipsometry belongs to the group of
phase–sensitive techniques, which is rather susceptible to surface properties. On the other
hand, photometric measurements such as, for example, reflectance measurement2 (which
is usually easy to perform), access only the absolute value of the reflection coefficient as

Rs,p = |rs,p|2 , (3.7)

but one cannot detect its phase. Reflection coefficients rp and rs can be theoretically
calculated for various samples, including bulks, single and multilayers, linear gratings, or

2Defined as the ratio of reflected Ir and incident Ii light intensities R ≡ Ir

Ii .
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photonic crystals. It is evident that both the sample inner structure (to the depth that
light reaches by its penetration under the surface) and the optical constants of materials
involved in the interaction influence the reflection coefficients. Therefore, experimentally
determined ellipsometric parameters can provide information on sample geometry and its
optical properties in the spectral range under consideration. In fact, this is the general
goal of ellipsometric characterization.

3.1.2 Anisotropic case

So far, we have discussed optically isotropic samples, where the s– and p– polarizations
are proper modes, and they do not mutually interchange when reflecting from a sample
surface. However, the situation is more complex when reflection from optically anisotropic
samples are considered. In this case, not only the rss and rpp reflection coefficients 3 but
also rsp and rps (that represent mixing of s– and p– waves) have to be taken into account.
These are defined as follows

rss ≡

(
Êr

s

Êi
s

)
Êi

p=0

=
Er

0s e
iδrs

Ei
0s e

iδis
, (3.8)
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Êr

p

Êi
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Êi
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, (3.9)
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=
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Ei
0s e

iδis
. (3.11)

In the frame of the Jones formalism, reflection from a sample is described by Fresnel
reflection matrix R [1]. For optically isotropic samples it takes the diagonal form (with rs
and rp on the diagonal) whereas, in the case of anisotropic samples, all its elements are
generally non-zero

R =

[
rss rsp
rps rpp

]
. (3.12)

Polarisation states of the reflected wave (expressed in the form of Jones vector4) is then
calculated by multiplication of the reflection matrix with the Jones vector of the incident
wave [

Êr
s

Êr
p

]
=

[
rss rsp
rps rpp

] [
Êi

s

Êi
p

]
. (3.13)

3In isotropic case rss (rpp) was referred as rs (rp).
4Column vector of wave complex amplitudes in the base of s– and p– polarizations with its magnitude

normalized to unity [1].
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As the Jones vectors are normalized, it is convenient to normalize reflectin matrix R
as well. That is usually done by division of all its elements by rss coefficient. Hence,
for anisotropic samples, we define six independent ellipsometric parameters [Ψpp,∆pp],
[Ψps,∆ps] and [Ψsp,∆sp] defined by the following relations

rpp
rss

≡ tanΨppe
i∆pp , (3.14)

rps
rss

≡ tanΨpse
i∆ps , (3.15)

rsp
rss

≡ tanΨspe
i∆sp . (3.16)

Some authors prefer to replace relation (3.16) by

rsp
rpp

≡ tanΨspe
i∆sp , (3.17)

because it is more convenient for description of rotating analyser ellipsometrers [72]. Fur-
thermore, as we will see in Section 4.1, relation (3.17) is consistent with definition of
magneto–optical parameters that will be introduced later in the next Chapter. Ellipso-
metric characterization of anisotropic samples is also known as generalised ellipsometry
(for more details refer for example to [73] and references therein).

Geometrical meaning of the angles [Ψps,∆ps] arise from the definition relations Eqs.
(3.8, 3.11, and 3.15)

rps
rss
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0p e

iδrp
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0s e

iδis
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0s e
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=
Er

0p

Er
0s

ei(δ
r
p−δrs) = tanΨpse

i∆ps . (3.18)

Therefore, if s–polarised light is incident the reflected wave becomes elliptically polarised
with parameters α = Ψps and δ = ∆ps. Analogously, for p–polarised incident wave and
considering relation (3.17), parameters Ψsp and ∆sp can be regarded as α and δ parameters
of reflected wave, respectively. On the other hand, in case of weak optical anisotropy, it is
advantageous to express the reflection ratios rps

rss
and rps

rpp
by the azimuth θ and the angle of

ellipticity ϵ of the reflected wave as it is common in magneto–optics, Eqs. (4.3)–(4.5), or
in chiroptical spectroscopy. To provide an example, refer to an optical anisotropy study
of YAlO3 : Nd [74].

3.2 Instrumentation

Various aspects of instrumentation in ellipsometry are discussed in detail in mono-
graphs and handbooks (see, e.g., Refs. [75, 35, 76]). Historically, the first developed
ellipsometers were null ellipsometers, where light first propagates through a polarizer and
compensator and then gets reflected from the sample toward the analyzer and detector
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as schematically shown in Figure 3.3. In this experimental configuration, the orientation
of the polarizer and compensator is adjusted in such a way that light reflected from the
sample is linearly polarized. The analyzer is then rotated to the position where the light
intensity on the detector gets extinguished or “nulled.”

The schematic experimental setup of null ellipsometry is shown in Figure 3.3, where
the polarizer and analyzer can be rotated. The compensator is a quarter-wave plate
with fast and slow axes oriented ±45◦ with respect to the plane of incidence. It can be
shown that when the light wave, transmitted through the polarizer and compensator, is
incident on the sample surface, it has both s– and p– components of equal amplitudes
but mutually shifted in phase by an angle 2P (P being the angle of polarizer, indicated
in red in Figure 3.3). Hence, when the phase shift of the s– and p– components of the
wave incident on the sample is compensated by the reflection, then the reflected wave
is linearly polarized and can be extinguished by the analyzer (A being the angle of the
analyzer). From the positions of the polarizer and the analyzer, the ellipsometric angles
Ψ and ∆ can be calculated by [77]

Ψ = A , (3.19)

∆ = 2
(
P − π

4

)
. (3.20)

This configuration in Figure 3.3, if performed in four equivalent quadrants, is very accurate
due to the compensation of systematic errors. However, even when automated, this
approach is relatively slow, and measurements are time-consuming.

In order to speed up the measurements, ellipsometers with rotating analyzer, polar-
izer, or compensator were developed. In these systems, either the analyzer, polarizer,

Fig. 3.3: Schematic experimental setup of null ellipsometry.
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or compensator is continuously rotated at a constant angular velocity (typically about
10–100 Hz) to modulate the light polarization state. Alternatively, one can also use a
photoelastic modulator, which generates a periodically changing light intensity in the
detector. Fourier analysis of the corresponding detector signal then provides the ellipso-
metric values Ψ and ∆. Such systems can ensure high–speed and accurate measurements.
Nevertheless, it is noteworthy that each of the above–mentioned ellipsometers has both
strengths and weaknesses depending on its specific configuration [73].

Further significant improvements in ellipsometers have extended the concepts devel-
oped for measurements at a single wavelength to measurements at multiple wavelengths.
Spectroscopic ellipsometers capable of measuring the ellipsometric angles Ψ and ∆ as a
function of the wavelength have added another dimension to the analysis, permitting more
reliable determination of material and structural parameters. Presently, a broad spectral
range spanning the terahertz, far infrared, mid-infrared, near-infrared, visible, ultraviolet
(UV, DUV, and VUV) can be by parts covered by various commercial ellipsometers. Fur-
thermore, fast in-situ ellipsometers with charged coupled device detectors and imaging
ellipsometers with a lateral resolution of about 1.0 µm are also commercially available.

3.3 Single interface

Here, we use the term single interface for a sharp and plane interface between two
homogeneous media with different refractive indices. When an optical experiment is
carried out, usually the ambient medium (with the incident and reflected beams) is air,
and the other medium is the sample to be studied. The sample surface is then identical
with the interface itself, as shown in Figure 3.4. Under real conditions, such a sample
surface is never perfectly sharp and plane, but it can be often approximated by a single
interface. The limitation of this approximation will be discussed later in this section.

We start the discussion with the optically isotropic samples and then proceed with
anisotropic samples. Reflection coefficients and ellipsometric parameters can be in both
cases derived by application of Maxwell’s equations, where in the first step solution of the
wave equation is searched in the ambient and sample material independently (as if they
were infinite media). Subsequently, applying the boundary conditions of continuity of the
tangential components of the electric and magnetic fields at the interface the reflection
coefficients are obtained.

Further, we show how the ellipsometric parameters recorded on a single interface
are employed to determine sample optical constants. Case studies with real samples
are provided as well. The section is closed by spectro–photometric (non–ellipsometric)
experimental techniques that are used for optical characterization of the single interface
as well.
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Fig. 3.4: Cartesian coordinate systems defined by the base vectors s and p of the incident
and reflected waves. Optical properties of a sample are expressed for isotropic
case by refractive index Nt, (a), and for anisotropic case by electric permittivity
tensor ε, (b). Ambient refractive index is Ni.

3.3.1 Optically isotropic sample

Fresnel equations

In case of light reflection from an isotropic sample (cf. Fig. 3.4a) the reflection matrix
is diagonal and only two reflection coefficients rs and rp are to be determined. These are
given by the well–known Fresnel relations [16]

rs =
Ni cos θi −Nt cos θt
Ni cos θi +Nt cos θt

, (3.21)

rp =
Nt cos θi −Ni cos θt
Nt cos θi +Ni cos θt

, (3.22)

where Ni and Nt are complex refractive indices of the ambient and sample, respectively.
The incidence and refraction angles, which are related by Snell’s law, are denoted by θi
and θt, respectively.

For further use, we provide here also the normal incidence Fresnel formula for the
transmission coefficient (the ratio of the complex amplitudes of the transmitted and inci-
dent waves):

t =
Êt

Êi
=

2Ni

Ni +Nt

. (3.23)

In the derivation of the Fresnel Eqs. (3.21) and (3.22), care should be exercised with
respect to the coordinate system that one selects. In fact, this selection may influence the
sign of the rp coefficient [35]. Here, we consider two coordinate systems assigned to the



3.3. SINGLE INTERFACE 45

incident and reflected waves as indicated in Figure 3.4a. For normal incidence, the s base
vectors of the incident and reflected waves coincide with each other, whereas the p base
vectors are opposite in direction.

Brewster and Principal angles

Values of Fresnel reflection coefficients and ellipsometric parameters as well are de-
pendent on the incidence angle. Given the forthcoming discussion of ellipsometric mea-
surement strategy, it is useful to discuss it briefly and identify so-called Brewster and
Principal angles. For this reason, it is convenient to express reflection coefficients in the
form of their absolute values and their phases:

rp = |rp|eiϕp , (3.24)

rs = |rs|eiϕs . (3.25)

The definition of the ellipsometric angles Ψ and ∆ by Eq. (3.3) can then be rewritten as

rp
rs

=

∣∣∣∣rprs
∣∣∣∣ ei(ϕp−ϕs) = tanΨei∆ (3.26)

and hence

Ψ = arctan

∣∣∣∣rprs
∣∣∣∣ , (3.27)

∆ = ϕp − ϕs . (3.28)

Dependence of the Fresnel reflection coefficients rs and rp in Eqs. (3.21) and (3.22)
on the angle of incidence is presented in Figure 3.5, where we have considered that the
ambient is air (as it is often the case in a real experiment, therefore Ni = 1). Transparent
sample with refractive index nt = 2.0 and other three absorbing samples with same nt

but non–zero extinction coefficients: κt = 0.2, 0.8, and 1.5 are used in the modeling. The
absolute value of the rs coefficient, plotted in blue in Figure 3.5a, monotonously increases
from normal incidence value (equal to |rp|) up to incidence angle of 90◦, where it reaches
unity (together with |rp|). However, the incidence angle dependence of the p reflection
coefficient is not monotonous. Angle of incidence where rp coefficient becomes zero is
called the Brewster angle and is denoted by θB. Complete disappearance of p–polarized
reflected beam occurs only in case of a transparent sample and can be explained by the
radiation diagram of the electric dipole [35]. Accordingly, the Brewster angle is related
to the ambient and sample refractive indices by relation

θB = arctan
Nt

Ni

. (3.29)

Using Eq. (3.29) we obtain in our case θB = 63.4◦. For absorbing samples, the absolute
value of the rp coefficient, plotted in Figure 3.5a in red, does not reach a zero value. In-
stead, its angle dependence gives a non–zero minimum that shifts toward higher incidence
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Fig. 3.5: Absolute values (a) and phases (b) of reflection coefficients together with ellipso-
metric parameters (c and d) as a function of the angle of incidence and extinction
coefficient of the sample.

angles with increasing extinction. The position of this minimum is called the Principal
angle.

The phase of the s–reflection coefficient (in blue in Figure 3.5b) is, for a transparent
sample, the incident angle independent with a constant value of 180◦. On the other hand,
the phase of the p–reflection coefficient as shown in Figure 3.5b in red manifests an abrupt
change (from 360◦ to 180◦) when crossing the Brewster angle. The phase dependence on
sample absorption is also presented in Figure 3.5b for the selected extinction coefficients.



3.3. SINGLE INTERFACE 47

Corresponding angle dependence of ellipsometry parameters Ψ and ∆ are calculated
from Eqs. (3.27) and (3.28) and plotted in Figure 3.5c,d, respectively. The signature of
the Brewster (Principal) angle is manifested by a minimum in the Ψ parameter and by a
step-like change in the ∆ parameter.

Inverse analytical formula

It is worth noting that from the ellipsometric parameters Ψ and ∆, that are recorded on
a single interface, we can directly calculate the optical constants n (real part of refractive
index) and κ (extinction coefficient) of any sample by using

n− iκ =

√√√√sin2 θi

(
1 + tan2 θi

(
1− ρ

1 + ρ

)2
)
, (3.30)

where
ρ =

rp
rs

= tanΨei∆ . (3.31)

The relation in Eqs. (3.30) is derived from Eqs. (3.3), (3.21), and (3.22) [77] under
assumption that the ambient is air (Ni = 1.0). Since the angle of incidence θi can be
fixed in an experiment, the measured parameters Ψ and ∆ for a given wavelength can
be used to deduce the complex parameters ρ, and consequently, real parameters n and
κ. The single interface is the only case where the inverse relation given in Eq. (3.30)
can be derived in an analytical form. For other structures such as thin films, multilayers,
etc. we have to use numerical methods for determining material complex refractive index
from experimentally recorded ellipsometric angles. Even if the incidence angle θi appears
explicitly in Eq. (3.30), the value of the complex refractive index does not depend on its
selection. However, most accurate results are obtained when θi is set close to the Principal
or Brewster angle, where rp (≈ 0) has a significantly different value with respect to rs
(see Figure 3.5 a,b).

Often, it is useful to express the optical properties of a sample by its relative complex
dielectric permittivity ε = εr − iεi. In this case it can be shown that

εr = n2 − κ2 = sin2 θi

[
1 + tan2 θi

cos2 2Ψ− sin2 2Ψ sin2∆

(1− sin 2Ψ cos∆)2

]
, (3.32)

εi = 2nκ = −sin2 θi tan
2 θi sin 4Ψ sin∆

(1− sin 2Ψ cos∆)2
. (3.33)

Determination of optical constants of bulk nickel ferrite

To give an example of application of the inverse relation, Eq. (3.30), we present
determination of the refractive index of NiFe2O4 bulk single crystal in the spectral range
covering the visible and ultraviolet regions [78]. Figure 3.6a shows spectrally dependent
parameters Ψ and ∆ recorded on the single-crystal (111) facet for two incidence angles 40◦
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and 60◦. The refractive index n and extinction coefficient κ calculated from experimental
ellipsometric spectra using the inverse relation in Eq. (3.30) are plotted in Fig. 3.6b.
It is clear from Figure 3.6a that Ψ and ∆ parameters depend on the angle of incidence.
However, this is not the case for the optical constants n and κ shown in Figure 3.6b that
are on the angle of incidence independent, as pointed out earlier in the text below Eq.
(3.31).

Fig. 3.6: Recorded ellipsometry parameters on NiFe2O4 single crystal (a) and its optical
constants determined by the inverse formula, Eq. (3.30), (b).

Beilby overlayer - limitation of single interface approximation

Precautions must be taken when approximating the surface of a bulk material with a
single interface. A single interface is an ideal structure that presents an abrupt and sharp
change in refractive index across a planar interface between two semi-infinitive media, the
ambient, and sample. In practice, it is rather difficult to prepare such surfaces. Mechanical
polishing usually causes a so–called Beilby overlayer that accumulates various defects due
to the mechanism of polishing [79, 80]. This damaged layer can be reduced in thickness
if a proper polishing process is selected or removed by electropolishing. Alternatively,
sample cutting or monocrystal cleaving in vacuum or the deposition of an optically thick
film may be used. The Beilby overlayer may present different optical properties than the
bulk, and if not carefully considered, erroneous optical constants are determined.

Actually, when the determined n and κ are found to be incidence angle dependent,
the approximation of a single interface is no longer valid. It is often because the sample
surface exhibits a more complex structure (for example, an overlayer or roughness) or due
to the optical anisotropy of a sample. In this case, the inverse relation, Eq. 3.30, may
still be used, but the determined n and κ values are called pseudo-optical constants rather
than optical constants of a material.
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Ellipsometry as a phase–sensitive method is extremely sensitive to the sample surface
and subsurface down to the level where the light can penetrate, i.e., approximately to the
thickness of the penetration depth dp. As the penetration depth is defined by the inverse
of the absorption coefficient α, its value is wavelength dependent and this should be taken
into account during the analyses.

3.3.2 Optically anisotropic sample

Let us consider light reflection from an optically anisotropic sample (cf. Fig. 3.4b).
The reflection matrix is no more diagonal as it was in the case of the isotropic sample,
but instead, its off–diagonal elements become non–zero indicating mixing of s– and p–
waves upon reflection. Compete optical characterization of the sample requires the de-
termination of refractive indices (electric permittivities) along the principal axes as well
as the orientation of principal axes themselves with respect to sample surface and the
incidence plane (through so–called Euler angles [35]). Ellipsometric parameters [Ψ,∆]pp,

Fig. 3.7: Particular orientations of Fresnel indicatrix for which the reflection matrix gets
a diagonal form even for optically anisotropic samples.

[Ψ,∆]ps, and [Ψ,∆]sp, Eq. (3.14-3.16), are, if recorded only for one sample orientation, in
general, insufficient to provide complete optical characterisation of a sample with bi–axial
optical anisotropy. Therefore, measurements on various sample crystallographic facets,
while orientating incidence plane along different directions, is usually necessary.

However, there are special cases for which the reflection matrix gets a diagonal form,
even for optically anisotropic samples. It corresponds to orientations of the indicatrix
indicated in Fig. 3.7 with the principal axes co-linear with the sample related Cartesian
system (x, y, z). For these special cases, and with an assumption that the incidence plane
is x = 0, the off-diagonal elements of the reflection matrix are null, and the diagonal ones
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Fig. 3.8: Determined ordinary (solid lines) and extraordinary (broken lines) refractive
indices of uni–axial anisotropic ZnO monocrystal (left) and PET foil (right).

get form [35]

rss =
Ni cos θi −

√
N2

x −N2
i sin

2 θi

Ni cos θi +
√
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x −N2
i sin
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, , (3.34)
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i sin
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N2

z −N2
i sin

2 θi
, , (3.35)

where Ni is ambient refractive index and Nx, Ny and Nz represent refractive indices along
the principal axes.

Determination of ordinary and extraordinary refractive index of ZnO and PET

Next, we will consider the determination of ordinary (No) and extraordinary (Ne)
refractive indices of two uni–axial samples (ZnO monocrystal and PET foil). Measured
ellipsometric parameters Ψpp and ∆pp in experimental configuration indicated in Fig.
3.7a, where optical axis is perpendicular to sample surface, are influenced by optical
constants with the dominant contribution of ordinary (in–plane) but also non–negligible
contribution of extraordinary (out–of–plane) refractive index (the ratio of which depends
on incidence angle). Nevertheless, both ordinary and extraordinary refractive indices
can be easily distinguished when the optical axis lies in the sample surface and two
measurements, with the optical axis parallel and perpendicular to the incidence plane,
are carried out (cf. Fig. 3.7b,c). Ratios of diagonal elements of reflection matrix (off–
diagonal are zeros) take form:
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• Case where optical axis is parallel to incidence plane, Fig. 3.7b
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√
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. (3.36)

• Case where optical axis is perpendicular to incidence plane, Fig. 3.7c
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In both cases, the ambient refractive index was assumed to be Ni = 1. Solution of these
coupled nonlinear equations (3.36) and (3.37) provide ordinary and extraordinary complex
refractive indices. A wide incidence angle scan is usually recommended to obtain reliable
results. This above mentioned approach was used for optical characterization of ZnO
monocrystals and PET foils. Determined refractive indices are presented in Fig. 3.8.

3.3.3 Normal reflectivity and Kramers-Kronig analyses

For normal incidence, p– and s– polarization cannot be distinguished. The reflection
coefficient is then polarization-independent, and if the air is considered as an ambient, we
get

r =
1− n+ iκ

1 + n− iκ
. (3.38)

Hence, determination of refractive index n and extinction coefficient κ of studied material
requires knowledge of both absolute value and phase ϕ of the normal incidence reflection
coefficient

r = |r|eiϕ =
√
Reiϕ .

Experimentally accessible normal-incidence reflectivity, R, provides only absolute value
of the reflection coefficient. However, when reflectivity is known, in the whole spectral
range, then the phase of the reflection coefficient can be calculated with the help of
Kramers–Kronig relation [18]

ϕ(ω) =
−2ω

π

∫ ∞

0

ln
√
R(ω′)

ω′2 − ω2
dω′ (3.39)

and refractive index and extinction coefficient of probed material are obtained from

n =
1−R

1 +R + 2
√
R cosϕ

, (3.40)

κ =
2
√
R sinϕ

1 +R + 2
√
R cosϕ

. (3.41)

Nevertheless, in reality, the reflectivity cannot be measured in the whole spectral range



52 CHAPTER 3. ELLIPSOMETRY

Fig. 3.9: Normal-incidence reflectivity of PZT a) and its complex refractive index b) de-
termined by Kramers – Kronig relations [81]. Experimental data were recorded
on a synchrotron facility UVSOR, Japan. Comparison with ellipsometry is also
presented (solid line) [82]. Modified from Mistŕık et al. [83].

covering all frequencies. Fortunately, Kramers - Kronig relation (Eq. (3.39)) can still be
used when extrapolation of the experimentally available spectrum of reflectivity is care-
fully done in both spectral limits. Often, this method combines visible, ultraviolet, and
vacuum ultraviolet spectrophotometry or synchrotron facility to cover as wide spectral
range as possible. For high energy of photons, the surface quality (mainly surface rough-
ness) becomes extremely important, and for non–negligible roughness, correction on light
scattering lost in reflected beam must be considered [84].

Determination of optical constants of PbZr1/2Ti1/2O3

As an example of normal reflectivity measurements combined with Kramers–Kronig
analyses, we provide experimental broadband reflectivity spectrum recorded on optically
opaque PbZr1/2Ti1/2O3 (PZT) film at synchrotron facility and corresponding calculated
spectra of PZT refractive index and extinction coefficient in Figure 3.9.
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Other non-ellipsometric techniques for the determination of optical constants of bulk
samples, for instance, examination of oblique incidence reflectivity Rp and Rs, method of
minimal deviation, or critical angle, are treated, for example, in [36].

3.4 Single layer

A single layer can be regarded as a plane–parallel layer sandwiched between two semi–
infinitive media, the ambient, and the substrate. Optical spectra recorded of a single layer
often contain interference fringes due to multiple internal reflections. As an example, we
present in Figure 3.10 an optical reflectance spectrum of a chalcogenide amorphous thin
film. The interference fringes, which appear very clearly in the VIS range, weaken as
the thin film starts to absorb and completely disappear in the UV range because of high
light absorption in the layer. Derivation of the reflection coefficients of a single layer is

Fig. 3.10: Typical reflectance spectrum of an amorphous chalcogenide thin film.

presented in numerous textbooks on optics (see, e.g., [2]). One possible way, solution of
Maxwell’s equations with the appropriate boundary condition on the two interfaces, is an
extension of that already mentioned for a single interface in Section 3.3. Alternatively, we
can consider multiple internal reflections in a film and calculate the complex amplitude of
the reflected beam as a coherent superposition (summation) of their infinite contributions.
For s– and p– polarizations, respectively, we get

rs =
r1s + r2se

−i2ϕ

1 + r1sr2se−i2ϕ
, (3.42)

rp =
r1p + r2pe

−i2ϕ

1 + r1pr2pe−i2ϕ
, (3.43)
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where r1 and r2 are the reflection coefficients for the upper (ambient-layer) and lower
(layer-substrate) single interface, respectively (see Eqs. (3.21) and (3.21)). The angle ϕ
is given by

ϕ =
2πd

λ

√
N2

1 −N2
0 sin

2 θ0 , (3.44)

which represents the phase change of a wave propagating through the film with thickness
d and refractive index N1. θ0 is the angle of incidence, and N0 is the refractive index of the
ambient. Using Eqs. (3.42)–(3.44), we can easily calculate the reflectance for a single film
as shown in Eq. (3.7) and the ellipsometry parameters from Eq. (3.3). However, it should
be noted that relations in Eqs. (3.42)–(3.44) are valid only for sufficiently thin layers with
a thickness smaller than the coherence length of the interacting (probe) light. In a region
with strong absorption (penetration depth being much smaller than the layer thickness),
light senses only the layer surface (upper interface) and may not reach the substrate. In
this case, the single–layer reflection coefficients reduce to the simpler Fresnel formulas
given in Eqs. (3.21) and (3.22) derived for a single interface. In this absorbing spectral
range, the reflected light does not carry any information on the sample thickness.

In general, ellipsometric spectra provide useful information on the geometrical (film
thickness) and optical (film complex refractive index) properties of a sample. However,
the desired optical and geometrical parameters cannot be expressed analytically as explicit
functions of experimental Ψ and ∆ angles as it was done previously in Eqs. (3.30) and
(3.31) for bulk samples. On the contrary, the solution of this inverse problem for a thin
film requires the construction of a so–called sample model that consists of the optical
constants of the substrate, layer, and ambient together with the layer thickness. Selected
parameters (refractive indices and the layer thickness) are then adjusted by a numerical
procedure where the differences between theoretically calculated and experimental Ψ and
∆ data are iteratively minimized by nonlinear fitting procedures. For the calculation of
fitting errors, χ, various figure of merit functions have been designed. We mention here
one given by [85]

χ =
1√

M − P − 1

√√√√ M∑
j=1

[(
Ψexp(λj)−Ψteo(λj)

δΨ(λj)

)2

+

(
∆exp(λj)−∆teo(λj)

δ∆(λj)

)2
]
, (3.45)

where (δΨ, δ∆) are measurement errors of (Ψ, ∆). M and P give number of measured
spectral points and adjusted parameters, respectively.

For each measured wavelength, ellipsometry provides only two recorded angles Ψ and
∆. That limits the number of searched (adjusted) parameters of the sample model that can
be independently and uniquely determined. Nevertheless, this number may be increased
by the following approaches:

1. Parameterization of optical constants by appropriate analytic formulas.

2. Requirement of Kramers–Kronig consistency between the real and imaginary parts
of optical constants.
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3. Measurement of Ψ and ∆ for different angles of incidence.

4. Application of appropriate strategies that can simplify data treatment as, for exam-
ple, determination of layer thickness from the transparent part of the spectra.

5. Adding transmittance and reflectance spectra for simultaneous data treatment.

6. Multiple sample method.

Considering some of the above suggestions enables one to increase the number of ad-
justed parameters to about 12 and to reduce their mutual correlations within the tolerable
limits.

3.4.1 Ideal As50Se50 chalcogenide film

As an example of optical characterization of a single layer, we present in Figures
3.11a–c experimental ellipsometric, transmittance, and reflectance spectra of chalcogenide
As50Se50 amorphous film deposited on a float glass substrate. The backside of the sub-
strate was grounded before recording the ellipsometry and reflectance data to suppress
spurious reflections from the interface. The single–layer sample model (see Figure 3.11d)
was then designed as a homogenous thin film sandwiched between two semi–infinitive
media: the ambient and substrate. The transmittance spectrum for normal incidence was
calculated by

T = n2|t|2 , (3.46)

where n2 is the refractive index of the substrate and

t =
t1t2e

−iϕ

1 + r1r2e−i2ϕ
, (3.47)

is a single–layer transmission coefficient. The phase change ϕ is defined by Eq. (3.44), r1
and r2 are reflection coefficients of the upper and lower interfaces, respectively (see Eqs.
(3.21)–(3.22)) and, analogously, t1 and t2 are the transmission coefficients for the upper
and lower interfaces, respectively (see Eq. (3.23)).

The refractive index of float glass was determined formerly by spectroscopic ellipsom-
etry carried out on a naked substrate considering it as a bulk material (see Section 15.5,
Eqs. (3.30) and (3.31)). The optical constants (electric permittivity) of the chalcogenide
film were parameterized by a Tauc–Lorentz formula (a combination of the Lorentz oscilla-
tor and Tauc absorption edge), which was developed for amorphous semiconductors [86].
The imaginary part of the Tauc–Lorentz electric permittivity ε2 at photon energy E is
then given by

ε2 =
AE0C(E − Eg)

2

(E2 − E2
0)

2 + CE2

1

E
E > Eg , (3.48)

ε2 = 0 E ≤ Eg , (3.49)
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and the real part ε1 is calculated with the help of the Kramers–Kronig relations given
in Eq. (2.69) or by an analytic expression [86]. Parameters of the Tauc–Lorentz formula
together with the film thickness were the free parameters adjusted by the fitting procedure.
Figure 3.11e presents determined spectral dependence of As50Se50 electric permittivity.
In addition, Figure 3.11f shows the absorption coefficient α and penetration depth dp of

Fig. 3.11: Ellipsometry and spectrophotometry measurements of a thin film of As50Se50
as a function of photon energy. The best-fit ellipsometry parameters Ψ and ∆
are plotted in (a) and (b), respectively, spectrophotometry transmittance and
reflectance in (c), the sample model in (d), the determined electric permittivity
ε1 and ε2 of As50Se50 in (e), and its absorption coefficient α and penetration
depth dp in (f).

As50Se50, and indicates its thickness as well for comparison. The adjusted values of all
searched parameters are listed in Table 3.1.

Ellipsometry is a precise and sensitive spectroscopic tool, but when operating solely
in the reflection configuration, its sensitivity for low absorption coefficient is limited.
That is because reflected light senses only the sample surface and its close vicinity. It
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Parameter value

t [nm] 1085, 5± 1.1
A [eV] 155.16± 1.39
E0 [eV] 4.55± 0.03
C [eV] 6.09± 0.09
Eg [eV] 2.351± 0.001
ε∞ 1.05± 0.01

Tab. 3.1: Adjusted values of As50Se50 film thickness and parameters of Tauc-Lorentz for-
mula (Eg.(3.48)).

is commonly agreed that ellipsometry can provide reliable results for absorption coeffi-
cients α > 105 cm−1 [34]. If α is in the range 103 − −105 cm−1, usually the transmit-
tance spectrum is required to be treated simultaneously with ellipsometry data to ensure
accurate determination of the absorption coefficient. In the region of low absorption,
α < 103 cm−1, other techniques such as photocurrent measurement or photothermal de-
flection spectroscopy are more appropriate [87].

It is worth noting that thin-film optical characterization can also be performed by ana-
lyzing the sole transmittance spectrum. This approach was developed by Swanepole [88].
Generally speaking, the thickness of the film is determined by the density of the interfer-
ence fringes, whereas its refractive index is calculated from the difference between their
maxima and minima. The absorption coefficient in the semi–transparent and absorbing
regions can also be estimated by its parameterization and subsequent fitting. Neverthe-
less, ellipsometry, which for each wavelength records two parameters instead of only one,
gives more accurate results due to its phase-sensitive nature.

Real thin films often show various kinds of non–idealities, for example, nonuniform
thickness, surface roughness, internal non-homogeneity, refractive index gradient, etc. In
these cases, a more sophisticated treatment surpassing single layer approximation is to be
applied [89].

3.4.2 Assessment of defects in SiO2 films

A relatively easy examination of defects and non–idealities in a thin film can be done
by comparing its reflectivity spectrum with that of the bare substrate. Theoretical con-
siderations predict that the reflectance spectrum of the uncoated substrate coincides with
the upper or lower (depending on the refractive index difference between the substrate and
the film) envelope of the film reflectance interference fringes5. This situation is shown in
Figure 3.11c, where the homogenous chalcogenide thin film reflectance spectrum is plotted
together with the reflectance of its bare glass substrate (in blue). If such a coincidence is
not found, then the film cannot be regarded as a homogeneous single layer, or substrate
refractive index changed near the film/substrate interface due to deposition.

5This holds for an ideal film and in the spectral range of its transparency.
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To demonstrate the latter case, we will consider a study of SiO2 thin film deposited
by high-density reactive ion plating on a glass substrate [90]. Figure 3.12(left) compares
the reflectance spectrum of the thin film (in black) with the reflectance spectrum of the
uncoated substrate (in pink). As one can see, the maxima of the film interference fringes
do not coincide with the reflectance spectrum of the uncoated substrate. Therefore, the
model of a single homogeneous SiO2 layer on an unmodified glass substrate cannot be
correct. Consequently, three different sample models consistent with the experimental
findings were considered (see Figure 3.12 right and middle parts).

The first model, drawn on the top of the right-hand side of Figure 3.12, describes the
formation of a thin transition layer (TL) between the SiO2 layer and the glass substrate
with a parabolic refractive index profile. In this model, it is assumed that the refractive
index of the bottom part of the TL, which is in contact with the substrate, has the same
value as that of the glass substrate. The second model, in the middle, assumes that the
SiO2 film is a single layer with a linear profile of its refractive index. In the third model,
at the bottom, a change in the glass refractive index close to the SiO2/glass boundary is
assumed.

Fig. 3.12: Signature of structural defects in the SiO2 layer presented in the reflectance
spectra (left, modified from Mistŕık et al. [90]), considered sample models for
ellipsometry and reflectance spectra interpretation (right), and refractive index
profile of each designed sample model (middle).

It is worth mentioning here that the proposal of different sample models that are
acceptable from the technological point of view is essential to ensure correct interpreta-
tion of the recorded optical spectra. That helps in selecting the most reliable sample
model while evaluating the fitting errors in the simultaneous treatment of the ellipso-
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metric, reflectance, and transmittance spectra together with results of complementary
characterization methods. In the case of the study of the SiO2 thin film, it was the third
model (a change in the glass refractive index) that was recognized as the most reliable
[90]. Theoretical approaches developed to account for thin-film defects are presented in
monographs focused on spectroscopic ellipsometry, e.g., Refs. [2, 73, 35] or in selected
review chapters, e.g., [89].

3.5 Multilayer

Continuous demand for better–performing optical elements requires surface structur-
ing or functionalization, which is more complex than depositing a single layer. The concept
of multilayers has proved to find broad applications, e.g., as antireflection coatings, om-
nidirectional mirrors, and optical filters [91]. On the other hand, a single layer considered
above in Section 3.4 often manifest in real conditions a complex inner structure due to, for
example, specific modes of growth during deposition. That can be usually satisfactorily
approximated by a multilayered structure. Therefore, understanding optical interactions
in a multilayer becomes very useful from both application and characterization points of
view.

Reflection and transmission coefficients for bi–layers and tri–layers have been derived
in analytical form and can be found in a few textbooks or review papers (see, e.g., Refs.
[1, 92, 93]. A more general approach of treating the light interaction within a stratified
medium involves recursion or matrix calculations (see, e.g., Refs. [1, 2, 84]). The ma-
trix calculation expands and generalizes treatment discussed already in Section 3.4. Here
again, one has to solve the wave equation in each layer independently, and then the solu-
tions are subjected to the boundary conditions at the interfaces enforcing the requirement
of continuity of tangential electric and magnetic field components. The light interaction
with the whole multilayer structure is then obtained by subsequent matrix multiplication
of 2× 2 matrices developed for each layer and interface, which finally reveal the reflection
and transmission coefficients or ellipsometry parameters of the multilayer.

3.5.1 Inner structure and quality of nanocrystalline diamond
films

This section aims to present a case study where a nanocrystalline diamond (NCD)
film’s inner structure was approximated by a multilayer [94]. Another objective is to
emphasize the potentiality and complementarity of spectroscopic ellipsometry as a char-
acterization tool of nanostructures. The structure of NCD films deposited by microwave–
plasma–enhanced chemical vapor deposition on a substrate pre–seeded by nano–diamond
(ND) particles is schematically shown in Figure 3.13. Diamond growth starts on seeded
ND particles in the form of small crystallites or grains, which increase in volume and then
coalesce at a certain distance from the substrate. When the film is completely closed,
the grains continue to increase in volume following van der Drift growth, where the larger
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grains suppress the growth of their smaller neighbors. This type of growth typically results
in the columnar film structure. The size of the grains increases with the film thickness
(together with the surface roughness), and when its average diameter surpasses about 100
nm, the film becomes microcrystalline rather than nanocrystalline.

Fig. 3.13: SEM top view picture of NCD film (left). Schematic drawing of van der Drift
growth mode (middle). Sample model structure for ellipsometry data analyzes
(right).

To be able to analyze recorded ellipsometric spectra, first, a sample model structure
has to be designed. A good strategy is to start with a sample model that is rather simple
(a single layer in our case) and then gradually refine it with respect to the expected growth
mode of the layer and/or with respect to the knowledge provided by complementary char-
acterization tools if they are available. The refined sample model structure is presented
in Figure 3.13 (middle) and (right) and consists of a substrate that is a naturally oxidized
crystalline Si wafer. The substrate is then covered by a seed layer (a layer grown from
seeded ND particles, dots in red, up to a coalescence limit), bulk layer (dense columnar
part in blue), and surface roughness layer on the top. Optical constants of NCD were
parameterized by the Tauc—Lorentz formula [86] given in Eqs. (3.48) and (3.49). The
optical constants of seed and surface layers, where voids are expected, were parameterized
by the effective medium approximation (EMA), which is treated in more detail later in
the text. This multilayer system has been used to fit experimentally recorded ellipsometry
spectra. The best–fit results are presented in Figure 3.14a and have revealed both the
optical constants of NCD and the inner structure of NCD film of appropriate thicknesses
of seed, bulk, and surface sublayers (see Figure 3.14c,d).

It is often advisable, especially when a large number of adjusted parameters is searched
by the fitting procedure (9 in our case), to compare the determined sample structure with
complementary characterization techniques. These are usually scanning probe methods
such as atomic force microscopy (AFM), scanning electron microscopy (SEM), or trans-
mission electron microscopy (TEM). Figure 3.14b presents SEM picture of the NCD film
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Fig. 3.14: Best fit ellisometry spectra for selected incidence angle of 65◦ (a). SEM picture
of NCD film cross section (b). Sample model structure for ellipsometry data
analyzes (c). Determined inner structure by spectroscopic ellipsometry, scan-
ning electron microscopy and atomic force microscopy in (d).

cross-section, and Figure 3.14d compares values of the film surface roughness and bulk
and seed layer thicknesses determined independently by spectroscopic ellipsometry, SEM,
and AFM. It is worth mentioning that spectroscopic ellipsometry provides most details
of the NCD film inner structure and that the obtained values of the searched parameters
are rather close to these determined by other characterization techniques.

Besides determining the inner structure, we can further assess the “diamond quality” of
NCD films. NCD consists mainly of sp3 hybridized carbon atoms arranged in grains with a
diamond crystalline structure. Apart from this dominant phase, all possible hybridizations
(sp3, sp2, and sp1) might be present at defect sites and are localized mainly in the grain
joints and seed layer where the coalescence is reached. The optical constants of a material
composed of a host medium filled with different types of inclusions can be approximated by
the EMA [95] that takes into account the host and inclusion material optical properties
and their corresponding filling factors. Therefore, considering EMA with the diamond
phase as the host and non-diamond phases as the inclusions, the “diamond quality” could
be estimated from the spectro–ellipsometric analyses by assessing the filling factors ratios.

EMAs are based on the well-known Clausius–Mossotti relation given by [2]:

ε1 − 1

ε2 + 2
=
Na

3ε0
, (3.50)

which relates the macroscopic electric permittivity ε of a medium with its polarizability α
of N electric dipoles. When the medium consists of two components a and b with different
polarizabilities αa and αb, we can rewrite Eq. (3.50) as

ε1 − 1

ε2 + 2
=

1

3ε0
(Naαa +Nbαb) . (3.51)

Combining Eqs. (3.50) and (3.51), we get the so–called Lorentz—Lorenz formula given
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by
ε1 − 1

ε2 + 2
= fa

εa − 1

εa + 2
+ (1− fa)

εb − 1

εb + 2
, (3.52)

where fa and fb = (1− fa) are the filling factors of component a and b, respectively. This
relation is valid for a medium consisting of spheres placed in a vacuum. If the vacuum is
replaced by a host medium with electric permittivity εh we get

ε1 − εh
ε2 + 2εh

= fa
εa − εh
εa + 2εh

+ (1− fa)
εb − εh
εb + 2εh

, (3.53)

Several variations of this relation can be found in the literature. One of them, also known
as the Bruggeman approximation, is based on the assumption that ε = εh [96]. Then Eq.
(3.53) becomes

0 = fa
εa − ε

εa + 2ε
+ (1− fa)

εb − ε

εb + 2ε
, (3.54)

and can be further extended for more phases. Bruggeman EMA is often used in ellipsom-
etry for modeling the surface roughness formed by a mixture of air and top layer material
with a filling factor, typically 50%. Further, Bruggeman EMA has found broader use
in the determination of optical constants of composite materials containing two or more
phases as well, and, in this form, it has also been applied for estimation of NCD film
“diamond quality.”

The diamond and non-diamond phases were represented by the optical constants of
bulk diamond [97] and amorphous carbon [98], respectively. Numerical treatments of
experimental ellipsometric spectra then yielded the filling factors of both the diamond
and non-diamond phases. That analysis was applied for NCD films deposited under dif-
ferent deposition conditions (substrate deposition temperature and frequency of pulsed
microwave plasma). The obtained results are summarized in the form of a graph shown
in Figure 3.15(left), where we indicate the area of the deposition parameters that pro-
vide high-diamond-quality NCD films. A complementary technique to assess the diamond
quality of the NCD films is Raman spectroscopy. Raman spectra, consistently with el-
lipsometry, clearly show the improvement of the diamond quality of the NCD films with
increasing pulsed plasma frequency. That is demonstrated in Figure 3.15(right) for NCD
films deposited with a different pulsed plasma frequency and at a fixed substrate tem-
perature of 550 ◦C. The presented spectra were normalized to the amplitude of the sharp
diamond peak of 1332 cm−1 to create direct evidence of the non-diamond contribution
dependence of the pulsed plasma frequency. The D (1340 cm−1) and G (1600 cm−1)
bands that relate to disordered carbon and graphite, respectively, are clearly visible for
all samples and were found to decrease in amplitude as the pulsed plasma frequency
increased.

Raman spectra deconvolution can be used for carbon sp3/sp2 ratio estimation, but
significantly different cross-sections of diamond and non–diamond phases must be consid-
ered. The diamond quality of the NCD films determined from the Raman spectroscopy
was found to be in the range 92–97%, and similar values of 84–93% were obtained by
spectroscopic ellipsometry. It is worth noting that this reasonable agreement was reached
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Fig. 3.15: Diamond quality of NCD films deposited with different pulsed MW plasma
frequency and substrate deposition temperature as determined by spectroscopic
ellipsometry. Indicated are filling factors of the non-diamond amorphous carbon
phase and the estimated line of constant a-C filling factor of 8% (left). Raman
spectra of NCD films deposited for 550 ◦C for different frequencies of pulsed
plasma (High 14.3 kHz, Middle 4.5 kHz, and Low 2.7 kHz) (right). Modified
from Mistŕık et al. [94].

in spite of the fact that the exact structure and ratio of sp1, sp2, and sp3 hybridized carbon
in defect sites of NCD are not known; therefore, the approximation of the non–diamond
phase by amorphous carbon is rather rough (for a more detailed discussion, see [94]).

3.6 Linear grating

As discussed in the preceding sections, ellipsometry is a characterization technique
that is routinely used for the characterization of bulks, single layers, and multilayers.
In the last three decades, advanced knowledge of electromagnetic field interaction with
nanostructured solids together with the enhanced power of personal computers made it
possible to apply ellipsometry for the characterization of laterally structured samples as
well. That includes, for example, linear gratings or other, even more complex, nanos-
tructures, such as photonic crystals, with periodicity in both lateral and perpendicular
directions with respect to the sample surface [99, 100, 101, 102, 103]. In this case, instead
of ellipsometry, we refer to scatterometry to distinguish its employment for structured
surfaces or photonic crystals. In recent years, scatterometry has gained increased atten-
tion also due to its application in on–line control of critical dimensions of nanostructures
fabricated in the semiconductor industry.
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Calculations of the reflection coefficients of photonic crystals require a more sophis-
ticated mathematical approach with respect to that presented previously for a single
interface and single or multilayers. Due to the lateral periodicity of a sample’s optical
properties or surface profile, it is convenient to expand the interacting electromagnetic
field and the sample electric permittivity into Floquet and Fourier series, respectively.
The wave equation with suitable boundary conditions is then solved for these expanded
fields in the truncated series. This analytical calculation method, known as Fourier modal
formalism, treats the Fraunhofer diffraction in general photonic crystal (for more details,
see, for example, Refs. [104, 105, 106] and the references therein). Ar the same time,
special care has to be taken for the correct implementation of this method, including the
control of the convergence of the solution with respect to the truncation of the series.
Alternative numerical approaches are available as well, for example, that proposed by
Yee, which is based on the finite difference time domain [107]. Because of their extended
computational demands, the current commercial ellipsometry software generally does not
support this kind of calculation, although some stand-alone routines are available (see,
e.g., [108]).

Ellipsometric parameters of light diffracted from gratings or photonic crystals are
most convenient to measure in the 0th diffracted order because the angle of diffraction
for higher orders is spectrally dependent. Moreover, the 0th diffracted order includes all
needed information on both the sample structure (for example, grating profile) and the
optical properties of grating materials.

The aim of this section is a brief presentation of scatterometry and its advantages
and disadvantages with respect to the conventional characterization techniques. For this
purpose, characterization of a sine-like surface relief Ni grating [109] was selected.

3.6.1 Sinusoidal linear Ni grating

A linear Ni grating was fabricated by holographic lithography. Its surface was covered
by a native oxide. The grating cross-section is schematically depicted in Figure 3.16

Fig. 3.16: Grating cross-section (left) and top-view photo of a set of holographic gratings
(right).
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together with the top view of a set of gratings. Besides scatterometry, complementary
measurements of the grating profile were performed by conventional techniques: SEM,
AFM, and optical microscopy. Corresponding pictures are shown in Figure 3.17. All
these tools provided the value of the grating period Λ. Nevertheless, the grating profile
depth was determined only by AFM. The obtained results are summarized in Table 3.2.
Scanning probe methods (SEM and AFM), including optical microscopy, are relatively
fast and flexible. SEM and AFM provide a high-resolution examination of the nanoscale
features of the studied samples. Moreover, AFM has also access to the real surface
topography. Despite these advantages, there are some drawbacks as well in the use of
these tools. For example, SEM requires surface metallization and has only limited access
to the surface profile. AFM scans only a small surface area, and therefore, several scans are
required to obtain statistically reliable results. In addition, the tip deconvolution artifacts
often make precise surface topography evaluation difficult. And optical microscopy suffers
from the low resolution with lack of access to the depth profile.

Fig. 3.17: Grating surface recorded by the atomic force microscopy (top), scanning elec-
tron microscopy (middle), and optical microscopy (bottom). Reprinted from
Mistŕık et al. [109].
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The ellipsometric parameters Ψ and ∆ were recorded for three angles of incidence:
20◦, 30◦, and 40◦ in the spectral range from 300 to 1200 nm. The plane of incidence
was set perpendicular to the grating lines. Only the 0th order of diffraction (specular
reflection) was measured and analyzed. Due to the non–ideal fabrication process, the
Ni grating surface relief was not considered perfectly sinusoidal. Therefore, not only the
period and depth of the grooves were taken into account in the theoretical calculations,
but an additional parameter describing the surface profile non–ideality was considered as
well. The thickness of the NiO surface overlayer was evaluated by standard ellipsometry
measurement of a nonpatterned part of the sample (tNiO = 3.5 nm). The non–ideality in
the grating profile shape was approximated by function

z =
h

2
(1− cosP (y)) , (3.55)

where

P (y) =
2π

Λ

(
Ay +

2

Λ
(1− A)y2

)
. (3.56)

The parameter A characterizes the shape profile (A = 0 corresponds to the ideal sinusoidal
case) and y, and z are the Cartesian axes. Extensive theoretical modeling6 of ellipsometry
response of gratings with various profile shapes and depths yielded the following: (1)
grating period Λ = 917 nm, (2) profile depth h = 205 nm, and (3) shape profile parameter
A = 0.52. The best-fit spectrum of the Ψ parameter is presented in Figure 3.18, where we
also compare the final grating profile determined by scatterometry with respect to that
measured by AFM. The achieved high level of agreement between both profiles is worth
noting. The grating period and its depth thus obtained are added in Table 3.2.

Fig. 3.18: Best fit scaterometry spectra (left) and grating profile determined by scatterom-
etry compared with that measured by AFM (right). Reprinted from Mistŕık et
al. [109].

6Performed in the analytical framework of rigorous coupled-wave analyses [110].
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A grating period of about 917 nm is identically obtained by all the applied methods.
However, there is a discrepancy between the profile depths determined by AFM (170
nm) and spectroscopic ellipsometry (205 nm). The possible reasons for this discrepancy
are AFM tip deconvolution artifacts or ellipsometry sensitivity on grating surface micro-
roughness, which was not considered in the sample model. Moreover, the optical constants
of Ni and NiO determined on the non–patterned part of the sample may be slightly
different from those of the grating. The sensitivity of scatterometry on an overlayer
and surface roughness can be considered as an advantage or, contrary, as a disadvantage
depending on how precise theoretical analyses are performed. An evident advantage
of scatterometry is its noninvasive nature and access to the real profile geometry of the
grating surface. Nevertheless, the cumbersome and time-consuming calculations still limit
the applications of scatterometry to a relatively small community of researchers.

Grating structural
Methods

parameters SEM AFM
Optical Spectroscopic

microscopy ellipsometry

Grating period [nm] 916.7 917.2 918.6 917.0
Profile depth [nm] x 170 x 205

Tab. 3.2: Determined grating period and profile depth.

Despite the above mentioned disadvantage, scatterometry has proved to be a highly
efficient tool for noninvasive characterization of laterally periodical patterned nanostruc-
tures. In the case of linear Ni grating, this has been demonstrated by the determination
of the grating geometrical parameters (period, depth, and profile shape non–ideality)
and also by identification of the NiO surface overlayer. Obviously, all the characteriza-
tion techniques presented here show comparative advantages and disadvantages, the most
evident being listed in Table 3.3.

Method Advantage Disadvantage

SEM
Fast and flexible, high Limited access to surface

resolution profile, surface matallization
reqired

AFM
Real surface Small surface area scan, tip
topography deconvolution artefacts

Optical Fast and flexible Low resolution, no access to
microscopy inspection depth profile

Spectroscopic
Sensitive on NiO

ellipsometry
overlayer and surface Cumbersome and time expensive
profile nonideality, calculations

noninvasive

Tab. 3.3: Advantages and disadvantages of applied methods.
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3.7 Conclusions

Spectroscopic ellipsometry is a phase-sensitive optical tool employing light polarization
(more precisely, its change under light reflection) for surface characterization. It provides
surface geometry such as, for example, the overlayer thickness, the inner structure of a
film or surface profile of a grating, and also the optical constants of materials that the
light senses by its penetration beneath the surface. This technique is not direct in the
sense that ellipsometry data treatment usually requires the design of a sample model and
subsequent fitting of experimental ellipsometric spectra. An appropriate combination of
SE with complementary surface characterization tools guarantees precise and accurate
results. The field of ellipsometry is growing continuously, and its potential is expanding
towards the characterization of advanced functionalized surfaces and nanomaterials.



Chapter 4

Magneto–optics

Magneto–optical effects in transmission, Faraday and Voigt, were already introduced
in Section 2.1.2. The present chapter deals with magneto–optical effects observed upon
light reflection from a magnetized sample. For the sake of simplicity, unless otherwise
stated, we limit our treatment to samples that are in non–magnetized state optically
isotropic.

4.1 Measurable quantities

Net magnetization reduces the symmetry of a sample. Optical effects that originate
from this induced anisotropy in reflected light are called the Kerr effects, in honor of
their discoverer. It is common to distinguish the polar, longitudinal, and transverse Kerr
effects according to the mutual orientation of sample magnetization vector M , the plane
of incidence, and the sample surface. This is schematically presented in Table 4.1. The

Kerr
effect

Polar Longitudinal Transversal

Exp.
config.

Reflection
matrix

[
rss rsp
rsp rpp

] [
rss rsp
−rsp rpp

] [
rss 0
0 rpp

]
Symmetry

consideration
rps = rsp rps = −rps rps = rsp = 0

Tab. 4.1: Kerr magneto–optical effects in reflection: polar, longitudinal and transverse.
Corresponding reflection matrices and the symmetry properties of their off–
diagonal elements.

69
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Polar Kerr effect refers to the case when the magnetization vector is perpendicular to the
sample surface. In the longitudinal and transverse geometry, the magnetization vector
lies in the sample surface and is either parallel (longitudinal effect) or perpendicular
(transverse effect) to the incidence plane. The symmetry considerations yield a particular
form of corresponding Fresnel reflection matrices. These are provided in Table 4.1 as well.

Incident p– and s– linearly polarized waves reflected from a magnetized sample do not,
in general, maintain their polarization state, as it was the case for optically isotropic sam-
ples, but instead becomes elliptically polarized (as indicated in Fig. 4.1). The transverse
configuration is an exception. Here, the magnetization influences only the rpp coefficient,
leaving the off-diagonal elements null. The change of polarization of incident p– or s–
linearly polarised waves upon reflection is, for most magneto-optical materials, relatively
small and manifests itself by a rotation of the polarization plane and also by an appearance
of nonzero ellipticity (cf. Fig. 4.1).

Fig. 4.1: P- (a) and s- (b) linearly polarised waves reflected from a magnetized sample.
Kerr rotation θK and Kerr ellipticity ϵK as the azimuth and the angle of ellipticity
of the reflected wave.

Kerr effect ΦK is defined as the ratio of off-diagonal and diagonal elements of the
reflection matrix. For p– and s– incident wave we get1

ΦKp ≡
rsp
rpp

, (4.1) ΦKs ≡ −rps
rss

. (4.2)

Geometrical interpretation of these relations can be performed similarly to the case of
generalized ellipsometry (cf. Eq. (3.18) and related discussion). However, in the magneto–
optics we do not employ ellipsometric angles Ψ and ∆, Eqs. (3.16-3.17). Instead, the ratio

1The minus sign in relation (4.2) comes from requirement ΦKp = ΦKs that should be satisfied for
the normal incidence. Refer also to the note of coordinate systems of the incident and reflected waves in
Section 3.3.1.
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of reflection coefficients is expressed as a function of the azimuth, Kerr rotation θK , and
angle of ellipticity, Kerr ellipticity ϵK , of the reflected wave2. The Kerr rotation and
ellipticity of p– and s– incident waves are indicated in Fig. 4.1. For example, for p–
incident wave we get [1]

rsp
rpp

=
tan θKp + i tan ϵKp

1− i tan θKp tan ϵKp

. (4.3)

Furthermore, in an approximation of small azimuth and ellipticity angles, that is justified
for most magneto-optic materials, and with attention to the sign convention of Kerr
rotation θK and Kerr ellipticity ϵK [111] we get final relations

ΦKp ≡ rsp
rpp

≈ θKp − iϵKp , (4.4)

ΦKs ≡ −rps
rss

≈ θKs − iϵKs . (4.5)

Formally, we can expand the Kerr rotation θK and Kerr ellipticity ϵK to the McLauren
series with respect to the magnetization vector M . Doing so, we can associate magneto-
optical effects linear in magnetization (linear magneto–optical effects) with the second
term and magneto-optical effects quadratic in magnetization (quadratic magneto–optical
effects) with the third term of the expansions:

θK(M) = θK(0) +

(
∂θ

∂Mk

)
M=0

Mk +
1

2

(
∂2θK

∂Mk∂Ml

)
M=0

MkMl + · · · (4.6)

ϵK(M) = ϵK(0) +

(
∂ϵK
∂Mk

)
M=0

Mk +
1

2

(
∂2ϵK

∂Mk∂Ml

)
M=0

MkMl + · · · (4.7)

Faraday rotation and magnetic circular dichroism, treated in Section 2.1.2, represent
linear magneto–optical effects, whereas magnetic linear birefringence and magnetic lin-
ear dichroism (Voigt effect) belong to quadratic magneto–optical effects. These effects
are observed as the light propagates through a magneto–optical medium. The linear
and quadratic magneto–optical effects in reflection will be discussed in the forthcoming
Sections. The first terms of expansion, θK(0) and ϵK(0), vanish for optically isotropic
samples. If the sample is optically anisotropic crystal, evaluation of magneto–optical ef-
fects requires rather complicated calculus (refer, for example, to magneto–optical study
of single–crystal orthoferrites and hexagonal ferrites by Kahn, Pershan and Remika [58]).

4.2 Instrumentation

Magneto-optical angles, rotation θK and ellipticity ϵK , observed in reflection are rel-
atively small compared to parameters Ψ and ∆ encountered in optical ellipsometry. Of-
ten, they get values of the order of 0.1◦ or lower. Therefore, modulation experimental

2The same approach is employed for chiroptical effects where we introduce the the azimuth (optical
rotation) and angle of ellipticity (circular dichroism).
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techniques coupled with synchronous detection are usually used for their measurements.
These were already mentioned in Section 3.2 and are based on modulation of the light
polarization state. Modulation of ellipticity with use of photo-elastic modulator [112]
or of azimuth using Faraday cells [113, 114, 115, 116] or Pockels cells [117, 118, 119]
are common. External magnetic fields with induction up to several Teslas required for
saturation of sample magnetization are provided by an electromagnet or by supercon-
ducting magnets. Optical cryostats for low-temperature magneto–optical measurements
are commercially available as well.

Magneto-optical spectra presented in this work were recorded at room temperature
with customized azimuth modulated null ellipsometer3. As it was demonstrated by Aspnes
[120] the improvement in precision by which the null settings of polarizer and analyzer
can be determined using Faraday cell azimuth modulation reaches an order of magnitude
to 0.001◦. Moreover, by applying a DC current to the Faraday cells, a non-zero average
rotation of the plane of polarization can also be obtained [116]. Since a change in the DC
current is equivalent to a mechanical rotation of the polarizer element, a null ellipsometer
can be constructed without moving parts. In our case, two Faraday cells, one with ac
current for modulation and the other with dc signal for nulling, were employed [121].

Provided that the modulation amplitude or the source intensity can be made suf-
ficiently large to ensure shot-noise limited operation, the Faraday-cell-modulated ellip-
someter is capable of obtaining the highest precision of any present configurations [120].
Null systems are also inherently insensitive to source and detector characteristics, and
therefore, can also achieve high accuracy. The principal disadvantage is the sensitivity
of attainable precision to even a small amount of stray light or detector dark current, a
consequence of operation at low light levels.

Technical details, as well as measurement procedures of the customized azimuth-
modulated null ellipsometer used in this study, are available in [122]. For other sources
covering alternative instrumentations in magneto-optics refer, for example, to Refs. [123,
17].

4.3 Single interface

Let us consider the most simple case of light reflection from a magnetized optically
opaque sample, theoretically treated as a reflection from a single interface ambient/sample
between two semi-infinitive homogeneous media. Derivation of the reflection matrix co-
efficients rpp, rss, rps, and rsp requires the knowledge of the proper modes in both media.
These are then connected through the field boundary conditions on the interface.

In optically isotropic ambient (usually air), the proper polarization of the incident
and reflected waves can be selected arbitrarily. We choose s– and p– linearly polarized
waves (cf. Fig. 3.4b). On the other hand, proper modes propagating in a magnetized
sample depend on its electric permittivity ε and are solutions of the wave equation (2.25).

3For the principle of nulling ellipsometry refer to Section 3.2.
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Visnovsky solved this equation for the general form of the electric permittivity tensor

ε =

 ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

 , (4.8)

thus, accounting for an arbitrary orientation of magnetization vector M [124].
Considering the Cartesian axes oriented in a manner to null N̄x component of the

reduced refractive index N̄ , defined by Eq. (2.36), which is equivalent with setting the
plane of incidence into the yz-plane4, the wave equation becomes ε11 − N̄2

y − N̄2
z ε12 ε13

ε21 ε22 − N̄2
z ε23 + N̄yN̄z

ε31 εzy + N̄y N̄z ε33 − N̄2
y

 E0x

E0y

E0z

 = 0 , (4.9)

or more concisely Z · E0 = 0. The proper numbers, N̄z components of the reduced
refraction index N̄ , are the solutions of the characteristic equation, detZ = 0, that is

ε33N̄
4
z + (ε23 + ε32)N̄yN̄

3
z

− [ε22(ε33 − N̄2
y ) + ε33(ε11 − N̄2

y )− ε13ε31 − ε23ε32]N̄
2
z

− [(ε11 − N̄2
y )(ε23 + ε32)− ε12ε31 − ε21ε13]N̄yN̄z

+ ε22[(ε11 − N̄2
y )(ε33 − N̄2

y )− ε13ε31]− ε12ε21(ε33 − N̄2
y )

− ε23ε32(ε11 − N̄2
y ) + ε12ε23ε31 + ε13ε21ε32 = 0 . (4.10)

When the determined proper numbers N̄z are inserted back into Eq. (4.9) the proper
polarizations are eventually identified5. Final analytical expressions of diagonal and off–
diagonal elements of Jones reflection matrix, derived by Visnovsky [124], are presented in
Appendix A.

This general treatment of light reflection from the single interface covers (i) oblique
and normal incidence (ii) arbitrary orientation of magnetization vector with respect to
the plane of incidence and sample surface (iii) magneto–optical effects of linear and higher
orders in magnetization, and (iv) optically isotropic and anisotropic samples. In partic-
ular, linear magneto–optical effects in the polar and longitudinal configurations together
with the quadratic magneto–optical effects in reflection are introduced in more detail in
the following sections.

4.3.1 Polar Kerr configuration

The optically isotropic sample that is magnetized perpendicularly to the sample sur-
face, along z–axis of the coordinate system, as indicated in Tab. 4.1 (the polar configu-

4This can be done without loss of generality because the permittivity tensor is considered in its general
form.

5The component N̄y is a real parameter that relates to the incident angle φ by the Snell’s law,
N̄y = N0 sinφ, where Nz is refractive index of an ambient.
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ration) is described by electric permittivity tensor

εp =

 ε1 −iε2 0
iε2 ε1 0
0 0 ε1

 . (4.11)

It is worth mentioning that this corresponds to the relation (2.50) of permittivity tensor in
the Faraday configuration. However, here only terms linear in magnetization are consid-
ered. Hence, all diagonal elements, ε1 = ε′1 − iε′′1, equal each other. Moreover, we applied
so-called Krinchik notation [125] for off–diagonal tensor elements setting ε12 = −iε2,
where ε2 = ε′2 − iε′′2 . This notation points out the fact that light absorption, that is
expressed by imaginary part of diagonal elements, is, in the case of off-diagonal elements,
expressed by its real part. On the other hand, the real part of diagonal and the imaginary
part of off–diagonal elements relate to the dispersion of a material (for more details refer
to Section 2.1.2). Hence, considering the Krinchik notation we conveniently associate the
real parts ε′1 and ε′2 with light dispersion and the imaginary parts ε′′1 and ε′′2 with light
absorption in a magnetized material.

Solution of characteristic equation (4.10) yields in the particular case of polar config-
uration two refractive indices (proper numbers)

N̄±
z =

√
ε1 − N̄2

y

√√√√1± ε2√
ε1(ε1 − N̄2

y )
. (4.12)

These inserted into the wave equation (4.9) give proper polarizations

e± =

 −iε2(ε1 − N̄2
y )

−(ε1 − N̄2
y )(ε1 − N̄2

y − N̄±
z

2
)

N̄yN̄
±
z (ε1 − N̄2

y − N̄±
z

2
)

 , (4.13)

that are for oblique incidence elliptical.
In the linear approximation the diagonal elements rpp and rss of the reflection matrix

get the same form as obtained by Fresnel for an optically isotropic sample (Eqs. (3.21)
and (3.22)). Nevertheless, the off–diagonal elements becomes non–null and are expressed
by (cf. Appendix A)

rsp = rps =
−iε2N0 cosφ√

ε1(N0 cosφ+
√
ε1 cosφt)(N0 cosφt +

√
ε1 cosφ)

, (4.14)

where

cosφt =

√
1−

N̄2
y

ε1
. (4.15)

Knowing reflection matrix, the polar Kerr effect ΦK for p– and s– incident waves can be
calculated by the relations (4.1) and (4.2).
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Fig. 4.2: Polar Kerr rotation (open circles) and ellipticity (full circles) measured on (111)
facet of NiFe2O4 monocrystal. Polar Kerr rotation (solid line) reported by Kahn
[58] is indicated as well (a). Magnetic hysteresis loop of the monocrystal recorded
by the polar Kerr rotation. Monochromatic incident light with photon energy
of 2.8 eV was employed (b). Modified from Mistŕık [126].

In the case of the normal incidence, the proper modes become left and right circularly
polarized waves, identically as in the Faraday configuration (cf. Section 2.1.2). It can be
further shown (see, for example, [20]) that the normal–incidence polar Kerr effect get a
simple form

ΦK = θK − iϵK =
iε2√

ε1(ε1 − 1)
. (4.16)

Comparing this relation to Eqs. (2.55) and (2.56) we see that for moderate absorption the
Kerr rotation θK corresponds to MCD and the Kerr ellipticity ϵK to the Faraday rotation.
The value of the Kerr effect in reflection compared to the corresponding Faraday effect
in the transmission is smaller. Nevertheless, the Kerr effect serves as a powerful tool for
the investigation of opaque samples. As an example, we present in Fig. 4.2 the nearly–
normal incidence spectra of polar Kerr rotation and ellipticity measured on (111) facet of
NiFe2O4 monocrystal together with polar Kerr rotation hysteresis loop recorded with a
photon energy of 2.8 eV.

It is worthy of notice that the polar Kerr effect can be enhanced when the ambient
(air) is replaced by a transparent medium with a higher refractive index. This is, for
example, the case when an opaque magneto–optical film is measured from the side of a
transparent substrate with refractive index ns. Then polar Kerr rotation and ellipticity
in the relation (4.16) are to be multiplied by the value of ns [17].
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Magneto–optical constants of nickel ferrite determined by analytic formula

Experimental spectra of normal–incidence6 polar Kerr rotation θK and ellipticity ϵK
recorded on a single interface can be conveniently employed for determination of magneto–
optical constants of a material. Considering

√
ε1 = n − iκ and assuming that refractive

index n and extinction coefficient κ of the material are already known (for example from
ellipsometry measurements), relation (4.16) can be inverted to get an analytical expression
of real and imaginary parts of ε2 as a function of optical constants and experimental values
of θK and ϵK

ε′2 = −(DθK + CϵK) , (4.17)

ε′′2 = −(DϵK − CθK) , (4.18)

where

C = n(n2 − 3k2 − 1) , and D = k(3n2 − k2 − 1) .

This analytical approach is available only for the single interface, and we demonstrate its
application to the case of bulk Ni ferrite single crystal. Its optical constants were obtained
by spectroscopic ellipsometry (cf. Section 3.3.1) and experimental magneto–optical polar
Kerr spectra are presented in Fig. 4.2. Employing Eqs. (4.17) and (4.18) we easily

Fig. 4.3: Spectra of optical constants, in terms of real and imaginary parts of diagonal
permittivity element ε1, a), and magneto–optical constants, in terms of real and
imaginary parts of off-diagonal permittivity element ε2, b), of bulk monocrys-
talline NiFe2O4. Spectroscopic ellipsometry complemented with complex polar
Kerr effect and single interface analytic formula was employed. Broken lines
correspond to the data obtained by Krinchik et al. [127] on a NiFe2O4 polycrys-
talline sample. Modified from Mistŕık [126].

6Experimentally feasible is nearly–normal incidence with an incidence angle of about 5◦.
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get real and imaginary parts of off–diagonal tensor element ε2. Spectra of the real and
imaginary parts of optical (in terms of ε1) and magneto–optical (in terms of ε2) constants
of Ni ferrite are presented in Fig. 4.3.

Precise determination and knowledge of materials optical and magneto–optical con-
stants is one of the important requirements for modeling and design of new high–performance
magneto–optical devices. Nevertheless, it should be noted that the interpretation of ob-
served experimental magneto–optical spectral features by microscopic models is, in many
cases, uneasy [21, 20]. For example, in the case of ferrites, the assignment of electron
transitions by calculated molecular orbital spectra is often ambiguous, also due to uncer-
tain line shape analysis. Even though great progress has been made since the pioneering
works of Clogston[128] and Wood [129]. On the other hand, magneto–optical constants
determined from experimental spectra on high-quality samples give the possibility to tune
ab–initio theoretical calculations and ultimately facilitate prediction of new materials with
high magneto–optical response.

Beilby overlayer and its curing

Bulk samples that were intentionally surface treated (for example, by polishing) to
achieve optical surface quality often manifest surface damaged layer accumulating struc-
tural and other defects. This was already mentioned previously, pointing out the limi-
tation of the single interface approximation in the characterization of bulk samples by
ellipsometry (cf. Section 3.3.1). A similar manifestation of the so-called Beilby overlayer
can be encountered also in magneto–optics, and here we demonstrate its particular case.
Bulk polycrystalline Ni ferrite sample was sintered from a powder mixture of high purity

Fig. 4.4: Polar Kerr rotation spectra measured on polycrystalline NiFe2O4 sample with
mechanically polished surface before (open circles) and after (full circles) an-
nealing a). Spectra recorded on native (111) facet of monocrystalline NiFe2O4

is provided as well (solid line) a). Temporal profile of annealing temperature b).
Modified from Mistŕık [126].
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oxides. Its surface was afterward mechanically polished to optical quality. Polar Kerr
rotation spectrum recorded on this surface is compared with that of NiFe2O4 monocrys-
talline (111) native facet in Fig. 4.4a). Clear diminution of polar Kerr rotation amplitude
of polycrystalline with respect to monocrystalline sample is to be attributed to their differ-
ent surface quality. Surface damaged layer of polycrystalline sample due to the polishing
displays modified optical and magneto–optical constants in several tents of micrometers
in depth beneath the surface. Furthermore, closer examination of the polar Kerr rotation
difference can be correlated with the spectral dependency of light penetration depth of
Ni ferrite cf. Fig. 4.10. This damaged overlayer can be removed by chemical etching or
by thermal annealing and, the latter was applied to the studied sample. The sample was
thermally treated in an oxygen atmosphere with the temperature cycle presented in 4.4b).
Remeasured polar Kerr rotation on so cured sample surface is for comparison added to
the plot in Fig. 4.4b), as well. Process of annealing recovered polar Kerr rotation values
to nearly identical to those recorded on the monocrystalline sample surface.

4.3.2 Longitudinal and transverse Kerr configurations

In the longitudinal configuration magnetization vector M lies along intersection of
sample surface and incidence plane (cf. Tab. 4.1). Electric permittivity tensor gets, in
this case, form

εl =

 ε1 0 −iε2
0 ε1 0

iε2 0 ε1

 . (4.19)

Here, only optically isotropic samples and terms independent, ε1, or linearly dependent,
ε2, on magnetization were considered. Solution of the characteristic equation (4.10) gives
two refractive indices

N̄±
z

2
= ε1 − N̄2

y − ε2
2ε1

[
±
√
4ε1N̄

2
y + ε22 − ε2

]
, (4.20)

and, when solely linear magneto-optical effect are to be regarded, we can make simplifi-
cation

N̄±
z

2
= ε1 − N̄2

y ± ε2
2ε1

√
4ε1N̄

2
y . (4.21)

Proper elliptical polarizations are then expressed by

ej =

 −iε2N̄yN̄
±
z

(ε1 − N̄2
y )(ε1 − N̄2

y − N̄±
z

2
)− ε22

−N̄yN̄
±
z (ε1 − N̄2

y − N̄±
z

2
)

 . (4.22)

Inserting N̄±
z into (A.7) and (A.8) we get off–diagonal elements of reflection matrix

rsp = −rps =
−iε2N2

0 sinφ cosφ

ε1 cosφt(N0 cosφ+
√
ε1 cosφt)(N0 cosφt +

√
ε1 cosφ)

. (4.23)
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Diagonal elements are identical with the Fresnel relations (3.21) and (3.22) of a single
interface between two media with refractive indices N0 and

√
ε1. The off-diagonal ele-

ments (4.23) vanish for normal incidence, and therefore, the linear longitudinal effect also
disappears. This is demonstrated in Fig. 4.5a, where the longitudinal Kerr rotation θK
and ellipticity ϵK for both polarizations s– and p– are calculated for a single interface
air/Fe as a function of incidence angle. Spectral dependence of these variables together
with theoretical predictions are presented in Fig. 4.5b for incidence angle 65◦.

Fig. 4.5: Complex longitudinal Kerr effect calculated for single interface air/Fe and pho-
ton energy of 1.96 eV as a function of incidence angle a). Optical and magneto–
optical constants are taken from [130]. Spectral dependence of complex longitu-
dinal Kerr effect (symbols) recorded on bulk monocrystalline Fe with the angle
of incidence of 65◦. Theoretical predictions (solid and broken lines) are provided
as well b). Modified from Mistŕık [111].

It is worth mentioning that, although the linear longitudinal effect disappears for
normal incidence, it is not the case for the quadratic magneto–optical effect. This can
be anticipated from the discussion of the quadratic Voigt effect observed in transmission
(cf. Section 2.1.2). Phenomenon analogous with the Voigt effect, but in reflected light, is
treated in the next Section.

In the transverse configuration, the magnetization vector lies in the sample surface
perpendicularly oriented with respect to the incidence plane (cf. Tab. 4.1). Corresponding
permittivity tensor gets the form

εt =

 ε1 0 0
0 ε1 −iε2
0 iε2 ε1

 . (4.24)
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Here, the magnetization vector M influences only rpp element. The off-diagonal elements
are null. Hence, the reflection matrix is diagonal and linearly polarised s– and p– waves are
proper modes. Transverse linear magneto–optical effects disappear for normal incidence
as well. For more details, we refer the reader to [131].

4.3.3 Quadratic magneto-optical effects in reflection

Phenomenological description of quadratic magneto–optical effects in crystals with
cubic symmetry requires considering the McLauren expansion of the electric permittivity
(cf. Eq. 2.44)) up to its third term, including the quadratic magneto–optical tensor
Gijkl. This was already mentioned in the case of Voigt effect in Section 2.1.2. Quadratic
magneto–optical effects in reflection were treated by Visnovsky [124] and Postava [132,
123], and we follow their approach here.

Let’s consider simplified form of electric permittivity tensor for polar configuration

ε =

 ε1 + ε1fQ
2 −iε1Q 0

iε1Q ε1 + ε1fQ
2 0

0 0 ε1

 , (4.25)

where linear, Q, and quadratic, f , magneto–optical constant are introduced [133]. These
are related to the magneto–optical tensors Kijk and Gijkl by relations

K123M = −iQε1 , (4.26)

(G12 −G11)M
2 = fQ2ε1 . (4.27)

From equations (4.27) it is evident that two complex parameters G12 and G11 are replaced
with one complex parameter f . Furthermore, the parameter G44 does not manifest in the
polar configuration, and therefore, is not covered by the parameter f . General treatment
of quadratic magneto–optical effects with arbitrary orientation of magnetization vector
M is algebraically cumbersome. Therefore, we will limit ourselves to the case of the
in-plane magnetization (magnetization vector lies in the sample surface).
Permittivity tensor gets in this case the form

ε = ε1

 1 + fQ2
L −fQLQT iQL

−fQLQT 1 + fQ2
T −iQL

−iQL iQT 1 + fQ2
L + fQ2

T

 , (4.28)

where linear longitudinal QL and transverzal QT magneto–optical constants are defined
by

QL = Q cosψ , (4.29)

QT = Q sinψ , (4.30)

and meaning of the angle ψ follows from Fig 4.6. The longitudinal magneto–optical
constant QL is then related to the magnetization component ML = M cosψ and the
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Fig. 4.6: In–plane magnetization M and its longitudinal ML and transversal MT com-
ponent (left). Four distinct orientations of the magnetization vector M that
enable separation of linear and quadratic magneto–optical contributions (right).

transversal magneto–optical constant QT to the component MT = M sinψ. Inserting
tensor elements (4.28) into Eqs. (A.1-A.8) and considering only small angle of incidence
(where sinφ ≈ φ is valid) we get for reflection matrix elements relations

rss =

√
ε0 −

√
ε1√

ε0 +
√
ε1

+Q2
L

√
ε0
√
ε1(1− f)(√

ε0 +
√
ε1
)2 , (4.31)

rpp =

√
ε1 −

√
ε0√

ε0 +
√
ε1

+ 2iQT
ε0φ(√

ε0 +
√
ε1
)2 −Q2

T

√
ε0
√
ε1(1− f)(√

ε0 +
√
ε1
)2 , (4.32)

rsp = −rps = iQL
ε0φ(√

ε0 +
√
ε1
)2 −QLQT

√
ε0
√
ε1(1− f)(√

ε0 +
√
ε1
)2 , (4.33)

where
√
ε0 is refractive index of ambient medium. The reflection matrix is expressed to

the second order in magnetization.
In the first term of rss, Eq. (4.31), and rpp, Eq. (4.32), we recognize the Fresnel

relations for nearly normal incidence. For longitudinal configuration QL = Q = − ε2
ε1

and
it is straightforward to verify that the first term in rps, Eq. (4.33), is identical with off-
diagonal longitudinal reflection matrix element (4.23) calculated in linear approximation
for nearly normal incidence.

From definition of magneto–optical effects Eqs. (4.1, 4.2) we get complex magneto–
optical angles

ΦKp = −ΦKs = −iQL
ε0φ

ε0 − ε1
+QLQT

√
ε0
√
ε1(1− f)

ε0 − ε1
, (4.34)

that can be split into linear and quadratic contributions

ΦK = (θK − iϵK) +
(
θ̂K − iϵ̂K

)
, (4.35)
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where

θK − iϵK = ±iQL
ε1φ

ε1 − ε2
, (4.36)

θ̂K − iϵ̂K = ±QLQT

√
ε1
√
ε2(1− f)

ε1 − ε2
. (4.37)

The terms (θK − iϵK) present linear and
(
θ̂K − iϵ̂K

)
quadratic contribution to the Kerr

rotation and ellipticity. Positive sign on the right hand side of the equations (4.36) and
(4.37) belongs to p–polarised and negative sign to s–polarised incident wave. This yields
following relations

θKs = −θKp , (4.38)

ϵKs = −ϵKp , (4.39)

θ̂Ks = −θ̂Kp , (4.40)

ϵ̂Ks = −ϵ̂Kp . (4.41)

Fig. 4.7: Linear a) and quadratic b) contributions to the Kerr rotation and elliptic-
ity determined from nearly–normal incidence measurements performed on bulk
monocrystalline Fe sample. Modified from Mistŕık [111].

.

Linear and quadratic contributions can be obtained experimentally when magneto–
optical effect is recorded in four selected orientations of magnetization vector as indicated
in Fig4.6b. Following this approach, Mistrik [111] obtained spectra of linear and quadratic
magneto–optical contributions on bulk monocrystalline Fe sample. These are presented
in Fig. 4.7.
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Fig. 4.8: Linear (circles) and quadratic (diamonds) magneto-optic effects measured at a Fe
layer as a function of crystal rotation at nearly–normal incidence and in–plane
magnetization (left, reprinted from [134]). Magnetic hysteresis loop observed
for in–plane magnetic field along Fe [110] hard axis demonstrating influence of
quadratic contributions in magneto–optical magnetometry (right, reprinted from
[123]).

Further investigations of quadratic magneto–optical effects in cubic crystals were car-
ried out for example by Postava et al. [28, 135, 29, 26] and Hamrle et al. [27, 136, 137]
where in the latter case ab–initio calculations were presented as well. Considering all
parameters of quadratic magneto–optical tensor of a cubic crystal (G11, G22 and G44),
description of anisotropy of quadratic magneto–optical effect in reflection and with in-
plane magnetization can be done analogously with the Voigt effect in transmission (cf.
Eqs. (2.61-2.64)). Therefore, when the sample is rotating with a fixed direction of an
external magnetic field, the quadratic magneto–optical contribution oscillates, while the
linear contribution is constant (cf. Fig. 4.8a). This enhanced sensitivity of quadratic
MO effects can be used for the crystallographic characterization of cubic crystals. On the
other hand, as pointed out by Postava[123], quadratic effects encountered in magneto–
optical magnetometry may lead to misinterpretation of hysteresis loops because of their
quadratic (even) dependence on the magnetization (cf. Fig. 4.8b).

4.4 Single layer

Magneto–optical effect of a thin magnetized layer sandwiched between two semi-
infinite media (ambient and substrate) can be expressed analytically for various magneto–
optical configurations in both reflection and transmission geometries (see, for example,
[138]). Solutions of the wave equation derived for all three media (ambient, layer, and
substrate) independently are matched up by boundary conditions. That leads to reflection
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or transmission coefficients and further to magneto-optical quantities.
Here we discuss in more detail the normal incidence polar Kerr effect on Ni ferrite

single layers. This magnetic oxide is transparent in the NIR and absorbing in the UV
making it an appropriate candidate for examination of so-called propagation and interface
contributions of magneto–optical effect. Later in this section, we demonstrate the strength
and advantages of magneto–optics as a complementary characterization tool in the quality
assessment of pulsed laser deposited Sm orthoferrites films.

4.4.1 Propagation and interface contributions

Normal incidence polar Kerr effect of a single layer sandwiched between ambient and
nonmagnetic substrate is derived in [139] and take form

ΦK = θK − iϵK =
−iε2(1− r201)

[
(1 + r212e

−2iβ1)(1− e−2iβ1) + 4iβ1r12e
−2iβ1)

]
4ε1(1 + r01r12e−2iβ1)(r01 + r12e−2iβ1)

. (4.42)

where β1 = N1
ω
c
t1. Reflection coefficients r01 and r12 belong to ambient/layer and

layer/substrate interfaces, respectively. Thickness of the layer is t1. N1 is its complex
refractive index (N1 =

√
ε1) and ε2 stands for off–diagonal element of layer permittivity

tensor in the polar configuration (cf. Eq. (4.11)). Complex angle of the Kerr effect, Eg.
(4.42), can be rewritten as a sum of two contributions

ΦK = ΦR
K + ΦP

K , (4.43)

where we have introduced

ΦR
K = θRK − iϵRK =

−iε2(1− r201)(1 + r212e
−2iβ1)(1− e−2iβ1)

4ε1(1 + r01r12e−2iβ1)(r01 + r12e−2iβ1)
, (4.44)

ΦP
K = θPK − iϵPK =

−iε2(1− r201)4iβ1r12e
−2iβ1

4ε1(1 + r01r12e−2iβ1)(r01 + r12e−2iβ1)
. (4.45)

Detailed examination of these two contributions leads to the conclusion that the first
term ΦR

K corresponds predominantly to the effect of light reflection from the upper in-
terface, id est from the surface of the layer. On the other hand, the term ΦP

K is more
related to the effect of light propagation in the layer. Indeed, with the increasing value
of β1 (increasing value of the product of layer thickness and layer absorption) the term
ΦP

K approaches zero, whereas the term ΦR
K , reduces to the relation of polar Kerr effect

derived for a single interface, Eg. (4.16). The term ΦP
K is most important when the layer

thickness is comparable or greater than the light penetration depth in the layer. In other
words, multiple light reflections and interference in the film that strongly influence the
magneto–optical effect are described by ΦP

K .
As an example we present in Fig. 4.9 the two contributions θPK and θRK of the Kerr

rotation θK calculated for a single layer of NiFe2O4 with a thickness of 250nm. The
spectral dependence of the absorption coefficient in the available spectral range UV-VIS-
NIR allows us to present most of the introduced phenomena. In the ultraviolet, nickel
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Fig. 4.9: Normal incidence polar Kerr rotation (left) calculated for 250 nm thick NiFe2O4

film deposited on fused quartz and its propagation (middle) and surface (right)
contributions. Modified from Mistŕık [126].

ferrite is absorbing with a penetration length of some tens of nanometers. UV radiation
interacts predominantly with the air/layer interface. Consequently, in this spectral zone
the contribution ΦP

K is almost zero and ΦR
K reproduces the value of ΦK obtained on the

bulk NiFe2O4 (see Fig. 4.2).
In the photon energy range, where bulk nickel ferrite exhibits penetration length com-

parable with layer thickness, i.e., for photon energies smaller than about 2.7eV, the light
starts to interact with the layer/substrate interface, and the effect of propagation is no
longer negligible. It even becomes more important than ΦR

K for photon energies around
2.0 eV. In the case of a selected nickel ferrite layer, we thus identified three spectral zones:
in the ultraviolet reflection from the surface of the layer dominates, in the near-infrared,
it is the propagation in the layer which determines the spectrum and finally in between
these two zones, in the VIS range, the two contributions are comparable. The presence
and spectral localization of the propagation and reflection effects are determined by the
permittivity tensor element of the given material and the layer thickness.

An illustration of the phenomena discussed is further presented in Fig. 4.10 where the
spectra of the Kerr rotation calculated for a layer of NiFe2O4 with different thicknesses:
230, 250, and 270 nm are shown. We see that in the ultraviolet range, the Kerr rotation
does not vary with thickness. On the other hand, in the visible and near-infrared, the
spectra calculated for different thicknesses differ significantly. That is in agreement with
the fact that the contribution of the propagation effects strongly depends on the thickness
while the contribution of the reflection is almost independent.

As it is evident from the previous text, the light interference in a layer can be em-
ployed for an enhancement of magneto–optical response for the selected wavelength. Tha



86 CHAPTER 4. MAGNETO–OPTICS

Fig. 4.10: Penetration depth of NiFe2O4 (left) and modelled normal incidence polar Kerr
rotation spectra of NiFe2O4 single–layers with various thicknesses: 230, 250
and 270nm (right). Substrate is fused quartz. Modified from Mistŕık [126].

is applied, for example, for magneto–optical memory discs where the enhancement is
further augmented by sandwiching magneto–optical film with dielectric overlayers and
incorporating an aluminum underlayer as a reflector [140, 141]. The interference effect
that is strongly dependent on layer thickness gives also the possibility to use magneto–
optical spectra for film thickness determination. That was demonstrated for single layers
of magnetic oxides (nickel ferrite, Sm orthoferrite, and YIG) in [126, 78]. The films of Sm
orthoferrites will be treated in more detail in the forthcoming section.

4.4.2 Examination of pulsed laser deposited SmFeO3 films

In this section, we present magneto–optical characterization of SmFeO3 polycrystalline
layers deposited by pulsed laser on amorphous quartz substrates [126]. Our particular mo-
tivation is to underscore the strength of the magneto–optics among other complementary
characterization tools.

Studied samples

We have prepared a set of samples, #1—#12, with different deposition parameters
(see Tab. 4.2). The Nd:YAG laser operating at its third harmonic frequency (wavelength
of 355 nm) generated laser pulses focused on a Sm target with spot diameter either 1mm
or 2mm and fluences PL equal to 6, 12, 15 or 18 J · cm−2. The rate of the shots f and
the duration of a pulse ∆τ were 10 Hz and 6 ns, respectively. Fused quartz substrates
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were heated and substrate temperature varied for the different samples between 340 and
870◦C. All samples were prepared under an oxygen atmosphere with a pressure equal to
80 mTorr. The SmFeO3 target was sintered from iron oxides and samarium with purity
better than 99.9999%. The distance between the target and the substrate was equal
to 5 cm. To access both magneto–optical contribution of layer propagation and surface
reflection, the deposition time was set between 30 min and 3 h. A synoptic representation
of the different values of laser fluence, substrate temperature, and spot diameter for the
different samples is shown in Fig. 4.11.

deposition AFM thickness[nm]
# time Ts[

◦C] PL[Jcm
−2] spot diameter RMS [nm] tElli tMO

1. 1h 830 18 1 mm 115.3 234 235
2. 1h 760 15 1 mm 83.1 235 230
3. 1h 830 15 2 mm 61.9 336 320
4. 2h 830 15 2 mm 77.2 ≈ 1262 ≈ 1220
5. 30’ 830 12 1 mm 36.8 189 190
6. 1h 870 6 2 mm 44.8 254 250
7. 3h 870 6 1 mm 30.4 ≈ 833 ≈ 840

8. 1h 670 18 2 mm
⊗ ⊗ ⊗

9. 1h 430 15 2 mm
⊗ ⊗ ⊗

10. 1h 340 12 2 mm
⊗ ⊗ ⊗

11. 1h 670 12 2 mm
⊗ ⊗ ⊗

12. 1h 830 12 1 mm
⊗ ⊗ ⊗

Tab. 4.2: Pulsed laser deposition parameters of SmFeO3 films together with their surface
roughness, determined by AFM, and film thickness, obtained by spectroscopic
ellipsometry and magneto–optics.

Magnetic phase formation and the Curie temperature – Faraday rotation mag-
netometry

As the Faraday rotation is linearly dependent on sample magnetization, recording its
value while cycling external magnetic field between +1.2 T and -1.2 T provided sample
hysteresis loops. The fixed photon energy of 2.1 eV, for which the samples were semi–
transparent, was employed. From obtained hysteresis loops, we assessed the magnetic
ordering in the SmFeO3 layers. It was found that only samples #1–#7, prepared with
elevated substrate temperatures (Ts ≥ 760◦C), show magnetic ordering. For deposition
temperatures lower than 760◦C the orthorhombic structure of SmFeO3 with specific weak
ferromagnetic behavior of canted spins does not form. X–Ray diffractometry consistently
approved the amorphous phase of non–magnetic samples #8–#12, whereas the samples
#1–#7 were found to be polycrystalline.

Comparing two selected samples, magnetically ordered sample #2 and non–magnetic
sample #12, both deposited with the same substrate temperature Ts = 760◦C, we con-
clude that the difference in their magnetic state is due to the difference in the laser
fluences (P#2

L = 15 J · cm−2 and P#12
L = 12 J · cm−2) that were used for the samples abla-
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Fig. 4.11: Schematic representation of laser-ablated SmFeO3 films plotted as a function
of their deposition parameters, laser fluence, and deposition temperature. An
estimated interval of deposition conditions where SmFeO3 films show magnetic
ordering is indicated by hatching. Modified from Mistŕık [126].

tion. Therefore, the substrate temperature needed for magnetically ordered orthorhombic
structure can be decreased by the simultaneous increase of the laser fluence. Cracuin et
al. [142] presented similar phenomenon in the case of piezoelectric layer ablation of
Pb(ZrTi)O3. They found that ablation with high laser fluences (≈ 26J · cm−2) enables a
decrease of the substrate temperature by ≈ 130◦C while maintaining the structural and
piezoelectric properties of the layers. In Fig. 4.11 the approximate range of values of
the substrate temperatures and laser fluences, where the formation of high-quality Sm
orthoferrite films is expected, was indicated.

The Curie temperature, which is related to the strength of the exchange interactions in
a magnetic material, was considered to verify whether the magnetically ordered SmFeO3

films exhibit the magnetic properties characteristic for the bulk monocrystal. For this
purpose, we studied the Faraday rotation of sample #6 as a function of the temperature.
The thermal variation of the Faraday rotation, measured in the temperature range be-
tween 330 and 670 K, is shown in Fig. 4.12 (middle). The value of the Faraday rotation
for each temperature is determined from hysteresis loops as an average of absolute val-
ues of the Faraday rotation measured in external magnetic field maximum +1.2 T and
minimum -1.2 T.

It should be noted that for temperatures ≤ 580K the hysteresis cycles are not sat-
urated. In other words, for these temperatures, we observe the minor cycles (cf. Fig.
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Fig. 4.12: Determination of the Curie temperature of SmFeO3 film (#6) evaluating tem-
perature dependence of its Faraday rotation (middle). Low-temperature minor
hysteresis loops (left) and high-temperature major hysteresis loops (right) are
presented as well. Modified from Mistŕık [126].

4.12(left)). The value of the Faraday rotation obtained from these cycles then presents
values reduced compared to that corresponding to sample in saturation. However, for
temperatures ≥ 580K the hysteresis cycles show magnetic saturation, and the values of
the Faraday rotation get saturated values. The thermal variation of the Faraday rotation
is monotonic. For temperatures greater than 580K the Faraday rotation decreases and it
becomes almost zero for the temperature 654±20K. This value is in good agreement with
the Curie temperature Tc = 674K of monocrystalline Sm orthoferrite. That demonstrates
that the exchange interactions in the ablated SmFeO3 thin film are comparable to that
of bulk SmFeO3.

Film thickness – propagation contribution of polar Kerr rotation spectra

In this section, we discuss room-temperature polar Kerr rotation spectra of layers
#1–#7. In the ultraviolet, the propagation effect is negligible, and therefore, the Kerr
rotation of the layers is attributed to the layer surface and corresponds with bulk. On
the other hand, in the region of low photon energies, SmFeO3 is (semi-)transparent, and
thus, the propagation contribution strongly modifies the spectral features of the Kerr
rotation of the layers compared to the massive sample. That is demonstrated in Fig.
4.13 where the experimental and the closest theoretical spectra are presented for samples
#3 and #6. The corresponding spectrum of bulk SmFeO3 (single interface) is presented
there as well for comparison. In the calculations, we used the optical constants of Eu
orthoferrite and the magneto–optical constants of Sm orthoferrite reported by Kahn et
al. [58]. A relatively good agreement between the experimental and theoretical spectra
obtained for all the samples in the whole spectral range indicates the formation of SmFeO3
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in the layers, which has already been confirmed by X–Ray analyzes. From magneto-
optical spectroscopic studies, we can further confirm the presence of anisotropic exchange
interactions characteristic of orthoferrites.

The propagation contribution allows us to estimate the layer thickness. The thick-
ness of the layers as determined from magneto–optical modelization are summarized in
Table 4.2 together with results provided by spectroscopic ellipsometry. Even though the
obtained values correspond, it should be noted that spectroscopic ellipsometry is, as far
as concerns thickness evaluation, a more maturated technique enabling fitting the data,
whereas magneto–optical spectroscopy, also due to its complexity, is based on modeliza-
tion and spectra comparison only.

Fig. 4.13: Experimental (symbols) and theoretical (curves) spectra of polar Kerr rotation
corresponding to samples #3 and #6. Corresponding spectrum of bulk SmFeO3

(single interface) is presented as well. Modified from Mistŕık [126].

4.5 Multilayer

Magneto-optical devices are usually more complex than a single layer. The magnetic
layer covered by the non-magnetic film (protective layer or interference amplification layer)
was analytically treated, for example, by Mayevskij [143]. Other approaches are based on
recursive formalism [123] or on 4x4 matrix algebra (see for example works by Smith [144],
Yeh [145], Visnovsky [146, 147], Atkinson [148] or Woollam [149]) and 2x2 matrix algebra
applied by Mansuripur [150]. These approaches are convenient for computer modeling of
magneto-optical phenomena in multilayered systems. A common strategy for calculation
of electromagnetic wave propagating through or reflecting from a multilayer is again based
on the solution of the wave equation for each layer and linking these together considering
the boundary conditions on each multilayer’s interface. That is a generalization of the
treatment already encountered in the case of a single interface and single layer. Here
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we use 4x4 matrix algebra calculations based on Yeh formalism that was modified for
absorbing media by Vǐsňovský [7] and demonstrate its application for characterization of
a [αFe2O3/NiO]2.5 multilayers [151].

Fig. 4.14: Experimental SIMS profile of Ni and Fe ions across the multilayer evidencing
interdiffusion (left). Studied [αFe2O3/NiO]2.5 multilayers with a schematic indi-
cation of ions interdiffusion through the interfaces accompanied with formation
of ferrimagnetic NiFe2O4 (right).

4.5.1 Interdiffusion in αFe2O3/NiO multilayers

In this part, we discuss the magneto-optical examination of [αFe2O3/NiO]N multilayers
prepared by laser ablation. The successive deposition of NiO and αFe2O3 layers with
required elevated deposition temperature is accompanied by a formation of NiFe2O4 at
the interfaces [152]. The origin of this formation is linked to the diffusion of Ni ions into
αFe2O3 and Fe ions into NiO through interfaces. This process depends on the temperature
of the substrate, the square root of the annealing deposition time, and the successive order
of the NiO and αFe2O3 layers in the multilayer [153].

The two selected [αFe2O3/NiO]2.5 multilayers that we discuss here were deposited
on the amorphous quartz substrate, maintaining deposition temperature at 485◦C. The
deposition time of individual NiO and αFe2O3 layers has been constant and equal to 15 min
and 20 min, respectively. Johnson et al. [154] have shown experimentally that deposition
of αFe2O3/NiO bilayers with an exceedingly high substrate temperatures (Ts ≥ 750◦C)
results in a complete transformation of αFe2O3 into NiFe2O4 due to the diffusion of nickel
into the hematite layer. The αFe2O3/NiO bilayer then transforms to NiFe2O4/NiO. In
our case, the substrate temperature does not reach such high values, and therefore, we can
assume that the hematite layer has not been entirely converted into nickel ferrite. The
concentration profile of Ni and Fe ions measured by SIMS (see Fig. 4.14(left)) presents an
oscillatory character, which implies progressive interfaces between the NiO and αFe2O3

layers. It is in this interface zone where the formation of nickel ferrite is expected (see
Fig. 4.14 (right)).
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Fig. 4.15: Polar Kerr rotation spectra measured on [αFe2O3/NiO]2.5 multilayers with de-
position times per layer 15 min (hollow circles) and 20 min (dots) (left). Matrix
calculation of [αFe2O3(t)/NiFe2O4(16nm)/NiO(t)]2.5 model multilayer with the
base layer thicknesses of 5nm (dotted line) and 7 nm (dashed line) and 9 nm
(solid line) (right). Reprinted from Mistŕık et al. [151].

In Fig. 4.15 we show the polar Kerr rotation (PKR) spectra of the multilayers and
compare them with the calculations. The model system consists of a multilayer with
planar interfaces, where the interdiffusion of Ni and Fe through the interfaces results in
the formation of a ferrimagnetic NiFe2O4 interlayer. The spectral dependences of optical
and magneto–optical constants were found in the literature [155, 156, 127]. Magnetization
measurements carried out on αFe2O3 single layers showed no magnetic moment. That
implies for our modeling that αFe2O3 is magneto–optically non-active.

Polar Kerr spectra of model multilayers [Fe2O3/NiFe2O4/NiO]2.5 were calculated for
various thicknesses of NiO and αFe2O3 based layers and NiFe2O4 interlayers (in a range
from 1 to 30 nm). As the deposition time for both base layers was kept constant during
the sample growth, the identical values of their thicknesses were considered. The matrix
calculation showed the dependence of PKR peaks height and spectral position on the
thicknesses of both base layers and interlayers. The analytical approach explains this
effect by additional phase changes and optical absorption in these layers [157]. The cal-
culated PKR spectra of [αFe2O3(t)/NiFe2O4(16nm)/NiO(t)]2.5 multilayers (with t = 5,
7 and 9 nm) that display similar spectral structure as the experimental dependences are
plotted in Fig. 4.15 (right). With increasing base layer thickness, theoretically predicted
decrease of the peak amplitude at 2.7 eV and the red-shift of PKR spectral features in the
visible region were found consistent with the experimental data. The spectral structure
in the UV region that can be observed in calculated PKR spectra is also well pronounced
in the measured PKR spectrum of [αFe2O3/NiO]2.5 multilayer with base layers deposi-
tion time of 20 min. However, the corresponding experimental PKR spectral structure
of [αFe2O3/NiO]2.5 multilayer with base layers deposition time of 15 min is somehow
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smoothed out. That can be partially associated with wavelength-dependent light scatter-
ing at the diffused interfaces.

Fig. 4.16: Refractive index n and extinction coefficient k of NiO and hematite αFe2O3

a). Comparison of NiFe2O4 optical constants with those of intermixed NiO
and hematite calculated by Bruggeman effective medium approximation b).
Modified from Mistŕık [126].

We have shown that a model multilayer system with NiFe2O4 interlayers and sharp
interfaces roughly describes the encountered interdiffusion process in the real multilayers
and may be understood as a reasonable approximation. Further modeling should take into
account the roughness of the surface (interfaces) and appropriate optical and magneto–
optical constants of the layers. It is worth noting that in this particular case, magneto–
optical spectroscopy provides a unique opportunity to evidence interface formation of
ferrimagnetic NiFe2O4. Other optical methods, including spectroscopic ellipsometry, could
not unambiguously distinguish it from an unreacted mixture of nickel oxide and hematite
due to their nearly identical optical constants as indicated in Fig. 4.16.

4.6 Linear grating

Magneto–optical spectroscopy can serve as a scatterometric technique analogously to
optical ellipsometry and reflectometry that are both frequently used in the industrial in-
spection of the surface profile of laterally patterned nanostructures (for more details about
ellipsometric scatterometry refer to Section 3.6.1). Besides surface geometry, magneto–
optics is sensitive to magnetic ordering as well. Therefore, images of magnetization dis-
tribution on a sample surface are provided, for example, by single wavelength diffracted
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magneto-optical Kerr effect (MOKE) [158] or microscopic MOKE [159]. The conven-
tional alternative tools for the characterization of surface patterning are scanning probe
techniques such as atomic force microscopy or scanning electron microscopy. Static mi-
cromagnetic properties can be further analyzed by magnetic force microscopy [160], or
spin-polarized scanning tunneling microscopy [161]. However, such techniques with re-
spect to MOKE methods are often expensive, cumbersome, and inappropriate for in–situ
measurements.

In this section, we show the potentiality of magneto–optic scatterometry applied as
accurate quality control of lithography manufactured permalloy linear gratings as well
as a tool quantitatively determining the line-edge roughness (LER), native oxide, and
other effects that the MOKE is sensitive to [162, 163, 164, 165]. Rigorous coupled-waves
analysis (RCWA), already introduced in Section 3.6.1, together with Local modal method
(LMM), were applied here to interpret recorded magneto–optical spectra.

Local Modal Method is an approximate analytical method based on the far-field
Fourier analysis of grating amplitude reflectance where the reflection coefficients, at each
point of the grating’s surface, are locally approximated by a laterally uniform structure.
This method, derived for treating shallow diffraction patterns, entirely neglects the diffrac-
tion effects of the edges. In a special case of a 1D lamellar grating, the far-field reflection
coefficients in the specular reflection do not depend on the periodical arrangement but
are just weighted functions of the reflectances of the two alternating media

r
(0)
jk = wrI,jk + (1− w)rII,jk , (4.46)

where rI,jk and rII,jk represent the reflection coefficients corresponding to a lamella el-
ement (non-etched medium) and space between lamellas (etched medium including the
air gap), respectively. Parameter w denotes the filling factor of the pattern (ratio of the
lamella area to the period area), and j,k represent any of the s– and p– polarizations. The
higher diffraction orders depend also on the periodical arrangement. But if we assume a
simple 1D array of periodic nanowires with the direction of periodicity lying in the plane
of incidence, we obtain for higher diffraction orders (n ̸= 0)

r
(n̸=0)
jk =

i

2πn
(rI,jk − rII,jk)(1− e2πinw) , (4.47)

which depends on the period only via the filling factor w. It can be further shown that
solely rpp coefficient exhibits different values when calculated employing either rigorous
RCWA or approximated by LMM, suggesting sensitivity to the edge effect. The rss and
rps coefficients do not reveal such sensitivity. Therefore, line–edge roughness (LER)
can be correlated with rpp coefficient. If we evaluate the response of an ideal structure as
the exact RCWA calculation and rewrite it into the form

ridealpp = rLMM
pp + (rRCWA

pp − rLMM
pp ) , (4.48)

then the value in the parentheses is the error of LMM with respect to rigorous calculation.
This error can be identified with the effect of pattern edges. In reality the part of this
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effect is reduced due to LER. The reduction can be taken into account by a slightly
generalized formula

rrealpp = rLMM
pp + η(λ)(rRCWA

pp − rLMM
pp ) (4.49)

yielding a more realistic value. Here the effect of edges written in the parentheses is
reduced by the factor η taking on values assumed between 0 and 1. We refer to the
η-factor as the LER parameter, being η = 1 in the case of ideal regular edges, or η = 0
when no edge effects are observed. Although the LER parameter is generally assumed to
depend on the wavelength, no such dependence is observed in our experimental example
given in the next section.

4.6.1 Surface oxidation and edge effect of permalloy lamellar
gratings

We apply magneto–optical scatterometry (MOS) to analyze arrays of periodic, about
10 nm thick, Permalloy wires deposited on Si substrates with periodicities of nearly 1000
nm and protected by a 2 nm thick Cr capping layer. Two samples with different periods
and wire linewidths were fabricated by means of electron beam lithography combined
with ion beam etching. The grating parameters were verified by AFM (cf. Fig. 4.17),
which allowed minimizing the number of parameters to be determined by MOKE. The
geometrical parameters extracted from AFM pictures are summarized in Tab. 4.3. The

Sample Period Linewidth Thickness (NiFe)

1 900 nm 536 nm 11 nm
2 910 nm 700 nm 12 nm

Tab. 4.3: Description of the samples.

MOKE experiments were performed with a magneto–optical spectroscopic ellipsometer
employing the azimuth modulation and compensation technique. The samples were set
up with an applied out-of-plane magnetic field of 1.4 T, sufficient to saturate the polar
magnetization. The magneto–optical spectra were measured in the specular mode for the
incidence angle of 7◦ in the spectral range of 1.3–5.1 eV for both the s– and p– incident
polarizations without revealing any significant differences. The reflection angles of higher
diffraction orders are wavelength-dependent, and therefore, a special arrangement was
adopted to measure the MOKE in the –1st diffraction order. The angle between the
incident and reflected beams was fixed to 20◦ with the sample free to rotate about the
axis parallel to the wires while the wavelength was swept. The position of the beam spot
on the detector could not be kept completely fixed with the changing wavelength, which
produced artificial jumps in the measured spectra.

Evidence of surface oxidation

The application of s–polarized incident light enables us to detect the presence and
thickness of native oxide overlayers developed both on the top of the Cr capping and
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Fig. 4.17: AFM pictures of the NiFe lamellar gratings. Modified from Antoš, Mistŕık et
al. [162].

the naked Si. We present this analysis obtained on Sample 2 because, in this case,
the measurement with s-polarized incident light was affected by the smallest artificial
jumps mentioned above. According to the considerable differences among the simulation

Fig. 4.18: The specular (left) and -1st order (right) MOKE spectra measured on Sample
2 (circles) and computed with LMM simulations employing different thick-
ness of the capping and the substrate native oxide layers: t(Cr2O3)=2nm and
t(SiO2)=3nm (full curves), t(Cr2O3)=2nm and t(SiO2)=0nm (dashed curves),
t(Cr)=2nm and t(SiO2)=3nm (dotted curves). Reprinted from Antoš, Mistŕık
et al. [164].

curves in Fig. 4.18 (left), the specular (0th order diffracted) MOKE possesses ultra-high
sensitivity to the nanoscale native oxides. However, both the top native Cr2O3 overlayer
and the SiO2 interlayer exhibit similar trends, and hence the diffracted MOKE in the –1st
order becomes essential for distinguishing between the two oxides, as obvious from Fig.
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4.18 (right). Here the account for the completely oxidized capping layer (t(Cr2O3) = 2
nm) remarkably improves the agreement with the experiment. On the other hand, the
–1st order diffracted MOKE is less sensitive to t(SiO2). The explanation can be found
in Eq. (4.47), because the contributions of SiO2 to both, rI,jk and, rII,jk are comparable
making the sensitivity of their difference weak to t(SiO2). This fact is essential for the
selective account for the effect of the native oxides and thus manifests the uniqueness of
the proposed technique even without simultaneous analyses of reference samples.

Edge effect

In Fig. 4.18 we have only shown LMM simulations since those yielded by RCWA
were nearly identical. The agreement between LMM and RCWA simulations does not
occur when the p-polarized incident light is applied, which we utilize in the second MOSS
analysis. Concretely, the application of p-polarized incident light in a –1st diffraction order
configuration where rpp takes on small values enables us to detect LER with remarkable
sensitivity. Due to the jumps mentioned above, for p-polarized incident light appearing
more significantly on Sample 2, we present this analysis performed on Sample 1. The
effect of ideal edges can be seen from Fig. 4.19 (left), where we compare the RCWA and
LMM calculations, none of which correctly follows the experimental data. On the other

Fig. 4.19: LMM and RCWA simulations of the -1st diffraction order MOKE with p–
polarized incident light compared with experimental data (left) and REEM
calculation fitted to the experimental data (right) recorded on Sample 1.
Reprinted from Antoš, Mistŕık et al. [162].
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hand, the application of the REEM yields remarkable agreement with the measurement
(Fig. 4.19 (right)), provided we have fitted the LER parameter η = 0.53 defined by
Eq. (16). As mentioned above, taking a constant value independent of wavelength was
sufficient. The same fitting procedure performed on Sample 2 yielded η = 0.70, suggesting
that Sample 2 is of higher quality. Qualitative comparison of the pattern quality of the
both samples can be done by viewing their AFM images shown in Fig. 4.17, where such
difference is indeed evident.

4.7 Conclusions

Compared to spectroscopic ellipsometry, magneto-optics reveals additional informa-
tion about the studied system through a reduced symmetry of the applied external mag-
netic field or by magnetizing the sample. Although not as matured as spectroscopic
ellipsometry, it provides several unique features superior to ellipsometry. Mainly the sen-
sitivity on magnetic arrangement of the studied substance (magnetometry), including the
buried layer in multilayers, detection of the strength and nature of exchange interactions
and accurate identification of magnetic materials, sensitive crystallographic orientation
(employing quadratic magneto–optical phenomena), and more precise characterization of
magnetic laterally structured samples by scatterometry, etc. The non-reciprocal nature
of magneto–optical phenomena then find employment in various devices of (integrated)
magneto–photonics.



Part II

Contribution to the field
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Chapter 5

Determination of optical and
magneto-optical constants

Publications arranged in this group deals with the determination of material opti-
cal and/or magneto-optical constants. Motivation for this kind of material research can
be found in several directions (i) expansion, refinement, and spectral broadening of ex-
isting data in the material databases (ii) revealing material electronic band structure by
analyzing spectral dependencies of optical and magneto–optical constants (iii) tuning the-
oretical ab-initio calculations comparing these with experimentally obtained spectra (iv)
investigation of various influences that have an impact on optical and magneto–optical
properties due to for example different deposition methods, quantum confinement, bulk
vs. nanostructure, phases (crystalline, amorphous), etc. and finally (v) design of (inte-
grated) photonic elements and other optical or magneto–optical devices such as optical
isolators, circulators, modulators, dielectric mirrors, (magneto–)optical memories, etc.
with predictable and optimized functionalities.

5.1 Combined method of spectroscopic ellipsometry

and magneto–optics

Nickel ferrite [78]

Present work extends the studies of Kahn and Krinchik, who determined and discussed
the optical and magneto-optical constants of bulk monocrystalline and polycrystalline
NiFe2O4. In our paper, a single crystal (grown by Prof. Krishnan, LMOV, Université
de Versailles) was used. Its native (111) facet was examined by an ellipsometer and a
magneto–optical spectrometer. The recorded ellipsometric and complex polar Kerr ef-
fect spectra were directly converted to the optical and magneto-optical constants of this
material. The optical opacity of the bulk sample enabled the employment of inverse ana-
lytical relations developed for the single interface. Obtained constants refined the existing
data (especially in the range of absorption edge) and significantly improved modeling of
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magneto–optical response of pulsed laser deposited NiFe2O4 single layers, presented in the
article as well. The data reliability was proved by theoretical and experimental consis-
tency of the longitudinal Kerr spectra. Additional details, covering bulk polycrystalline
NiFe2O4 samples as well, and including discussion of optical and magneto–optical spec-
tral features in the framework of electronic dipole transitions of Fe and Ni ions can be
found in dissertation thesis [126]. The importance of the results is further evidenced by
theoretically focused publications with LSD and LSD-U ab–initio calculations of NiFe2O4

magneto–optical constants providing reference to our data determined from the experi-
ment [166].

Copper ferrite [167]

Optical and magneto–optical constants of Cu ferrite were determined from ellipso-
metric and complex polar Kerr spectra recorded on sputtered thin films (Prof. Prasad’s
group, Indian Institute of Technology, Bombay, India). Numerical treatment of the ex-
perimental spectra required iterative fitting in contrast to the analytical inverse formula
of a single interface. Obtained spectra were parameterized by a set of oscillators and
interpreted by inter–valence and inter–sublattice charge transfer transitions. These were
compared with electronic transitions typical for other ferrites studied so far. Influence of
layer post–deposition treatment, when the CuFe2O4 cubic structure was obtained by fast
cooling (quenching) from the deposition temperature, or the tetragonal structure by slow
cooling, was discussed as well.

Perovskite La2/3Sr1/3MnO3 [168, 50]

Doped LaMnO3 (LMO) is a material interesting for its rich and versatile properties
(for example, metal-insulator transition, colossal magneto–resistance, etc.). In particu-
lar, La2/3Sr1/3MnO3 (LSMO) exhibits strong spin polarization, which predestines it for
spintronic applications. Optical and magneto-optical spectroscopy reveals the complex
electronic structure of this material through the electronic transitions captured in spectra
of optical and magneto-optical constants. Mentioned article [168] shows these spectral
dependencies obtained by optical and magneto-optical ellipsometry on a series of LSMO
layers deposited on monocrystalline SrTiO3 substrate in the laboratory of prof. Ph.
Lecoeur, Orsay, France by pulsed laser ablation. One of the LSMO layers was designed to
be optically thick, and therefore, its spectra were treated in the approximation of a single
interface. The optical and magneto-optical constants were then determined directly from
light interaction with the layer surface without the need to take into account the inter-
ference phenomena in the layer. The reliability of the determined constants was verified
by modeling the polar Kerr rotation spectra of LSMO thinner films and comparing them
with the experiment. Both propagation phenomena in the layer and phenomena related
to reflection from the surface were identified and theoretically interpreted. The nature
of electronic transitions was discussed in more detail in the subsequent publication [50].
The obtained results were used by other authors as a reference for ab–initio calculations
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of LSMO magneto–optical spectra [169, 170] and in the study of ferromagnetic surface
polarization of the LMO/STO interface detected by nonlinear magneto–optics [171].

Garnet Ce-YIG [31]

Monolithically integrated and nanostructured magneto–optical modulators, isolators,
and circulators, based on non–reciprocal behavior of the Faraday rotation, are the key
component of optical signal processors and other photonic devices. The most commonly
used magneto–optical materials are cerium or bismuth substituted yttrium iron garnets
that show one of the highest figure of merit, i.e., the ratio of Faraday rotation and absorp-
tion coefficient. These materials manifest low transmission loss as well as high Faraday
rotation in technologically relevant IR spectral region. The present paper reports on opti-
cal and magneto–optical characterization of Ce:YIG thin films pulsed laser deposited onto
gadolinium gallium garnet substrates with various crystallographic orientations (group of
prof. Rosse, MIT, Boston, USA). Ellipsometric and magneto–optical (Faraday and polar
Kerr effect) spectroscopy enabled determination of both diagonal and off–diagonal ele-
ments of Ce:YIG dielectric tensor in the relatively broad spectral range from 200 to 1770
nm. The highest figure of merit in the IR range was achieved for films deposited on (111)
substrate orientation. It is worth noting that it presents the highest figure of merit of
Ce:YIG thin films reported so far. For the wavelength of interest λ = 1550nm, the absorp-
tion of the films was relatively small. At such low extinction values, the fitting of the sole
ellipsometric spectra (recorded in reflection) does not yield sufficiently precise values of
extinction coefficient. Therefore, additional transmission measurements in the IR region
with FTIR spectrometer were carried out and included in numerical data treatment.

5.2 Optical ellipsometry

Work selected in this section contributed to (i) correction or refinement of existing
optical constants (LaNiO3, PbZrTiO3), (ii) determination of optical constants of materials
that have not been analyzed yet and that proved to be of application interest (FeF2, TaN,
VN), (iii) assessment of differences in optical properties of bulk and thin-film forms along
with the influence of thin-film deposition conditions (NiO), (iv) assessment of differences in
optical properties of amorphous and poly–crystalline chalcogenides (MoS2, Sb2S3, Sb2Se3),
and (v) VUV extension of optical constant spectral range by reflectivity measurements
on a synchrotron facility (PbZrTiO3).

Perovskites LaNiO3 [172] and PbZr1/2Ti1/2O3 [82, 81]

Bilayer LaNiO3/PbZr1/2Ti1/2O3 system is used in a number of electro–optical appli-
cations. The metallic LaNiO3 (LNO) layer serves as an electrode and at the same time
acts as a seed or buffer layer for textured growth of piezoelectric PbZr1/2Ti1/2O3 (PZT).
Presented works deal with optical constants of both materials (LNO and PZT), which sup-
plement or expand the data available in the literature until then. Samples were prepared
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by the sol-gel method in the laboratory of prof. N. Dai (Shanghai Institute of Techni-
cal Physics, China). Optical constants of LNO, parameterized by a dielectric function
consisting of the sum of Lorentz oscillators, were determined by simultaneous evaluation
of ellipsometric and reflectance spectra applying a single-layer model. Special attention
was devoted to the influence of LNO surface roughness represented either by the effective
medium or the Rayleigh–Rice theory. The roughness determined by optical methods was
then compared with complementary AFM measurements.

Evaluating PZT optical constants, parameterization of the joined density of states
directly related to the material band structure was considered. In this manner, UV
spectral features related to 4d and 3d valence electrons of Zr and Ti were identified. PZT
layers were afterward measured at the synchrotron facility (Okazaki, Japan) in the vacuum
UV spectral region to expand the range of its optical spectra and to gain additional
knowledge of the electronic transitions. The results are summarized in a technical report
[81], which describes the experimental measurement of wide spectral range reflectivity and
its numerical treatment by Kramers-Kronig relations, allowing calculation of the phase of
the reflection coefficient. Knowledge of its both real and imaginary parts then yields the
VUV optical constant of PZT. For more details refer to Section 3.3.3.

Nitrides TaN and VN [43]

Motivation for optical constants determination of vanadium and tantalum nitride
comes from their intended use as barrier layers in ultra-large-scale integrated (ULSI)
circuits. Knowledge of the optical constants is essential for effective in–line optical moni-
toring of the ULSI circuits deposition process. VN optical constants with a typical metallic
character were available in the literature. Nevertheless, the method of their determina-
tion, i.e., high energy electron loss spectroscopy, which is fundamentally different from
spectroscopic ellipsometry, was one of the reasons (together with the different microstruc-
ture of the studied samples) of certain quantitative deviations of ours and literature data.
In our case, the V and Ta nitrides were deposited by reactive magnetron sputtering (RIE,
University of Shizuoka, Japan). In addition, TaN layers prepared under various sub-
strate temperatures and deposition times showed different optical constants. This was
manifested mainly by the weakening of their metallic character with lowering deposition
temperatures. The reason for this variation was attributed to the presence of different
TaN phases (the filling factors of which depended on the specific deposition conditions)
in the complex phase diagram of the Ta-N system.

Flouride FeF2 [173]

Optical characterization of iron fluoride FeF2, that forms one of the particular results in
the present article, is closely related to the optimization of the design of a magneto-optical
sensor based on a sandwiched FeF2/Fe/FeF2 structure, operating on the wavelength of Ti:
sapphire laser (810nm). This sensor was intended to detect weak magnetic fluxes up to
microwave frequencies with sub-micrometer resolution. Films were MBE grown on noble
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metal reflectors separated from GaAs(001) substrates by a seed Fe layer (Dr. Celinski,
Univerity of Colorado at Colorado Springs, USA). The sum of three modified oscillators,
which could change from Gaussian to Lorentzien shape tuning the value of one parameter,
proved to be a suitable parameterization of FeF2 optical constants in the UV, visible and
near-infrared regions. The parameters of the oscillators were determined by fitting the
ellipsometric spectra. Obtained FeF2 optical constants allowed theoretical modeling of
the magneto-optical spectral response of the FeF2/Fe/FeF2 sandwich structure and its
optimization by tuning the thicknesses of the individual layers to maximize magneto–
optical signal in the targeted NIR region.

Nickel oxide [174]

This work compares optical constants of polycrystalline NiO deposited in the form of
a thin layer by laser ablation (LMOV laboratory, University of Versailles, France) with
those of the bulk single crystal (data available in the literature). Thin-film refractive index
and extinction coefficient were determined by simultaneous fitting of the ellipsometric and
optical reflectance and transmittance spectra, taking into account several non–idealities
of the layer such as its surface roughness and gradient profile of the refractive index across
the layer. The difference of mono–crystalline bulk and poly–crystalline thin film optical
constants was attributed mainly to their different crystallinity.

Chalcogenides MoS2[175], Sb2S3 and Sb2Se3[176]

Amorphous and crystalline chalcogenides have found potential in numerous applica-
tions such as optoelectronics, biosensors, data and energy storage, and photo-thermal
therapy, among others. Knowledge of mechanisms that control amorphous-to-crystal
transition is an essential requirement for integrating chalcogenides into smart devices.
Determination of optical properties of amorphous and crystalline MoS2 contributed to the
understanding of the underlying scenario during annealing-induced crystallization of this
material. That was theoretically modeled by the ab–initio molecular dynamics approach.
On the other hand, precise optical constants determination of Sb2S3 and Sb2Se3 was
motivated by the application of these phase change materials in reconfigurable photonic
devices. Based on obtained optical properties, the performance of low–loss directional
couplers in the telecommunication spectral zone was modeled by Finite difference time
domain calculations by Yu Teo. Chalcogenide films were sputter deposited in the group
of Dr. Krbal, CEMNAT, the University of Pardubice (MoS2) and by Dr. Simpson (Sb2S3,
Sb2Se3), Singapore University of Technology and Design, Singapore.





Chapter 6

Characterization of nanostructures

6.1 Single layers

In this section, I summarize papers where optical and magneto-optical ellipsometry
was employed for the evaluation of layer inner structure, magnetic ordering, doping, sur-
face plasmons, and correlation of mechanical and optical properties of polymer films.
Mentioned are also works related to the study of refractive index modification of a ma-
terial by an electron, charged particle, or light beam irradiation. Effects of the surface
roughness and sample temperature are mentioned as well.

Inner structure: nanocrystalline NCD [94]

Ellipsometry study of the inner structure and diamond quality of nanocrystalline di-
amond (NCD) film is presented in detail in Section 3.5.1.

Doping: B-NCD [177], Co-CeO2 [178], Sn-ZnO [42], and PSS-
PEDOT [40]

Doping of diamond allows inducing its semiconducting nature with either hole or
electron conductivity according to the type of dopant. Therefore, diamond pn junction is
realizable, which opens a new path for the application of a plethora of diamond attractive
properties (including high thermal conductivity) not only in electronics. This work is
devoted to the study of boron-doped nanocrystalline diamond layers deposited by MWPE–
CVD using an innovative reactor with a set of linear antennas and pulsed plasma. This
reactor was specifically designed and constructed in the Institute of Physics of the Czech
Academy of Sciences, Prague for homogeneous large areas and low substrate temperature
deposition of diamond layers. Plasma initiation was done in a working gas mixture of
TMB, CO2 and CH4. Layers prepared with different ratios of these gas components,
hence, with different boron doping levels, were simultaneously characterized by following
methods: conductivity and Hall measurements, neutron depth profiling, SEM, Raman,
and ellipsometric spectroscopy to study plasmo–chemical processes and their influence
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on structure and composition of the deposited layers. Spectroscopic ellipsometry has
proven to be a method that is sensitive not only to the examination of the layer thickness
and surface roughness but also to the degree of hole concentration and diamond quality.
The concentration of holes (of the order of 1023cm−3) was quantified using the values
of the Drude term amplitude in the NIR spectral region. The qualitative assessment
of diamond quality (sp3/sp2 ratio of hybridized carbon) was based on monitoring the
absorption edge in the UV region that was parameterized by Tauc–Lorentz oscillator. The
obtained results from spectroscopic ellipsometry proved to be consistent with the other
complementary tools and at the same time, the considerable potential of this method in
the characterization of thin films was underlined.

The second article included in this group relates to the spectro-ellipsometric and
magneto-optical characterization of CeO2 layers doped with Co. Doping the nonmagnetic
host material CeO2 with magnetic Co ions influences its optical and magneto–optical
properties. This can be ultimately used for the fabrication of optimized magneto–optical
materials and their applications as, for example, magneto-optical insulators, magneto–
plasmonic sensors, or magneto–photonic crystals. Studied layers were prepared by pulsed
laser deposition in the group of prof. Rosse, MIT, USA. As shown by X–Ray diffraction,
Co ions formed a solid phase solution in the CeO2 host medium. The optical constants
of the layers, parameterized by the sum of the Lorentz oscillators and the Tauc–Lorentz
oscillator, were determined by simultaneous fitting of the ellipsometric and optical re-
flectance and transmittance spectra. The presence of Co ions increased absorption in
the CeO2 forbidden band and caused a redshift in its absorption edge, which can be at-
tributed to the impurity states of various types of defects (oxygen vacancies, Co ions,
etc.). Due to the relatively low concentration of Co ions, parameterization of NIR optical
constants did not require the use of the Drude term, contrary to the case of boron–doped
nanocrystalline diamond films.

In this paragraph, we refer also to the ellipsometry studies of Sn doped ZnO [42], and
PSS doped PEDOT films [40].

Surface plasnoms: Au island structure [38] and Au nano–spheres

When light interacts with metallic nanostructures, the generation of surface plasmons
may occur. The surface plasmons can be excited in metallic nanoparticles embedded
in a dielectric environment, on rough surfaces of metals, or metallic grids. At present,
these structures are used in various forms, for example, as plasmonic sensors. Conse-
quently, optical characterization and theoretical approaches are being improved for the
non-destructive characterization of such nanostructures (determination of nanoparticle
distribution, shape and size). Present article deals with the study of surface morphology,
crystal structure, electrical transport, and optical properties of sputtered Au thin films
(Prof. Švorč́ık’s group, VŠChT, Prague). Au layers deposited within the shortest times
showed an island-like discontinuous structure. Increasing deposition time, they became
denser and eventually turned into a continuous layer passing the percolation limit. El-
lipsometric spectra of the given Au nanostructures were evaluated by an approximate
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sample model consisting of a homogeneous thin film. Island–like structure of thinner lay-
ers leads to the excitation of surface plasmon manifested in optical constants by localized
Lorentz type oscillator, whose resonant frequency red-shifts and splits from one oscillator
into two by approaching the percolation limit. Here, also transition from non-conductive
to conductive nature of the Au layers occurs as detected by the amplitude of the Drude
term. The results drawn from the analysis of ellipsometric spectra were confirmed by
other complementary characterization methods.

Similar features, as described above, can be observed for gold nanospheres as well.
Fig. 6.1 presents surface plasmons on Au nanoparticles deposited with increasing density
and approaching percolation limit on c-Si substrates.

Fig. 6.1: Surface plasmons (left) excited on Au nanoparticles deposited on Si substrates
with increasing density (right). Samples provided by prof. Biederman, Faculty
of Mathematics and Physics, Charles University, Prague.

Magnetic ordering in orthoferrites: SmFeO3 [179, 180]

Orthoferrites are interesting from the point of view of both basic research (phase
transition due to the spin reorientation) and applied research (strong Faraday rotation).
Recently, deposition of orthoferrites in the form of thin films by pulsed laser ablation has
been succeeded (Prof. Krishnan, Dr. Keller, LMOV, Université de Versailles). Magneto–
optical spectroscopy, due to its sensitivity to subtle magnetic arrangement through spin-
orbital interaction, proved to be an extremely effective characterization tool of the so-
called weak ferromagnets. These include orthoferrites, with almost compensated spin
magnetic moments governed by Dzialoshinsky–Moria interaction. Paper [179] presents
pulsed laser deposition of thin layers of Dy, Y, Sm, and Gd orthoferrites. Their proper
magnetic interaction and ordering were examined by magneto–optical response measured
in Faraday and polar Kerr configurations. Calculated and experimental magneto–optical
spectra in the UV region (where no propagation contribution is shown and the spectra are
characteristic for the given material regardless of the layer thickness) consistently featured
all electronic transitions typical for orthoferrites. Furthermore, the X-Ray diffractometry
confirmed the polycrystalline orthorhombic structure of the layers.
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In addition, deposition parameters of SmFeO3 thin films were optimized establishing
relationship between the deposition temperature and fluence of the laser beam focused on
the target during ablation [126] (cf. Section 4.4.2). It has been shown that the deposition
temperature can be reduced within certain limits while increasing the laser fluence. Opti-
cal constants obtained by ellipsometry on bulk SmFeO3 targets polished to optical quality
were used to model the magneto–optical spectra. For more reliable magneto–optical char-
acterization, spectroscopic ellipsometry on SmFeO3 ablated thin films was performed, and
corresponding optical constants were determined in [180].

Correlation of optical an mechanical properties: polymer VTES
single layers [181] and functionally gradient TVS films [182, 183]

The primary motivation of this work is related to the control of mechanical binding
between different constituents inside composite construction materials. More specifically,
it concerns the preparation of a functional intermediate layer between the epoxy matrix
and the reinforcing glass fibers (Prof. Čech, Brno University of Technology). In an
optimized composite, the two components should be firmly bonded to each other and
provide a smooth transition of the mechanical elastic modules from the matrix to the
reinforcing fibers through the functionalized interlayer. Due to the correlation of optical
and mechanical properties of the polymer layers, spectroscopic ellipsometry was used as
one of the methods of their characterization. First, the study took place on single polymer
layers and then on multilayer systems, which were eventually replaced by an interlayer
with a fully gradient nature of mechanical (and at the same time optical) properties.
The present article presents the optical characterization of polymer layers prepared by
plasma-assisted CVD from VTES monomer. Tauc Lorentz’s formula turned out to be a
suitable parameterization of its optical constants. The internal structure of the layer was
assessed against various sample models taking into account properties of substrate/ layer
interface, the gradient nature of the layers, and in the case of thick layers, the effect of
their thickness inhomogeneity on the optical spectra.

Then the single–layer investigation was expanded to the case of multilayer systems
with a step-like change of polymer physico–chemical properties. The change of these
properties was intentionally induced by time variation of the effective plasma power in
the pulsed plasma chemical reactor. The TVS monomer used in the gas phase is thus con-
verted by plasma polymerization into the polymer with different degrees of crosslinking
and organic / inorganic ratio as a function of the applied effective power. The ultimate
purpose was to induce a continuous change of mechanical properties of the multilayer
(modulus of elasticity and mechanical strength), which on one side chemically bonds to
one (matrix) and on the other side to the other (reinforcing fibers) component of com-
posite material. Due to the relationship between optical and mechanical properties, the
spectroscopic ellipsometry can indirectly monitor these changes of mechanical parameters
of the multilayer (through evaluation of refractive index profile) and thus non–invasively
and in–situ assess transition characteristics, such as linear or exponential, as presented in
[183].
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Other effects influencing optical properties

Here I mention contributions dealing with modification of optical properties of a ma-
terial due to its irradiation or exposure by an electron [49], heavy particle [184], or light
beam [48]. Influence of surface roughness is treated, for example, in [185, 172] and effect
of sample temperature on optical constants are discussed in more detail in Section 8.2
and in [47].

6.2 Multilayers

Multilayered nanostructures are widely used in a plethora of current applications across
various industries profiting from their specific optical, electrical, and magnetic properties.
With a suitable internal structure, unique functionalities can be achieved that are not nat-
urally offered in the bulk or single–layered form. This section presents works that use op-
tical and magneto–optical ellipsometry for the characterization of application–promising
multilayers.

Exchange interaction in Co/Cu multilayers [186]

The discovery of the giant magnetoresistance (GMR) exhibited by certain metallic
multilayers with alternating magnetic and non–magnetic layers was awarded the Nobel
Prize (Albert Fert and Peter Grünberg in 2007). Parallel and anti–parallel ordering
of magnetic moments of ferromagnetic layers coupled by a non-magnetic spacing layer
has been the subject of several theoretical studies. This fundamental phenomenon has
found application in high-capacity storage media employing spin-polarized current. The
exchange interaction mediating this magnetic arrangement, and periodically dependent
on the space layer thickness, modifies the band structure of the layered materials. The
presented paper shows the effect of this modification on the experimental magneto–optical
spectra recorded in the polar and longitudinal configuration on Co/Cu multilayers, which
show significant differences for AFM and FM arrangements. These phenomena are not
predictable by theoretical calculations using bulk optical and magneto–optical constants
of the given materials (Co and Cu). Experimental ellipsometric spectra showed similar
differences in AFM and FM ordering as well. It was concluded that the dominant effect
of the exchange interaction is related to the modification of the optical constants of the
non-magnetic metal through which the exchange interaction takes place.

Omniderectional mirror [187]

The motivation of this work was the design and fabrication of a dielectric mirror whose
reflectance band does not significantly change with the incidence angle (omnidirectional
mirror). The central wavelength was chosen to be λ = 1.55 µm, i.e., in the spectral region
often used for telecommunication applications (for example, missile guidance). A dielec-
tric mirror consisting of alternating high and low index layers of optical thickness λ

4
was
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prepared from a pair of chalcogenide materials Ge25S75 and Sb40Se60 transparent in the
IR region and with refractive index difference ∆n = 1.16 (deposited by Dr. Kohoutek,
University of Pardubice). The calculated band structure of a given multilayer (assuming
an infinite number of bilayers) is indicated in Fig. 6.2. Value of the forbidden band for
the normal incidence corresponds to the interval 1.33 − 1.79 µm, and for the oblique in-
cidence it becomes 1.33− 1.57 µm. The real multilayer was prepared by evaporating 7.5
Ge25S75/Sb40Se60 bilayers on SiO2 substrates. Mirror quality and effect of post-deposition
annealing were assessed by reflectance and ellipsometric spectroscopy carried out for dif-
ferent angles of incidence. The quality of the interfaces was simultaneously monitored by
TEM.

Fig. 6.2: Projected bandgap structure of the Ge25S75/Sb40Se60 quarter wave stack, with
refractive indices nH=3.23, nL=2.07 and layer thicknesses dH=119 nm, dL=187
nm, showing the first order omni– directional and normal–incidence bandgap
near 1.55 µm; ω/c line is the light line in the multilayer; ωB relates to the
Brewester angle.

Interdiffusion in αFe2O3/NiO multilayers [151]

One of the advantages of optical and magneto-optical ellipsometry is its non-invasive
examination of sample subsurface structure within the penetration depth of light. The
present article demonstrates this by magneto–optical identification of ferrimagnetic inverse
spinel NiFe2O4 that forms on the interface of αFe2O3/NiO multilayers (prepared by pulsed
laser deposition by Dr. Keller, LMOV, University of Versailles). The SIMS evidenced
interdiffusion of Ni and Fe ions across the interfaces between antiferromagnetic materials
NiO and αFe2O3. Spectroscopic ellipsometry was not, in this particular case, sensitive
enough to distinguish NiFe2O4 due to similar values of its refractive index with a mixture of
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NiO and hematite (approximated by the two-component EMA). Nevertheless, modeling of
magneto-optical spectra has convincingly demonstrated the presence of NiFe2O4 material
at the interfaces and thus demonstrating the usefulness of this characterization method.
For more details refer to Section 4.5.1.

6.3 Linear gratings

Application of optical and magneto-optical ellipsometry, as a characterization tool, has
been for a long time restricted for samples that could be approximated by a single planar
interface (bulks) or by a plane–parallel stratified media (single layers and multilayers)
for which appropriate theoretical formalism (recurrent formulas, matrix calculus) were
available. On the other hand, scatterometry studying the angular dependence of the
intensity of diffracted monochromatic light was devoted to the characterization of laterally
periodic structures (for example gratings). Accelerating the increase of the computer
power together with the amelioration of theoretical procedures (for example, RCWA,
FEMA) in the last decades has made it possible to extend optical and magneto-optical
spectroscopic ellipsometry also for the characterization of laterally periodic structures,
and photonic crystals in general.

Ni garting: optical scatterometry [109]

Optical scatterometry of the sinusoidal holographic Nickel grating is presented in Sec-
tion 3.6.1 where results of other conventional complementary characterization techniques
are presented and compared as well.

Permalloy garting: magneto–optical scatterometry [188, 162, 163]

Present articles show one of the first magneto-optical studies of laterally periodic struc-
tures, namely, permalloy wires prepared by electron lithography on silicon substrates and
covered with a Cr protective layer (Prof. Hillebrands, University of Kaiserslautern, Ger-
many). Magneto-optical spectra in the polar Kerr configuration were measured in both the
zeroth (specular reflection) and the first diffraction orders. Theoretical dependences were
then calculated by the rigorous method (RCWA) and by the approximate LMM approach
developed for shallow gratings neglecting diffraction at the edges of NiFe wires. Detailed
modeling of the magneto-optical spectra evidenced the oxidation of the Cr coating of the
permalloy wires and the presence of SiO2 on the exposed part of the silicon substrates (cf.
Section 4.6.1). The results of magneto–optical ellipsometry showed agreement with AFM
and proved the sensitivity of this method not only to the surface oxidation (influence
of aging or post-deposition) but to the geometric quality of relief gratings and the edge
profile as well.
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6.4 Complex architectures

1D conical nanotubular TiO2/CdS heterostructure [189]

Enhancement of photon harvesting efficiency is a key issue in photovoltaics. So far,
different strategies were employed to achieve this goal. The present work reports on
the superior performance of solar cell heterostructure (fabricated in the group of Dr.
Macák, CEMNAT, University of Pardubice) based on a 1D conical TiO2 nanotubular
scaffold homogenously coated by CdS thin-film photosensitizer. A significant feature of
the heterostructure, with respect to the uncoated TiO2 nanotubes, was a pronounced
redshift of the onset edge observed in the photon-to-current efficiency spectrum. It was
suggested that this effect is caused by a sub–bandgap tail of the CdS coating. This
hypothesis was proved to be correct by ellipsometric measurements of CdS thin films
deposited under the same conditions onto planar Si substrates. Light scattering inside the
nanotubular structure with the associated multiple transmission and absorption processes
plausibly elucidate the observation of the redshift which furthermore indicates the possible
improved performance of the heterostructure integrated into the solar cell.

Fig. 6.3: From left: schematic 1D nanotubular structure, SEM top-view pictures, spectral
dependence of IPCE as a function of CdS overlayer thickness, and CdS extinction
coefficient determined by spectroscopic ellipsometry (reprinted from [189]).

2D MoTe2 nanosheets [190]

2D MoTe2 nanosheets were atomic layer deposited in the group of Dr. Macak (CEM-
NAT, University of Pardubice) and intensively studied for their photo–electrocatalytic
properties. It is worth mentioning that spectroscopic ellipsometry employed for charac-
terization of these nanostructures differentiated their semi–metallic 1T’ phase with respect
to the more stable semiconducting 2H phase. The predominantly semi–metallic nature of
MoTe2 lead to the reported excellent photo–electrocatalytic properties of TiO2 nano-tube
heterostructures decorated by MoTe2 nanoflakes.
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Theoretical approaches

Inhomogeneous index–gradient films [191]

Inhomogeneous thin films that present index gradient along its surface normal are
often encountered in practice. It can be either an undesirable effect due to uncontrolled
deposition process or intended feature, where carefully designed index gradient gives an
exceptional spectral dependence of reflectance or transmittance – the case of rugate filters,
for example. The present article deals with a new algorithm of reflection and transmis-
sion coefficients calculation, developed for inhomogeneous films, that extends well known
Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) approximation. The algorithm is based on

Fig. 7.1: Rugate filter with matched surroundings layers. The refractive index of the am-
bient and the substrate is 2.0. The film index is given by n = 2.0[1+0.05 sin(ωz)].
The resonance wavelength is λ0 = 550 nm, ω = (4πn0)/λ0, the number of peri-
ods is 10, and the total thickness is 1375 nm. The reflectivity is calculated with
indicated truncation of the expansion (reprinted from [191]).
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multiple–beam interference expansion of reflection and transmission coefficients where the
first term is the WKBJ contribution. The degree of calculation precision can be easily
controlled by the expansion truncation. The calculation speed is considerably enhanced
by the application of Chebyshev polynomials. Therefore, it is acceptable also for on–
line monitoring of fabrication of rugate–type filters (cf. Fig. 7.1). Inhomogeneous films
with various index gradient profiles on dielectric or metallic substrates are modeled and
discussed concerning the calculation speed and convergence. Experimental ellipsometric
data recorded on the inhomogeneous SiN layer and their treatment by the new approach
are presented as well.



Chapter 8

Collaboration with industry and
application motivated research

In this chapter, I provide a list and brief description of my participation in application–
motivated research conducted by below mentioned companies.

8.1 Murakami Kaimeido, Ltd., Japan

The research aim was the identification of structural non–idealities of fabricated di-
electric multilayer mirrors [SiO2/Nb2O5]N deposited on glass substrates that manifested
deteriorated optical performance. The simultaneous combination of spectroscopic ellip-
sometry and optical reflectance and transmittance enabled the identification of the origin
of searched defects. Namely, the unintended change of the substrate refractive index,
caused by inappropriately set deposition parameters of selected deposition technique, id
est, high-density reactive ion plating (cf. Fig. 8.1). For more details refer to [90] and see
also Section 3.4.2.

Fig. 8.1: High-density reactive ion plating deposition apparatus (left) and its schematic
picture (right).
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8.2 Komatsu Electronics, Ltd., Japan

The goal of this collaboration consisted of proof of concept and development of a non-
contact optical device measuring Si wafer temperature and simultaneously monitoring
the growth of a dielectric overlayer. The request came from Komatsu Electronics, Ltd.,
manufacturer of high–quality crystalline Si wafers, which is a producer of heating plates
with homogeneously distributed and precisely controlled temperatures as well. These
systems are frequently used in various deposition apparatus in the semiconductor industry.

The research was based on previous studies related to the temperature dependence of
c-Si optical constants [192]. The temperature-sensitive ratio of the s– and p– reflection
coefficients (angle of incidence 70◦) near the E1 critical point of c-Si (wavelength 370 nm)
was used to measure the surface temperature. Additional spectral points were selected
to monitor also the growth kinetics of the dielectric overlayers. It turned out that for the
required accuracy of temperature measurement (0.1 ◦C) it was essential to detect the light
intensities of s– and p– polarized reflected waves at the same times, and thus eliminating
fluctuation of the light source (high-pressure Hg-Xe lamp) intensity. The proof of concept
was accomplished in various experimental designs. Finally, the one that is described in
the article [47] (cf. Fig 8.2) achieved the required measurement accuracy comparable
to regularly used contact sensors as, for example, Pt thermometers. The results were
eventually passed onto Komatsu Electronics, which finalized this work in a commercial
device [193].

Fig. 8.2: Proof of concept (left, reprinted from [47]) and photography of a detection unit
(right).

8.3 ELLA-CS, s.r.o., Czech Republic

This research was motivated by a demand for increased biocompatibility of stainless
steel coronary stents – human body medical implants. This has been realized by coating
them with a thin layer of nanocrystalline diamond. The interdisciplinary consortium
that carried out this activity in the frame of BIOKOM project consisted of (i) Institute
of Physics, Czech Academy of Sciences - deposition of nanocrystalline diamond films
(tuning of deposition parameters) and their characterization (ii) University of Pardubice
- complementary characterization of diamond layers by spectroscopic ellipsometry, (iii)
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3rd Medical Faculty, Charles University - design and realization of an animal model,
in–vivo tests and final evaluation of surface-functionalized implant biocompatibility (iv)
ELLA–CS, s.r.o., stent manufacturer - expert consultations and stent supplier.

MW–PECVD apparatus based on an innovative plasma source with a set of 4 lin-
ear antennas [194] was used for the stent coating. When searching for a suitable pulsed
plasma frequency and substrate deposition temperature for nanocrystalline diamond, the
spectroscopic ellipsometry provided significant results, which helped determine the dia-
mond quality of the diamond layers and their internal structure (distinguishing seed and
bulk sub–layers). The obtained results were complemented with Raman spectroscopy
and scanning microscopic methods, AFM and SEM, which helped reduce the correlations
between the fitted parameters, for more detail see Section 3.5.1 and paper [94]. Coro-
nary stents, coated with tuned deposition conditions, were implanted into a group of pigs
(animal model), and subsequently, their improved surface biocompatibility was evaluated
in–vivo through optical coherence tomography. The details of the animal model study
and the final results are published in [195].

Fig. 8.3: SEM image of NCD coated stent (left) and in–vivo evaluation of neointimal
hyperplasia by optical coherence tomography (right, reprinted from [195]).

8.4 TOSEDA, s.r.o., Czech Republic

Optical properties of organic polymers and co–polymers were examined in the middle
infrared spectral range. This knowledge facilitated the assessment of the potential use
of these materials as an optical matching glue for optical elements that are designed for
space applications.

8.5 Synthesia, a.s. Czech Republic

Knowledge of optical properties of pigments used for color decoration is often very
important from both technology and application viewpoints. Spectral dependence of
pigment particle complex refractive index, together with the particle size, determines the
final color of a pigment coating. Moreover, pigment particle size, a parameter controlled
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in the manufacturer site, is usually indirectly measured by the dynamic light scattering,
and in this method, the refractive index of pigment particles for the excitation beam
wavelength is needed.

In this research, we introduced a novel application of spectroscopic ellipsometry for
organic pigment optical characterization. Pressing pigments powders into the form of
high-density pellets with optical surface quality enabled determination of pigments optical
constants in the DUV-VIS-NIR spectral range. Special care was devoted to the verification
of the structural identity of the obtained pellets and the initial powders. This was done
by Raman spectroscopy. The results are summarised in Fig. 8.4. For more details refer
to [196].

Fig. 8.4: Optical constants of the studied pigments.
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J. Mistŕık, T. Yamaguchi, D. Franta, I. Ohlidal, G. Hu, and N. Dai, Applied Surface
Science 244, 431 (2005); doi: 10.1016/j.apsusc.2004.09.151

3. Evidence of native oxide on the capping and substrate of Permalloy grat-
ings by magneto-optical spectroscopy in the zeroth- and first- diffraction
orders
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Perspectives

There are a plethora of tools devoted to the characterization of nanomaterials. Among
them, optical and magneto–optical ellipsometry are maturated techniques that are still
growing due to their significant advantages. Some of these have been mentioned in this
thesis already. They are non–destructive, phase–sensitive, and thickness selective ow-
ing to the penetration depth wavelength dependence. The latter enables distinguishing
surface and volume sample properties. Light spot size can cover a relatively large area,
averaging sample properties over several mm squared, or can be focused down to tens-
of-micrometers. For better lateral resolution (down to a micron) imaging alternatives are
available as well. Both ex–situ table–top ellipsometers with a high spectral resolution and
ultra–fast in–situ ellipsometers studying various kinetics with a limited number of wave-
lengths exist. Several types of commercial ellipsometers cover a broad spectral range from
terahertz to VUV. Moreover, synchrotron facilities enable covering X-Ray as well. Thus,
selecting the appropriate spectra range for a specific application is relatively easy. Recent
theoretical advancements in RCWA calculations facilitated expanding ellipsometry from
layered systems to laterally patterned samples and to photonic crystals in general. A large
database of optical and magneto–optical constants is available for designing new devices.
A relatively simple experimental set-up that does not require cumbersome components
(for example high vacuum) is another benefit of ellipsometry over, for example, scanning
probe methods.

Moreover, magneto–optical spectroscopy proved to be successful for magnetic mono-
layer detection, element specificity by X–ray magnetic circular dichroism where core elec-
trons are excited [197, 198], and high dynamic response suitable for observation of ultra-
fast remagnetization processes [199]. This combination of characteristics is unique among
other characterization tools. In addition, magnetic ordering of interfaces and surfaces can
be effectively probed by non–linear magneto-optics owing to the broken symmetry that
yields second harmonic polarizability [200]. Noteworthy, the mono–layer detection sen-
sitivity enables characterization of atomically thin two–dimensional materials as, for ex-
ample graphene, transition metal dichalcogenides, or black phosphorus with large optical
and magneto–optical anisotropies and new magnetic properties that represents promising
candidates in modern frontier applications [201]. Sensitivity to spin-orbit interaction en-
ables probing subtle exchange interactions of magnetic sub–lattices in ferrimagnets, weak
ferromagnets, and anti–ferromagnets. The exchange coupling in magnetic multilayers or
composite nanostructures is observable by magneto-optics as well. Furthermore, quadratic
magneto–optical effects are beneficial due to their fine detection of the crystallographic
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orientation of cubic crystals. In addition, magneto–optical imaging is the appropriate
method for magnetic domain wall observation and examination of its evolution during
remagnetization [202].

The continuous search for new (nano)materials with unique optical, magnetic, or struc-
tural properties that would open new pathways in multi-disciplinary applications moti-
vates further development of the optical and magneto-optical ellipsometry instrumentation
together with the refinement of theoretical approaches coming out of standard approxi-
mations. For example, higher spatial resolution is realized by near-field (magneto)optical
methods [203]. Time-resolved quadratic MO effect with the pump-probe method was
recently used for the characterization of antiferromagnetic materials with promising ap-
plications in spintronics [204]. A new non–reciprocal magnetophonon Raman scattering
effect was observed in ferromagnetic few–layer CrI3 [205]. Modern on-chip integrated
photonic devices employing, for example, giant optical anisotropy for light manipulation
owing to birefringence phenomena [206], high refractive contrast in phase-change materials
for directional coupler switches [176], or high magneto-optical figure of merit for isolators,
rotators, and modulators profitably uses the potential of optical and magneto-optical ellip-
sometry and continuously increasing database of optical and magneto-optical constants
of new attractive materials. This is also valid for tuning optical properties of photo-
sensitizers for effective solar energy harvesting in photovoltaic devices or photodynamic
(photothermal) therapy of cancer or infection treatment [207] showing a rather broad
and active application of both ellipsometries. Magneto–optics significantly contributed to
the elucidation of giant magnetoresistivity, the effect recently employed in high-density
recording media. Magneto–optical memory discs with ever-increasing capacity are under
research as well.

Regarding recent refinement of theoretical approaches devoted to the interaction of
light with nanostructured materials on which optical and magneto–optical ellipsometry
are based, one should mention, for example, the improvement of convergence in RCWA
for scatterometry, incorporation of thin–film non-idealities into the standard thin–film
optics [89] and taking into consideration partial light coherence. In addition, continuous
advances in the accuracy of ab-initio calculations and molecular dynamics for design
and prediction of novel nano–materials and heterostructures with desired optical and
magneto–optical properties are worth mentioning as well.



Acknowledgement

I am grateful to all my colleagues and co–workers that helped me, during the last
more than twenty years, to gain numerous experiences in various fields of experimental
and theoretical physics. In particular, I am thankful to Prof. Š. Vǐsňovský and Assoc.
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[42] P. Janicek, K. Niang, J. Mistŕık, K. Palka, and A. Flewitt, Applied Surface Science
421, 557 (2017).
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[110] R. Antos, J. Pistora, J. Mistŕık, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Vis-
novsky, and Y. Otani, Journal of Applied Physics 100, 054906 (2006).



REFERENCES 135

[111] J. Mist́ık, Master thesis, Univerzita Karlova, Prague, Czech, 1998, 64 pages.

[112] K. Postava, A. Maziewski, A. Stupakiewicz, A. Wawro, L. Baczewski, S. Visnovsky,
and T. Yamaguchi, Journal of the European Optical Society 1, 1 (2006).

[113] M. Billardon, Ann. Phys. 7, 233 (1962).

[114] H. G. Jerrard, Surface Sci. 16, 137 (1969).

[115] I. Williams, Surface Sci. 16, 174 (1969).

[116] H. J. Mathieu, D. E. McClure, and R. H. Muller, Rev. Sci. Instr. 45, 798 (1974).

[117] H. Takasaki, J. Opt. Soc. Am. 51, 463 (1961).

[118] H. Takasaki, J. Opt. Soc. Am. 56, 557 (1966).

[119] H. Takasaki, Appl. Opt. 5, 759 (1966).

[120] D. E. Aspnes, Spectroscopic Ellipsometry of Solids. In: Optical Properties of Solids
New Developments (eds. Seraphin, B. O., Nort-Holland Publishing Company, Am-
sterdam, Oxford, 1976).
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O. Kuschel, J. Wollschläger, M. Veis, T. Kuschel, and J. Hamrle, Physical Review
B 100, 064403 (2019).

[138] S. Visnovsky, Czech. J. Phys. B 36, 834 (1986).
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Mistŕık, and A. Macková, Physical Chemistry Chemical Physics 23, 22673 (2021).
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Cardiology 20, 65 (2014).

[196] S. Sajdlova, Master thesis, Univerzita Hradec Kralove, Hradec Kralove, Czech, 2014,
60 pages.

[197] B. Thole, G. Van Der Laan, and G. Sawatzky, Physical Review Letters 55, 2086
(1985).



140 REFERENCES

[198] G. Van Der Laan, B. Thole, G. Sawatzky, J. Goedkoop, J. Fuggle, J.-M. Esteva, R.
Karnatak, J. Remeika, and H. Dabkowska, Physical Review B 34, 6529 (1986).

[199] M. Freeman, W. Hiebert, and A. Stankiewicz, Journal of Applied Physics 83, 6217
(1998).

[200] J. Reif, C. Rau, and E. Matthias, Physical Review Letters 71, 1931 (1993).

[201] T. Lan and J. P. Remeika, J. Appl. Phys. 37, 1232 (1966).

[202] A. Hubert and R. Schafer, Magnetic domains: the analyses of magnetic microstruc-
tures (Springer, Berlin, 1998).

[203] E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. Kryder, and C.-H. Chang,
Applied Physics Letters 61, 142 (1992).
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Appendixes A

Single interface reflection matrix

Provided are elements of reflection matrix expressed as a function of material per-
mittivity tensor ε (considered in a general form) and proper numbers N̄z of the wave
equation. For more detail, refer to Section 4.3.

Diagonal elements:

rss =
P +Q− S − T

P +Q+ S + T
, (A.1)

rpp =
P −Q+ S − T

P +Q+ S + T
, (A.2)

where

P = N0αz
2(ε13ε33N̄

+
z N̄

−
z N̄y(N̄

+
z + N̄−

z )

−ε33[ε12(ε33 − N̄2
y )− ε13ε32][N̄

+
z

2
+ N̄−

z
2
]
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2
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