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CHAPTER

1

INTRODUCTION

Even though gravity corresponds to the weakest interaction identified in the surrounding nature
up to date, its various practical as well as theoretical aspects have attracted incredible attention
over thousands of years. The enormously efficient kinematic description of the planetary motion
by Ptolemy in ancient Greece, its precise Keplerian analysis employing clear geometric language
1500 years later, and its dynamical description in terms of the Newton gravitation law, are real
gemstones in the treasury of humankind’s knowledge. Beyond all doubt, another highlight on the
pathway to a deeper understanding of the laws of nature is the General theory of relativity (GR)
outlined by Albert Einstein more than a century ago and in its final form presented to the Royal
Prussian Academy of Sciences in 1915 [1]. Together with preceding Einstein’s special relativity [2],
it has completely changed our understanding of such basic and intuitive concepts like space and
time. The mathematical description of gravity via the newly introduced dynamical arena of the
world –– curved spacetime governed by the Einstein field equations — has shed light on unsus-
pected horizons in observational astronomy together with predictions about the past, presence,
and anticipated future of the whole Universe itself. The theory immediately elucidated situations
where the effects of a strong gravitational field are crucial such as bending of light-rays that pass
massive objects, or precise explanation of a small discrepancy in the Mercury precession [3, 4].
These have been followed by various other astrophysical predictions and even practical applica-
tions affecting our everyday life such as correction applied to GPS. Here let me mention at least
two most recent and fascinating discoveries induced by the GR theoretical predictions. The first
one is the direct detection of gravitation waves by the LIGO facility in 2015 [5], where the mea-
sured ripples in the spacetime curvature corresponded to the pair of black holes merging more than
one billion light-years away. This has been followed by many others observations slowly revealing
mysteries of the stellar graveyard. In the case of merging neutron stars [6], the supplementary
observations in the whole range of electromagnetic spectrum have opened a completely new field
of the ‘multi-messenger’ astronomy. The second observational achievement directly related to the
GR prediction is the imaging of the Messier 87 galaxy center with the shadow of a supermassive
black hole [7] followed by the Milky Way black hole image released by the EHT collaboration a
few days ago. These extremely successful experimental events are based on a brilliant knowledge
of various parts of physics and engineering, enormous technical effort, sophisticated numerical
simulations, and observational skills. However, the analytical understanding of the Einstein grav-
itational law accompanied by the description and interpretation of exact solutions to Einstein’s
field equations stand very deep in their center. In particular, the existence and principal proper-
ties of gravitational waves were deduced by Einstein himself almost immediately after the theory
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release from its weak field limit [8, 9]. Interestingly, the identification of this phenomenon within
the full theory (using the exact models and a discussion of the test particles’ behavior) took
another forty years. These explicit theoretical results started the gravitational-wave hunt which
resulted in their indirect observation via analysis of the binary pulsar PSR 1913+16 discovered by
Taylor and Hulse in 1974 [10], and finally, in the already mentioned direct LIGO detection seven
years ago. Moreover, the interferometric observations show that the gravitational-wave prominent
sources are mergers of rotating black holes, where their initial (separated) states, as well as the
final remnant, are almost precisely described by the Kerr exact solution –– spacetime representing
axially symmetric stationary conformally flat black-hole geometry [11]. The same type of object,
however with an incredibly higher mass of billions of Suns, is also located in the M87 and Milky
Way centers, respectively. These two situations are significant examples of the importance of an
exact analytical approach to the field equations and they should indicate and motivate the utility
of results derived using explicit simplified models.

These most recent GR achievements, accompanied by many other experimental tests, see
e.g. [12], proved Einstein’s general relativity to be the excellent theory of gravity without any
discrepancies between its predictions and observational data found so far. However, there are
some theoretical loopholes and/or pure ‘curiosity’ reasons to think about theories going beyond
GR. In particular, one class of ‘practical’ questions to be answered is related to the cosmology,
e.g., the inflation phase of the Universe or presence and unknown origin of the dark matter and
energy (effectively represented by the cosmological constant) do not suitably fit into the GR
models. The second, and conceptually even more important, branch of uncertainty arises from
the incompatibility of GR with the quantum field theory approach and techniques correspond-
ing to its non-renormalizability. The quantum implications seem to be crucial in the spacetime
regions with extreme curvature, in particular singularities, which stand in the heart of the above-
mentioned exact black-hole spacetimes or at the beginning of the Universe. To solve at least some
aspects of these problems on the classic level of metric theory, various modifications of the fa-
mous Einstein–Hilbert action have appeared, see e.g. [13–16] for more details. The prominent and
very straightforward extension of GR seems to be so-called quadratic gravity (QG) corresponding
to the presence of additional quadratic curvature terms in the action, see [17–20] and [22] for a
comprehensive review, which in the higher dimensional case includes also the Einstein–Gauss–
Bonnet theory as the first non-trivial representative of the Lovelock theories [23, 24]. One can
think about QG both as our desired final theory or as the first correction to the Einstein–Hilbert
Lagrangian (including the second-order curvature terms) resulting from the expansion of some
more involved final theory action, which at least partially solves the above-mentioned imperfec-
tions of GR. Simultaneously, any conceptually brilliant final theory, which we may hope for, has to
be compatible with the results, predictions, and experimental tests of Einstein’s general relativity
in its low energy limit.

Besides all these conceptual issues, my main motivation for the presented research is primarily
curiosity. In particular, GR respects the Occam razor principle where the simplest possibility is
chosen. It is thus natural to ask whether more complicated scenarios would lead to significantly
different predictions in comparison with those of GR, or whether their implications are qualita-
tively the same, but simultaneously, the additional degrees of freedom bring some potential for
improvements of the GR weaknesses. Dozens of works are studying specific observable situations
within modified theories employing both exact models as well as sophisticated approximations
and numerical methods. Typically, such ‘fine-tuned’ models can solve a specific problem, however,
they may fail elsewhere. Therefore, the aim is to keep the calculations and discussion as generic
and systematic as possible. This approach naturally requires adjustment and development of suit-
able methods and tools providing control over the physical and mathematical properties of the
resulting spacetime. To be able to compare mutually corresponding situations both in GR and
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any modified gravity it is natural to start from the theory-independent geometric assumptions,
e.g., symmetries, algebraic structure, or specific behavior of geodesics. Then the implications and
compatibility of consequent exact solutions and identification of various qualitative differences,
and in principle, observable effects can be studied.

In the thesis and my related works, the attention is paid solely to spacetimes which are exact
solutions of Einstein’s GR or its various extensions. Neither perturbative techniques nor numerical
simulations are employed although they may allow one to study more realistic situations and
provide a relevant quantitative perspective. On the other hand, such approximative methods may
hide principal aspects of a specific theory and we would like to avoid such flaws. The traditional
exact solution studies represent clear model results that may provide direct undistorted insight
into the pure theory structure and its specific properties. Moreover, the exact analysis of simplified
situations has been extremely important during the whole history of Einstein’s general relativity
and brought many surprising results which have been further adjusted to the real astrophysical
processes. So far, hundreds of various solutions to GR have been found and analyzed. Their
comprehensive description and physical interpretation can be found for example in [25–27]. Here,
let us only very briefly list at least the most important and influential of them without any ambition
to present any details, namely

� The Minkowski, de Sitter, and anti-de Sitter spacetimes [28], see [26] for their various
parametrizations, represent maximally symmetric solutions with zero, positive, and neg-
ative constant curvature, respectively. The particular cases correspond to the specific sign
of the cosmological constant entering the Einstein field equations. These geometries typi-
cally represent backgrounds for more involved scenarios within GR or even other branches
of physics.

� The Friedmann–Lemâıtre–Robertson–Walker cosmological models [29–33] allow to predict
the beginning and the future of our Universe, which at least partially answers the questions
as old as humankind itself. In mathematical terms, they are homogeneous and isotropic
perfect fluid solutions where Einstein’s gravitational law governs the time scaling of the
particular model.

� The Schwarzschild black hole is the first non-trivial solution to the Einstein field equations
[34] found shortly after the final theory was released. However, the understanding of its
properties and global structure took other decades. It describes the vacuum spherically
symmetric geometry which is unique in GR due to Birkhoff’s theorem. From the physical
viewpoint, it is the simplest GR black-hole solution characterized by one free parameter
interpreted as mass.

� The Kerr solution [11] adds one more parameter to the static Schwarzschild geometry which
encodes the angular momentum. It describes an axially symmetric stationary rotating black
hole that is asymptotically flat. To find such a one-parameter extension took almost fifty
years. It is also worth mentioning that this spacetime miraculously well reflects astrophysical
reality and plays thus a crucial role in the various experimental tests of GR.

� The most interesting models of exact gravitational waves belong to wider classes of the
Robinson–Trautman and Kundt geometries [35–38]. In particular, the simplest case of pp-
waves, originally identified in a different context [39] and abbreviating plane waves with
parallel rays, serves as a testbed in miscellaneous applications requiring dynamical propa-
gation of gravitational degrees of freedom.

Except for the cosmological models, all the above classes of exact spacetimes in GR are at least
partially related to my past or future research.
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Until now, it would seem that the exact solutions are synonyms for something ‘trivial’ which
could be easy to obtain. However, solving the field equations of any reasonable theory of gravity
is, in fact, a very difficult task. There were developed various approaches to do so and the above
examples are excellent illustrations. After physical specification of the situation which should be
analyzed, typically, the essential step has to follow — a reasonable geometric simplification of the
problem. Some of the very natural additional assumptions one can think about are

� symmetries: it is very common that symmetries, and their extensions (see e.g. [40]), reduce
the number of degrees of freedom irrespectively whether the black-hole spacetimes or any
other problems formulated in the language of differential equations are studied,

� algebraically special structure of the curvature tensors: on the contrary, the effect of abstract
algebraic properties on the physical nature of the resulting spacetime is quite surprising,
however, for example, the Kerr solution was discovered in this way,

� geometric behavior of null congruences: it is interesting how simply the deformations of
null geodesic congruences can be described and how important classes of spacetimes can be
distinguished with respect to that.

This list is not complete and the categories are not disjunctive. It rather reflects specific directions
from which the particular problems can be approached. Simultaneously, these assumptions may
introduce the theory-independent starting points for extending particular well-known classes of
solutions constructed in GR into the modified theories of gravity which is subsequently the solid
base for comparison of such theories with GR on the level of their exact solutions.

How to read the thesis

The first part of the present thesis provides the summary of basic concepts, which are important
to the original works’ better understanding, and which are typically explained only in a very
condensed way within the journal papers. I have no ambition to rephrase the papers’ original
results, but I would like to emphasize the main ingredients entering the game. These are chapters
2, 3, and partially 4. The aim here is to provide an understandable guideline even for a reader
who is not too familiar with the field. The rest of chapter 4, related to the Newman–Penrose
formalism, consists of results that have been finished recently, and their publication is a matter
of near future. The thesis is primarily formed by the original research papers [41–49] which
are listed in appendix A. For the readers’ convenience, the bibliographic data and very brief
comments, mainly pointing out various interesting observations based on the obtained results, are
also included.
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CHAPTER

2

THEORIES OF GRAVITATIONAL FIELD

This chapter summarizes the theories of gravity of my interest in terms of the corresponding
Lagrange densities, least action principle, and resulting field equations. The aim here is not to
present a comprehensive review including all necessary technical details. However, all the gravity
descriptions employed in the subsequent chapters and the directions in which they extend classical
Einstein’s theory will be introduced.

2.1 General relativity

There is no better way how to begin than with general relativity. Apart from thousands of research
papers analyzing its most suitable formulation and miscellaneous implications, many pedagogical
texts were written explaining the mysteries of the theory in the most understandable manner as
possible. At least a pair of canonical books must be quoted here [50, 51]. Sooner or later, the
reader of any textbook finds that there are the field equations in Einstein’s gravitation theory
heart, namely

Rab −
1

2
Rgab + Λgab =

8πG

c4
Tab , (2.1)

where Rab is the Ricci tensor given as a contraction of the Riemann tensor Rab = gcdRacbd, symbol
R encodes the scalar curvature corresponding to the trace of Rab, constant Λ is the cosmological
term, Tab stands for the energy-momentum tensor, and finally, c is the speed of light in vacuum
and G represents the Newtonian gravitational constant1. From the mathematical perspective, in
four dimensions (2.1) represents the second-order system of ten non-linear PDEs for the metric
tensor components gab. Even though to find its solution is typically highly non-trivial problem,
the fundamental principle is clear, namely the presence of matter and energy (RHS) tells the
spacetime geometry (LHS) how to curve itself, and simultaneously, the spacetime curvature forces
its sources to move. This again emphasize the inherent non-linearity of such a description.

Already in 1915 David Hilbert introduced an elegant way how to formulate the Einstein grav-
itation law — least action principle,

δS = 0 , (2.2)

1From now on the geometric units with c = 1 = G are used.
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with the action S given as a spacetime integral of the Lagrangian density L,

S =

∫
L d4x , where L =

[
1

16π
(R− 2Λ) + LM

] √
−g . (2.3)

Here, quantity g is the metric determinant and LM denotes matter contribution to the Lagrangian
density. It introduces the energy-momentum tensor via its variation as

Tab = − 2√
−g

δ(LM
√
−g)

δgab
. (2.4)

Simultaneously, the variation of scalar curvature and cosmological term combined with the square
root of metric determinant provides the geometric contribution. Performing straightforward cal-
culations, one thus find that least action principle (2.2) with the Einstein–Hilbert action (2.3)
leads to the field equations (2.1).

However, it is natural to ask whether the Einstein–Hilbert action is the only possibility leading
to the field equations (2.1), and vice versa, whether metric gab solving (2.1) can be also a solution
to some more complicated theory. The first answer is negative, but possible extensions of (2.3)
preserving the field equations are well factorized. In particular, the uniqueness of Einstein’s
theory is formulated in terms of the famous Lovelock’s theorem [23, 24]. In D = 4 the Einstein
gravitational law (2.1) represents the most general scenario described by the second-order field
equations, however, the action can be supplemented by specific combinations of curvature terms
which are only topological in four dimensions. These additional terms become non-trivial for
D > 4 leading to the classes of Lovelock’s theories preserving the second-order field equations. In
the sense of equation order, the Lovelock theories thus represent a very natural extension of GR
into higher dimensions. The first non-trivial example corresponds to the Einstein–Gauss–Bonnet
theory which also arises, for example, as the low energy limit of heterotic string theory, see [52,53].
To answer the second question concerning the uniqueness of GR solutions, one can find various
theories which can be solved by the Einstein spacetimes, see e.g., a subsequent section discussing
the case of quadratic gravity, or on a more general level, recent results about so-called universal
spacetimes [54,55].

The least action principle formulation of GR provides another great advantage, namely guide-
lines on how the potential extensions of Einstein’s theory could look like. In particular, three main
ingredients could be directly modified:

� The first one is the spacetime dimension. Einstein’s theory is naturally formulated in four
dimensions. Straightforwardly, the spacetime dimension can be considered as a free pa-
rameter D. The Einstein–Hilbert action in such a case gives the same form of the field
equations (2.1), and its uniqueness is still described by Lovelock’s results. Surprisingly, it is
even reasonable to study scenarios with D = 3, see e.g. [56–58], where the curvature is fully
determined by the field equations. However, theories within D ≥ 4 scenarios are studied in
the thesis.

� As the second option, it would be possible to adjust the geometric part of the action (2.3)
beyond adding up only the topological terms. The price to pay in four dimensions is that
the second-order of field equations is lost. In higher dimensions, the Lovelock gravities or
again some higher-order theories can be considered.

� The last natural possibility is to assume peculiar matter content and its coupling to the
spacetime curvature represented by the contribution LM into the overall Lagrange density.
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Of course, all the above possibilities can be combined. In the presented research, the vacuum
spacetimes are typically studied under the assumption of a generic dimension D and/or extended
geometric component of the action. In particular, I have been interested in arbitrary dimensional
GR, four-dimensional quadratic gravity, or higher-dimensional Einstein–Gauss–Bonnet theory, see
the next sections for more details.

2.2 Modified theories of gravity

In this section, the constraints of a generic quadratic gravity in D dimensions are summarized.
This theory corresponds to the natural extension of Einstein’s general relativity defined in terms
of the Lagrange density, where the most general case is introduced via an arbitrary function of
quadratic curvature invariants appearing in the action. Subsequently, the important subclass
of such theories simply arises including only a linear combination of the quadratic curvature
contractions in addition to the Einstein-Hilbert action.

Generic quadratic theories

In the generalD-dimensional case, the theory Lagrange density is given in terms of an arbitrary
differentiable function f depending on the Ricci scalar, the quadratic curvature invariants, and
LM encoding the matter contribution. The action can thus be written as

S =

∫ [
f
(
R, RcdR

cd, RcdefR
cdef

)
+ LM

]√
−g dDx . (2.5)

The shorthands for the curvature squares will be further used, namely

RcdR
cd ≡ R2

cd ≡ Ψ , and RcdefR
cdef ≡ R2

cdef ≡ Ω .

To derive the field equations of such theory least action principle (2.2) has to be employed,
i.e., constraints implied by the condition δS = 0 found. The first step in the δS calculation is

δS =

∫ [(
fR δR+ fΨ δΨ+ fΩ δΩ

)√
−g + f δ

√
−g +

δ(
√
−g LM )

δgab
δgab

]
dDx , (2.6)

where fR, fΨ, and fΩ are derivatives of the generic function f with respect to the curvature
invariants R, Ψ, and Ω, respectively. To resolve the δS = 0 constraint it is necessary to rewrite all
variations in (2.6) in terms of the metric variation δgab. The aim is not to go through all technical
details, which can be found e.g. in the handwritten lecture notes [61] or the introductory parts of
the diploma thesis [62, 63]. However, the most important final results should be presented. The
matter fields density variation remains the same as in the case of GR and can thus be related
to the energy-momentum tensor Tab directly via (2.4). All curvature variations δR, δΨ, and
δΩ can be expressed using a variation of the Riemann tensor and its specific contractions. To
eliminate derivatives of the metric variation the Leibniz rule and the Gauss theorem have to be
used analogously as in the GR case.

Evaluating least action principle (2.2) the resulting field equations of the generic quadratic
theory (2.5) explicitly become

fR Rab −
1

2
fgab + (gab □−∇a∇b) fR + 2

(
fΨ RacRb

c + fΩ RcdeaR
cde

b

)
+□ (fΨ Rab) + gab∇c∇d

(
fΨ Rcd

)
− 2∇c∇d

(
fΨ δdaR

c
b + 2fΩ Rc

ab
d
)
=

1

2
Tab , (2.7)
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where box stands for the d’Alembert operator, i.e., □ ≡ gcd∇c∇d. This is the fourth-order system
of 1

2D(D + 1) equations for the spacetime metric components gab. By prescribing free function f
the particularly interesting subclasses can be simply obtained.

f(R) theories

This type of theories is obtained as a generalization of the Einstein–Hilbert action linear
dependence on the Ricci scalar R to allow its arbitrary function. Even though these theories
are not of the thesis prime interest, except the case f = 1

κ

(
R− 2Λ0

)
+ αR2, they should be

mentioned since they play the important role in various studies going beyond the scheme of GR,
see e.g. [14] for more details and further references. Moreover, writing down the field equations
of f(R) theories becomes almost trivial using the above general expression (2.7). In particular, it
leads to the constraints

fR Rab −
1

2
fgab + (gab □−∇a∇b) fR =

1

2
Tab , (2.8)

obtained simply by setting fΨ = 0 = fΩ in (2.7) since the function f does not depend on the Ricci
and Riemann tensor squares, respectively.

Einstein–Gauss–Bonnet theory

The Einstein–Gauss–Bonnet gravity belongs to the already mentioned wider class of Lovelock’s
theories and represents their first non-trivial GR extension relevant within higher dimensions
starting from D ≥ 5. The generating function f takes the form

f(R,Ψ,Ω) = κ−1 (R− 2Λ0) + γ LGB , (2.9)

where the first classic combination of the Ricci scalar R and the theory constants Λ0 and κ
encodes the Einstein part, while the second part coupled via constant γ represents the lowest
order Lovelock correction given by the Gauss–Bonnet term LGB ,

LGB ≡ R2
cdef − 4R2

cd +R2 = Ω− 4Ψ +R2 . (2.10)

The complete action, which provides the second-order field equations, reads

S =

∫ [
κ−1 (R− 2Λ0) + γ LGB + LM

]√
−g dDx . (2.11)

In particular, the field equations of the Einstein–Gauss–Bonnet theory are given by evaluating (2.7)
and employing the substitution for f from (2.9), implying fΨ = −4γ, fΩ = γ and fR = 1

κ + 2γR,
namely

1

κ

(
Rab −

1

2
Rgab + Λ0 gab

)
+ 2γ Hab =

1

2
Tab . (2.12)

Here the tensorial quantity Hab denotes the Gauss–Bonnet contribution,

Hab ≡ RRab − 2Racbd R
cd +Racde Rb

cde − 2Rac Rb
c − 1

4
gab LGB , (2.13)

which trivially vanishes in four dimensions in agreement with the Lovelock theorem.
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Pure quadratic gravity in any dimension

As an important special case of the quadratic action (2.5), the simplest generic possibility
can be considered, which corresponds to the function f containing the standard Einstein part
and the only linear combination of the additional curvature squares. Moreover, it is useful to
explicitly separate the Gauss–Bonnet contribution by a suitable re-labeling of coupling constants,
which effectively replaces one of the squared terms in the linear combination, e.g., R2

cdef . The
generating function f can thus be written in the form

f =
1

κ

(
R− 2Λ0

)
+ αR2 + β R2

cd + γ LGB , (2.14)

which, inserted into the action definition, gives

S =

∫ [ 1
κ
(R− 2Λ0) + αR2 + βR2

cd + γ
(
R2

cdef − 4R2
cd +R2

)
+ LM

]√
−g dDx , (2.15)

where Λ0, κ, α, β, and γ are the theory constants. The derivatives of f with respect to the
curvature terms are

fR =
1

κ
+ 2αR+ 2γR , fΨ = β − 4γ , fΩ = γ , (2.16)

and their substitution into the general expression (2.7) leads2 to the D-dimensional pure quadratic
gravity field equations, namely

1

κ

(
Rab −

1

2
Rgab + Λ0gab

)
+ 2αR

(
Rab −

1

4
Rgab

)
+ (2α+ β)

(
gab□−∇a∇b

)
R

+ 2γ

[
RRab − 2RacbdR

cd +RacdeRb
cde − 2RacRb

c − 1

4
gab

(
R2

cdef − 4R2
cd +R2

)]
+ β□

(
Rab −

1

2
Rgab

)
+ 2β

(
Racbd −

1

4
gabRcd

)
Rcd =

1

2
Tab . (2.17)

Pure quadratic gravity in D = 4

In four dimensions the Gauss–Bonnet contribution becomes trivial by the definition and the
parameter γ in (2.17) can be effectively set to zero. Moreover, another constant re-labeling can
be used to rewrite the four-dimensional quadratic gravity action as

S =

∫ [
1

k
(R− 2Λ)− aCabcdC

abcd + bR2 + LM

]√
−g d4x , (2.18)

where Cabcd is the Weyl tensor, and k, a and b are coupling constants3, see again, e.g., [19–22].
The field equations (2.17) with proper constant identification take the form

1

k

(
Rab −

1

2
Rgab + Λgab

)
− 4aBab + 2b

(
Rab −

1

4
Rgab + gab□−∇a∇b

)
R =

1

2
Tab , (2.19)

2Moreover, it is necessary to use the Bianchi identities and their contractions together with the commutator of
covariant derivatives to rearrange several terms to obtain exactly this form of the field equations which is similar
to that presented, e.g., in [59, 60].

3Here the constants k, a and b are denoted a bit inconsistently with respect to the previous paragraphs to avoid
misunderstanding in the context of the D = 4 Newman–Penrose formalism discussed in section 4.1, where the Greek
letters traditionally stand for the spin coefficients.
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where Bab stands for the Bach tensor defined as

Bab =

(
∇c∇d +

1

2
Rcd

)
Cacbd . (2.20)

In four dimensions, the Bach tensor can be also specified via its properties, namely, it is symmetric,
trace-less, covariantly constant, and conformally re-scaled,

Bab = Bba , Babg
ab = 0 , Bab;c g

bc = 0 , g̃ab = Ω2gab ⇒ B̃ab = Ω−2Bab . (2.21)

One of the goals has been to formulate the quadratic gravity using the Newman–Penrose-
like approach, see section 4.1. Following the GR strategy, where the field equations provide
the algebraic constraint between the Ricci curvature and matter contribution. Therefore, it is
beneficial to separate the Ricci tensor in the system (2.19) to get(

1

k
+ 2bR

)
Rab − 2aRcdCacbd + Zab =

1

2
Tab , (2.22)

where the tensorial quantity Zab is a shorthand for

Zab = −1

k

(
1

2
Rgab − Λgab

)
− 4a∇c∇dCacbd − 2b

(
1

4
Rgab − gab□+∇a∇b

)
R . (2.23)

Finally, it is worth mentioning the important subclass of solutions to (2.19), namely, the
vacuum spacetimes with constant scalar curvature R = const. In general, the field equations imply

R+
1

2
kT = 6bk□R+ 4Λ , (2.24)

where T stands for the trace of Tab. In the vacuum case with T = 0 and R = const it thus becomes

R = 4Λ , (2.25)

and the field equations (2.19) can be rewritten as(
1

k
+ 8bΛ

)
(Rab − Λ gab) = 4aBab . (2.26)

Their analysis has to be further performed concerning the specific value of the constant combi-
nation 1

k + 8bΛ and a. The results in subsection A.1.3 discuss these possibilities in detail and
emphasize case 1

k + 8bΛ = 0, while in section A.2, the generic case is applied to the spherical
geometries.



CHAPTER

3

GEOMETRIES ADMITTING PRIVILEGED

NULL CONGRUENCES

The extreme importance of various additional assumptions restricting the studied geometry has
been already mentioned in the introduction. These should simplify the problem of solving field
equations so that there is a prospect of finding their exact solution. Specific properties can be
required, for example, from the null vector fields admitted in the spacetime. At this place, the two
significant situations, where the null congruences take the crucial role, are briefly summarized. In
particular, the first one is related to the algebraic structure of tensors and the second one lies in
the geometric behavior of geodesics generated by a particular null vector field.

3.1 Algebraic structure of the Weyl tensor

Analysis of the Weyl tensor algebraic structure has become a powerful tool within Einstein’s GR
and seems to be very important within the modified theories as well. The Weyl tensor Cabcd is
defined as a traceless part of the Riemann tensor. In D dimensions, it reads

Cabcd = Rabcd −
1

D − 2
(gacRbd − gadRbc + gbdRac − gbcRad) +

R (gacgbd − gadgbc)

(D − 1)(D − 2)
. (3.1)

In GR, it represents the component of spacetime curvature with subtracted direct influence of
the matter due to its coupling to the geometry via Einstein’s field equations. In particular, the
Ricci scalar is replaced by the trace of Einstein’s equations (2.1), i.e., R = 2

D−2 (DΛ− 8π T ) in
arbitrary dimension D. Then using the field equations, the Ricci tensor can be rewritten into the
form

Rab =
2

D − 2
Λ gab + 8π

(
Tab −

1

D − 2
T gab

)
. (3.2)

Therefore, the Weyl tensor in Einstein’s theory is interpreted as a free gravitational field that
reflects the inherent properties of the spacetime, subsequently related for example to the tidal
deformations and asymptotic structure. Moreover, important classes of GR solutions, e.g., black-
hole spacetimes or exact models of gravitational waves, can be identified in terms of the Weyl
tensor. The key concept within such description is the Weyl tensor algebraic type which can be
introduced as a purely geometric property irrespective of any particular theory and spacetime
dimension.
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Here follows a brief comment on the algebraic classification scheme based on the boost-weight
decomposition, see [64–66], which applies to a general tensor in D dimensions. In the four-
dimensional Weyl case, it becomes similar to other approaches listed e.g. in [25].

The main ingredient is a real1 null frame {k, l, mi} satisfying the normalization

k · l = −1 , mi ·mj = δij , (3.3)

with other combinations vanishing, which corresponds to the metric expressed as

gab = −2k(alb) + δijm
i
am

j
b . (3.4)

Figure 3.1: In D-dimensional spacetime a real null frame consists of a pair of null vectors k and l
supplemented by D − 2 spacelike vectors mi.

The mutual relation between two different null frames is given in terms of the Lorentz trans-
formations, namely

� null rotation with k fixed which is parametrized by D − 2 real parameters Li

k′ = k , l′ = l+
√
2Limi + |L|2 k , m′

i = mi +
√
2Li k , (3.5)

� null rotation with l fixed which is parametrized by D − 2 real parameters Ki

k′ = k +
√
2Kimi + |K|2 l , l′ = l , m′

i = mi +
√
2Ki l , (3.6)

� boost in the k − l plane which is parametrized by a real number B

k′ = B k , l′ = B−1 l , m′
i = mi , (3.7)

� spatial rotation in the space of mi which is parametrized by an orthonormal matrix Φi
j

k′ = k , l′ = l , m′
i = Φi

j mj . (3.8)

The parameters satisfy Li = Li, K
i = Ki due to (3.3) with |L|2 ≡ LiLi, |K|2 ≡ KiKi.

1In four dimensions the complex null frame {k, l, m, m̄} is typically employed, see the end of this paragraph
and section 4.1 of the subsequent chapter.
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To fully characterize the Weyl tensor and its algebraic type the following frame projections
can be introduced,

Ψ0ij = Cabcd ka mb
i k

c md
j ,

Ψ1ijk = Cabcd ka mb
i m

c
j m

d
k , Ψ1T i = Cabcd ka lb kc md

i

Ψ2ijkl = Cabcd ma
i m

b
j m

c
k m

d
l , Ψ2S = Cabcd ka lb lc kd ,

Ψ2ij = Cabcd ka lb mc
i m

d
j , Ψ2T ij = Cabcd ka mb

i l
c md

j ,

Ψ3ijk = Cabcd la mb
i m

c
j m

d
k , Ψ3T i = Cabcd la kb lc md

i ,

Ψ4ij = Cabcd la mb
i l

c md
j ,

(3.9)

and moreover, also their irreducible components

Ψ̃1ijk = Ψ1ijk − 2

D − 3
δi[jΨ1Tk] ,

Ψ̃2T (ij) = Ψ2T (ij) −
1

D − 2
δijΨ2S ,

Ψ̃2ijkl = Ψ2ijkl − 2

D − 4

(
δikΨ̃2T (jl) + δjlΨ̃2T (ik) − δilΨ̃2T (jk) − δjkΨ̃2T (il)

)
−

4 δi[kδl]j

(D − 2)(D − 3)
Ψ2S ,

Ψ̃3ijk = Ψ3ijk − 2

D − 3
δi[jΨ3Tk] ,

(3.10)

which will identify specific algebraic subtypes. These frame components are sorted with respect to
their boost weights. In particular, any quantity T has a boost weight w when it transforms under
the Lorentz boost (3.7) as T ′ = Bw T . Obviously, the components Ψ0ij has the boost weight 2
while Ψ4ij is of the boost weight −2.

Finally, the Weyl tensor classification scheme is built upon the specific values of the boost
weights present in the frame decomposition (3.9), for detailed invariant description and technical
nuances see [66]. For practical purposes the frame null vector k would be considered as aligned
with the Weyl tensor algebraic structure, i.e., it corresponds to a (multiple) Weyl aligned null
direction (WAND). If such a vector exists then such identification can be always achieved by a
suitable Lorentz transformation, see appendix of section A.1.1. With k being WAND the principal
algebraic types and subtypes are directly defined in terms of (non-)vanishing Weyl scalars (3.9)
and (3.10), respectively, see table 3.1. Moreover, the secondary alignment types can be discussed
concerning the null vector l. For example, when multiplicities of both k and l are two, i.e., the
only present boost weight is zero, the Weyl tensor is of algebraic type D.

This classification can be also applied to the traceless Ricci tensor, i.e., Rab ≡ Rab − 1
D Rgab.

However, it is not crucial at this moment, and therefore only its components ΦAB with respect to
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type vanishing components

G ̸ ∃ frame ⇒ Ψ0ij = 0 for all i, j (possible only in D > 4)

I Ψ0ij

I(a) Ψ0ij Ψ1T i

I(b) Ψ0ij Ψ̃1ijk

II Ψ0ij Ψ1T i Ψ̃1ijk

II(a) Ψ0ij Ψ1T i Ψ̃1ijk Ψ2S

II(b) Ψ0ij Ψ1T i Ψ̃1ijk Ψ̃2T (ij)

II(c) Ψ0ij Ψ1T i Ψ̃1ijk Ψ̃2ijkl

II(d) Ψ0ij Ψ1T i Ψ̃1ijk Ψ2ij

III Ψ0ij Ψ1T i Ψ̃1ijk Ψ2S Ψ̃2T (ij) Ψ̃2ijkl Ψ2ij

III(a) Ψ0ij Ψ1T i Ψ̃1ijk Ψ2S Ψ̃2T (ij) Ψ̃2ijkl Ψ2ij Ψ3T i

III(b) Ψ0ij Ψ1T i Ψ̃1ijk Ψ2S Ψ̃2T (ij) Ψ̃2ijkl Ψ2ij Ψ̃3ijk

N Ψ0ij Ψ1T i Ψ̃1ijk Ψ2S Ψ̃2T (ij) Ψ̃2ijkl Ψ2ij Ψ3T i Ψ̃3ijk

O Ψ0ij Ψ1T i Ψ̃1ijk Ψ2S Ψ̃2T (ij) Ψ̃2ijkl Ψ2ij Ψ3T i Ψ̃3ijk Ψ4ij

D Ψ0ij Ψ1T i Ψ̃1ijk Ψ3T i Ψ̃3ijk Ψ4ij

Table 3.1: The Weyl tensor principal algebraic types and subtypes defined via null alignment of
the frame vectors. The direct relation between the Weyl scalars and particular algebraic types
corresponds to the frame aligned with the Weyl tensor algebraic structure. The algebraic subtypes
can be further combined.

the null frame {k, l, mi} are defined, namely

Φ00 =
1

2
Rab k

a kb ,

Φ01i =
1√
2
Rab k

a mb
i ,

Φ11 =Rab k
a lb , Φ02ij = Rab m

a
i m

b
j ,

Φ12i =
1√
2
Rab l

a mb
i ,

Φ22 =
1

2
Rab l

a lb ,

(3.11)

which come in useful later. They are again sorted by their boost weights ranging from 2 to −2.

All the above frame projections are adjusted onto arbitrary D-dimensional geometry. In four
dimensions, it is canonical to replace a pair of the real spatial vectors m2 and m3 by their complex
combinations m and m̄, respectively,

m ≡ 1√
2
(m2 − im3) , m̄ ≡ 1√

2
(m2 + im3) , (3.12)
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and define equivalent expressions for the Weyl tensor projections as

Ψ0 =Cabcdk
ambkcmd ,

Ψ1 =Cabcdk
albkcmd ,

Ψ2 =Cabcdk
ambm̄cld =

1

2
Cabcdk

alb(kcld −mcm̄d) ,

Ψ3 =Cabcdl
akblcm̄d ,

Ψ4 =Cabcdl
am̄blcm̄d ,

(3.13)

and for the Ricci tensor (or equivalently its traceless part Rab = Rab − 1
4Rgab) as

Φ00 =
1

2
Rabk

akb ,

Φ01 =
1

2
Rabk

amb , Φ10 =
1

2
Rabk

am̄b ,

Φ11 =
1

4
Rab

(
kalb +mam̄b

)
, Φ02 =

1

2
Rabm

amb , Φ20 =
1

2
Rabm̄

am̄b ,

Φ12 =
1

2
Rabl

amb , Φ21 =
1

2
Rabl

am̄b ,

Φ22 =
1

2
Rabl

alb .

(3.14)

This has proved to be useful in various applications within D = 4 general relativity, see e.g.
[25, 67, 68]. In the thesis, these quantities will be also naturally employed within the generalized
Newman–Penrose formalism discussed in section 4.1.

In four dimensions both definitions have to be compatible, again see appendix in section A.1.1.
In particular, the Weyl tensor (3.9) has only two real independent components of each boost
weight which thus correspond to the real and imaginary parts of (3.13), namely

Ψ0 = Ψ022 − i Ψ023 ,

Ψ1 =
1√
2
(Ψ1T 2 − i Ψ1T 3) ,

Ψ2 = −1

2
(Ψ22323 + iΨ223) ,

Ψ3 =
1√
2
(Ψ3T 2 + iΨ3T 3) ,

Ψ4 = Ψ422 + iΨ423 .

(3.15)

The analogous identification can be made between the Ricci tensor components (3.11) and (3.14).

The Weyl tensor components analysis is crucial in A.1.2 where the algebraic classification of
non-twisting and shear-free geometries is performed. Moreover, it enters also all other results
since, e.g., in A.1.1 the Weyl scalars encode relative deformations of the geodesic congruence, or
in section A.2 where the Weyl type D black-hole geometries are investigated.
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3.2 Non-twisting geometries and adapted coordinates

In this section, the geometries admitting a non-twisting null affinely parametrized geodesic con-
gruence in any dimension D are described. These manifolds are defined without any assumption
on a particular theory, i.e., they are specified in purely geometric terms of the optical scalars.
The non-twisting assumption inevitably results in the induced null foliation of the manifold and
it introduces the natural parametrization using adapted coordinates. This is extremely important
for studying various situations where the explicit knowledge of the spacetime null structure is
appreciated. As an example, one can think about radiative processes including exact models of
gravitational waves, or quite recently about the concept of isolated horizons [69] which description
also naturally fits into the form of non-twisting line element in adapted coordinates. A detailed
list of explicit applications within GR can be found in [25]. Interestingly, even the Kerr rotating
black hole was identified within the non-twisting class [70–72]. Finally, it is also worth introducing
two important subclasses of the non-twisting geometries with additionally vanishing shear, namely
the expanding Robinson-Trautman class and the non-expanding Kundt class [35–38]. Within the
presented research the particular members of non-twisting geometries typically correspond to the
metric ansatz which is further restricted by the field equations of the gravity theory.

Generic non-twisting geometries
In the previous section, the null frame {k, l, mi} composed by a pair of null vectors k and l

and D − 2 orthonormal spacelike vectors mi was employed to study the algebraic properties of
tensors in D dimensions. Moreover, it is also very natural to describe the behavior of geodesic in
terms of the null frame, see e.g. [66,73,74]. The key quantities entering such analysis are so-called
optical scalars. In particular, the covariant derivative of frame vector k can be decomposed as

ka;b = K11kakb +K10kalb +K1ikam
i
b +Ki1m

i
akb +Ki0m

i
alb +Kijm

i
am

j
b , (3.16)

where the coefficients2 are inversely given by

K11 = ka;bl
alb , K10 = ka;bl

akb , K1i = −ka;bl
amb

i ,

Ki1 = −ka;bm
a
i l

b , Ki0 = −ka;bm
a
i k

b , Kij = ka;bm
a
im

b
j .

(3.17)

The condition on k to generate affinely parameterized geodesic, i.e., to satisfy ka;bk
b = 0, cor-

responds to Ki0 = 0 = K10, while the coefficients Kij remain non-trivial and encode geometric
properties of the integral curves generated by k, see figure 3.2.

In particular, the antisymmetric part, traceless symmetric part, and the trace of the optical
matrix Kij can be simply identified as

Aij = K[ij] , σij = K(ij) −
TrKij

D − 2
δij , Θ =

TrKij

D − 2
, (3.18)

corresponding to the twist matrix, shear matrix, and expansion scalar, respectively. These objects
become trivial if, and only if, the related scalars expressed using derivatives of k are vanishing as
well,

A2 = −k[a;b]k
a;b , σ2 = k(a;b)k

a;b − 1

D − 2
(ka;a)

2 , Θ =
1

D − 2
ka;a . (3.19)

These are the classic optical scalars, i.e., twist, shear, and expansion. Their geometric effect on
the null congruence deformation is qualitatively illustrated in figure 3.3.

2There are various notations for these coefficients. In D = 4 they represent the standard NP scalars, see (4.4),
while for D > 4 they were defined and extensively used in [74].
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Figure 3.2: The affinely parametrized null geodesic vector field k generates congruence of inte-
gral curves whose geometric behavior is described by the coefficient Kij , more precisely, by its
irreducible parts corresponding to the optical scalars.

Figure 3.3: Schematic visualization of the optical scalars effects on a null geodesic congruence in
terms of the twist (left), shear (middle), and expansion (right).

The very important property of the non-twisting geometries is the existence of the natural null
foliation of a manifold. This is related to the Frobenius theorem, see e.g. [25], which states that
a null congruence generated by k is (locally) hypersurface-orthogonal if, and only if,

k[a;bkc] = 0 . (3.20)

This condition applied in the case of null geodesics can be expressed using the twist matrix Aij ,
namely

k[a;bkc] =
1

3
Aijm

i
[am

j
bkc] , (3.21)

and the contraction with any null vector lc gives k[a;bkc]l
c = − 1

3Aijm
i
am

j
b which immediately

implies that the vanishing twist matrix leads to the fulfillment of the Frobenius condition (3.20).
Moreover, in the case of non-twisting D-dimensional geometries it is natural to introduce the

adapted coordinates (r, u, xp), where u = const labels null hypersurfaces normal to k, coordinate
r is the affine parameter along null geodesics generated by k, and xp cover the transverse (D − 2)-
dimensional space with u = const and r = const, see figure 3.4.

The adapted coordinates can be also introduced on a quite intuitive level. Begin with any
coordinates xa, where a = 0, . . . , D − 1, and arbitrary worldline xa(u). Then a null hypersurface
can be constructed at every point of xa(u). These surfaces are thus uniquely identified by the value
u(xa) = const and the parameter u is taken as a new coordinate. It can be shown that tangent (and
simultaneously) normal to these hypersurfaces, denoted as k, generates a null geodesic congruence.
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Figure 3.4: The non-twisting geometry is described in terms of adapted coordinates (r, u, xp).
The coordinate u determines a null hypersurface with k being normal, r is the affine parameter
along congruence generated by k, and the transverse space with fixed u = const and r = const is
spanned by D − 2 coordinates xp.

The affine parameter r along such a congruence represents the second coordinate, i.e., k = ∂r.
Finally, there remain D − 2 coordinates xp of the original D-dimensional set xa. In technical
terms, this construction restricts the non-twisting line element to the form

ds2 = gpq(r, u, x) dx
pdxq + 2guq(r, u, x) dx

qdu− 2dudr + guu(r, u, x) du
2 , (3.22)

with p, q = 2, . . . , D − 1 and gpq describing the transverse Riemann space geometry. Notice that
the affine character of r corresponds to gur = −1 and can be achieved by a suitable transformation.
Since the coefficients Kij , see (3.17), take the form

Kij =
1

2
gpq,r m

p
im

q
j with p, q = 2, . . . , D − 1 , (3.23)

the optical scalars (3.19) for the privileged vector field k become

A2 = 0 , σ2 =
1

4
gpmgqngpq,rgmn,r − (D − 2)Θ2 , Θ =

1

2(D − 2)
gpqgpq,r , (3.24)

which confirms the initial constraint on k being non-twisting. A fully general form of the cur-
vature tensors for the line element 3.22 was calculated in the doctoral thesis [75] which allowed
straightforward analysis of its particular (shear-free) subclasses within my subsequent works.

Moreover, assuming the vanishing shear σ the two important subclasses defined with respect to
the value of expansion Θ are distinguished, see subsequent paragraphs. The shear-free condition
σij = 0 also enables to express r-derivative of the transverse metric gpq in terms of the expansion,

gpq,r = 2Θ gpq , (3.25)

which can be simply integrated to get

gpq(r, u, x) = exp

(
2

∫
Θ(r, u, x) dr

)
hpq(u, x) , (3.26)

and thus to fully separate the r-dependence of the transverse metric.
Finally, it is useful to introduce two realizations of the suitable null frame {k, l, mi} supple-

menting the non-twisting vector field k and satisfying the normalization conditions (3.3), namely
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� possibility with simple l

k = ∂r , l =
1

2
guu∂r + ∂u , mi = gupm

p
i ∂r +mp

i ∂p , (3.27)

� possibility with simple mi

k = ∂r , l = −1

2
grr∂r + ∂u − grp∂p , mi = mp

i ∂p , (3.28)

which are obviously related by the null rotation with k fixed (3.5) and parameters Li =
1√
2
gupm

p
i

leading from (3.28) to (3.27).

Kundt class

The Kundt family of geometries admits all the optical scalars vanishing. The condition (3.26)
thus implies that the transverse space metric gpq has to be r-independent, i.e., the complete line
element (3.22) becomes

ds2Kundt = hpq(u, x) dx
pdxq + 2guq(r, u, x) dx

qdu− 2dudr + guu(r, u, x) du
2 . (3.29)

Spacetimes of this form play important role in standard GR as well as in its extensions allowing
both D > 4 and D = 3 [56, 58, 76–79], or in modified theories, e.g., on a very general level of
so-called universal and almost universal spacetimes [54, 55]. To be more explicit the GR Kundt
solutions contain various direct product geometries, non-expanding gravitational waves, or space-
times with constant or vanishing scalar curvature invariants, their comprehensive list can be found
in [25,26].

Robinson–Trautman class

This is defined as geometries admitting the non-twisting, shear-free, but expanding null geodesic
congruence. From (3.22) and (3.26) it follows that the Robinson–Trautman line element takes the
form

ds2RT =exp

(
2

∫
Θ(r, u, x) dr

)
hpq(u, x) dx

pdxq

+ 2guq(r, u, x) dx
qdu− 2dudr + guu(r, u, x) du

2 . (3.30)

It contains various particularly interesting solutions within classic four-dimensional general rel-
ativity such as, for example, the Schwarzschild black hole, its Reissner–Nordström or Vaidya
generalizations, accelerating black holes described by the C-metric, or spherical type N sandwich
gravitational waves and their impulsive limits, see again [25, 26]. This class has been extensively
studied also in the GR higher-dimensional extension [80–82], where, surprisingly, the solution space
becomes much smaller admitting only the Weyl type D solutions with absence of the C-metric.

At the end of this paragraph it is worth mentioning the alternative metric form to (3.30) which
relates the Robinson–Trautman and Kundt class in terms of the suitable conformal rescaling. In
particular, the line element

ds2 = Ω2(r, u, x) ds2Kundt (3.31)

can be considered which belongs to the Robinson–Trautman class if the conformal factor Ω depends
on the r coordinate, or it remains the Kundt one if Ω is r-independent. All the details can be found
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in section A.1.3. This can be illustrated in the case of static spherically symmetric geometries,
see section A.2, which are typically introduced as

ds2 = −h(r̄) dt2 +
dr̄2

f(r̄)
+ r̄2

(
dθ2 + sin2 θ dϕ2

)
. (3.32)

This line element can be put into the Robinson–Trautman form,

ds2RT = Ω2(r̃)
(
dθ2 + sin2 θ dϕ2

)
− 2 dudr̃ +H(r̃) du2 , (3.33)

applying the transformation

r̄ = Ω(r̃) , t = u−
∫

dr̃

H(r̃)
, (3.34)

related to the original metric functions in (3.32) by

H = −h(r̄) , Ω,r̃ =

√
f(r̄)

h(r̄)
. (3.35)

Finally, pulling out the factor Ω in (3.33) followed by the simple transformation r =
∫
Ω−2(r̃) dr̃,

and identificationH ≡ Ω−2 H, lead to the spherically symmetric geometries (3.32) in the conformal-
to-Kundt form,

ds2RT = Ω2(r)
[
dθ2 + sin2 θ dϕ2 − 2 dudr +H(r) du2

]
, (3.36)

which has the form of relation (3.31) announced at the beginning. Surprisingly, this line element
allows analytical discussion of the spherical solutions to quadratic gravity enormously simplifying
the field equations, see section A.2.



CHAPTER

4

ANALYSIS OF EXACT SPACETIMES

This chapter presents two methods suitable for exact spacetime analysis. Its first section describes
original results discussing the Newman–Penrose formalism in quadratic gravity which should be
published in near future and then would fit into section A.1. The second part of this chapter then
unifies invariant description of the geodesic deviation irrespectively of a specific gravity theory
and serves as a starting point for various analyses within the subsequent papers.

4.1 Newman–Penrose formalism in quadratic gravity

The Newman–Penrose formalism in GR is an excellent application of the general concept of tetrad
description using the advantages of null frames. It naturally interplays with methods of algebraic
classification and characterization of null geodesic congruences mentioned in the previous chapter.
Therefore, it proves to be useful in various situations within GR and its extension into higher
dimensions, see e.g. [25, 74, 83, 84]. The aim here is to adapt this approach also for the quadratic
gravity in four dimensions. The preliminary form of these results is a part of the diploma thesis [85]
and the extended version would be published as [86].

The key ingredient of the Newman–Penrose approach is the null orthonormal frame {k , l ,m , m̄}
already mentioned in section 3.1. In the convention1 of [25], it is normalized as

k · l = −1 , m · m̄ = 1 , (4.1)

while other combinations are vanishing. This is equivalent to the metric form

gab = −2k(alb) + 2m(am̄b) . (4.2)

Freedom in the frame choice is described by the Lorentz transformations (3.5)–(3.8) adjusted to
the complex vectors m and m̄, see [25]. To decompose covariant derivatives of the frame vectors,
it is useful to define specific symbols for the covariant derivative projected into the frame vector
directions, namely

D = ka∇a , ∆ = la∇a , δ = ma∇a , δ̄ = m̄a∇a . (4.3)

1Beware of other possibilities typically varying in particular signs, e.g. [68, 87].



22 4 ANALYSIS OF EXACT SPACETIMES

To characterize the action of the above NP derivatives again onto the frame vectors the spin
coefficients are defined as

κ = −ka;bm
akb , ν = la;bm̄

alb , ϵ =
1

2

(
ma;bm̄

akb − ka;bl
akb

)
,

ρ = −ka;bm
am̄b , µ = la;bm̄

amb , β =
1

2

(
ma;bm̄

amb − ka;bl
amb

)
,

σ = −ka;bm
amb , λ = la;bm̄

am̄b , γ =
1

2

(
la;bk

alb − m̄a;bm
alb

)
,

τ = −ka;bm
alb , π = la;bm̄

akb , α =
1

2

(
la;bk

am̄b − m̄a;bm
am̄b

)
.

(4.4)

The remaining crucial NP quantities are the independent frame components of the Weyl tensor
(3.13) and the projections of the Ricci tensor (3.14). Then the quadratic gravity field equations
(2.22), expressed in terms of the null frame {k , l ,m , m̄}, take the form

1

2
T(0)(0) =− 4a

[
Φ20Ψ0 +Φ02Ψ̄0 − 2Φ10Ψ1 − 2Φ01Ψ̄1 +Φ00(Ψ2 + Ψ̄2)

]
+ 2

(
1

k
+ 2bR

)
Φ00 + Z(0)(0) , (4.5)

1

2
T(0)(1) =− 4a

[
Φ21Ψ1 +Φ12Ψ̄1 − 2Φ11(Ψ2 + Ψ̄2) + Φ01Ψ3 +Φ10Ψ̄3

]
+

(
1

k
+ 2bR

)(
2Φ11 −

R

4

)
+ Z(0)(1) , (4.6)

1

2
T(0)(2) =− 4a

[
Φ21Ψ0 − 2Φ11Ψ1 +Φ02Ψ̄1 +Φ01(Ψ2 − 2Ψ̄2) + Φ00Ψ̄3

]
+ 2

(
1

k
+ 2bR

)
Φ01 + Z(0)(2) , (4.7)

1

2
T(1)(1) =− 4a

(
Φ22(Ψ2 + Ψ̄2)− 2Φ12Ψ3 − 2Φ21Ψ̄3 +Φ02Ψ4 +Φ20Ψ̄4

)
+ 2

(
1

k
+ 2bR

)
Φ22 + Z(1)(1) , (4.8)

1

2
T(1)(2) =− 4a

[
Φ22Ψ1 +Φ12(−2Ψ2 + Ψ̄2) + Φ02Ψ3 − 2Φ11Ψ̄3 +Φ10Ψ̄4

]
+ 2

(
1

k
+ 2bR

)
Φ12 + Z(1)(2) , (4.9)

1

2
T(2)(2) =− 4a

[
Φ22Ψ0 − 2Φ12Ψ1 +Φ02(Ψ2 + Ψ̄2)− 2Φ01Ψ̄3 +Φ00Ψ̄4

]
+ 2

(
1

k
+ 2bR

)
Φ02 + Z(2)(2) , (4.10)

1

2
T(2)(3) =− 4a

[
Φ21Ψ1 +Φ12Ψ̄1 − 2Φ11(Ψ2 + Ψ̄2) + Φ01Ψ3 +Φ10Ψ̄3

]
+

(
1

k
+ 2bR

)(
2Φ11 +

R

4

)
+ Z(2)(3) , (4.11)

where the symbols T(c)(d) and Z(c)(d) stand for the components of the energy-momentum tensor Tab

and the tensor Zab, see (2.23), projected onto the null frame {k , l ,m , m̄}, e.g., Z(0)(0) = Zabk
akb

and Z(1)(2) = Zabl
amb etc. In principle, the above system of equations can be understood as

algebraic constraints on the Ricci tensor components ΦAB . Such constraints have to be further
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combined with the standard geometric conditions, i.e., the Ricci and Bianchi identities, see [25]
for their list compatible with the assumed convention. In fact, the same approach is applied within
Einstein’s general relativity, where the Ricci tensor components are also directly restricted by the
field equations. The GR case is given by a = 0 = b, the scalar curvature becomes R = 4Λ− k

2 T ,
and the above constrains are significantly simplified.

Finally, to be fully explicit all relevant projections of the Zab tensor have to be expressed, i.e.,

Z(0)(0) =− 4aBZ
(0)(0) + 2b

[
(ϵ+ ϵ̄)DR−DDR− κ̄δR− κδ̄R

]
, (4.12)

Z(0)(1) =− 4aBZ
(0)(1) +

1

2k
(R− 2Λ) + 2b

[ 1

4
R2 − (γ + γ̄ − µ− µ̄)DR

− (ρ+ ρ̄)∆R+∆DR+ (α− β̄ + τ̄)δR− δδ̄R

+ (ᾱ− β + τ)δ̄R− δ̄δR
]
, (4.13)

Z(0)(2) =− 4aBZ
(0)(2) + 2b [π̄DR−DδR− κ∆R+ (ϵ− ϵ̄)δR] , (4.14)

Z(1)(1) =− 4aBZ
(1)(1) + 2b

[
−(γ + γ̄)∆R−∆∆R+ νδR+ ν̄δ̄R

]
, (4.15)

Z(1)(2) =− 4aBZ
(1)(2) + 2b [ν̄DR− τ∆R−∆δR+ (γ − γ̄)δR] , (4.16)

Z(2)(2) =− 4aBZ
(2)(2) + 2b

[
λ̄DR− σ∆R+ (−ᾱ+ β)δR− δδR

]
, (4.17)

Z(2)(3) =− 4aBZ
(2)(3) −

1

2k
(R− 2Λ) + 2b

[
− 1

4
R2 + (γ + γ̄ − µ̄)DR

−D∆R+ (ρ− ϵ− ϵ̄)∆R−∆DR+ (−α+ β̄ + π − τ̄)δR

+ (π̄ − τ)δ̄R+ δ̄δR
]
, (4.18)

where BZ
(c)(d) represents the Ricci-independent part of the Bach tensor corresponding to the second

covariant derivative of the Weyl tensor, namely BZ
ab = ∇c∇dCacbd. After quite straightforward

and very long calculation this explicitly gives2

• the kk-projection of BZ
ab, i.e., B

Z
(0)(0) = BZ

abk
akb :

BZ
(0)(0) =δ̄δ̄Ψ0 −Dδ̄Ψ1 − δ̄DΨ1 +DDΨ2 + λDΨ0 + σ̄∆Ψ0 + (2π − 7α− β̄)δ̄Ψ0

+ (5α+ β̄ − 3π)DΨ1 − κ̄∆Ψ1 − σ̄δΨ1 + (3ϵ+ ϵ̄+ 7ρ)δ̄Ψ1

− (ϵ+ ϵ̄+ 6ρ)DΨ2 + κ̄δΨ2 − 5κδ̄Ψ2 + 4κDΨ3

+Ψ0[κ̄ν + 4α(3α+ β̄)− (ϵ+ ϵ̄+ 3ρ)λ+ π(π − 7α− β̄) + σ̄(µ− 4γ) + Dλ− 4δ̄α+ δ̄π]

+ 2Ψ1[2κλ+ κ̄(γ − µ) + ρ(5π − 9α− 2β̄) + σ̄(β + 2τ) + ϵ(2π − 4α− β̄) + ϵ̄(π − α)

+ Dα−Dπ + δ̄ϵ+ 2δ̄ρ]

+ 3Ψ2[κ(3α+ β̄ − 3π)− κ̄τ + ρ(ϵ+ ϵ̄+ 3ρ)− σσ̄ −Dρ− δ̄κ]

+ 2Ψ3[κ(ϵ− ϵ̄− 5ρ) + κ̄σ +Dκ] + 2Ψ4κ
2 + c.c. , (4.19)

2The calculation of BZ
(c)(d)

was performed independently by each author of [86]. Three different tools for the

computer symbolic manipulations were employed. Moreover, the expressions seem to be compatible with those
of [88] derived within the GHP formalism and the Weyl gravity.
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• the kl-projection of BZ
ab, i.e., B

Z
(0)(1) = BZ

abk
alb :

BZ
(0)(1) =δ̄∆Ψ1 −D∆Ψ2 − δ̄δΨ2 +DδΨ3 − λ∆Ψ0 − νδ̄Ψ0

+ 2νDΨ1 + (2π − α+ β̄)∆Ψ1 + λδΨ1 + (2µ− µ̄− 2γ)δ̄Ψ1

+ (µ̄− 3µ)DΨ2 + (2ρ− ϵ− ϵ̄)∆Ψ2 + (α− β̄ − 2π)δΨ2 + (π̄ + 3τ)δ̄Ψ2

+ (2β − π̄ − 2τ)DΨ3 − κ∆Ψ3 + (ϵ+ ϵ̄− 2ρ)δΨ3 − 2σδ̄Ψ3 + σDΨ4 + κδΨ4

+Ψ0[λ(4γ − µ+ µ̄) + ν(α− β̄ − 2π)− δ̄ν]

+ 2Ψ1[γ(α− β̄ − 2π)− λ(β + π̄ + 2τ) + µ(β̄ − α+ 2π) + µ̄(α− π) + ν(ϵ+ ϵ̄− 2ρ)

+ Dν − δ̄γ + δ̄µ]

+ 3Ψ2[κν + µ(2ρ− ϵ− ϵ̄)− µ̄ρ+ ππ̄ + λσ + τ(2π − α+ β̄)−Dµ+ δ̄τ ]

+ 2Ψ3[κ(µ̄− 2µ− γ) + ϵ(β − τ − π̄) + ϵ̄(β − τ) + ρ(π̄ − 2β + 2τ) + σ(α− β̄ − 2π)

+ Dβ −Dτ − δ̄σ]

+ Ψ4[κ(4β − π̄ − τ) + σ(ϵ+ ϵ̄− 2ρ) + Dσ] + c.c. , (4.20)

• the km-projection of BZ
ab, i.e., B

Z
(0)(2) = BZ

abk
amb :

BZ
(0)(2) =δ̄∆Ψ0 −D∆Ψ1 − δ̄δΨ1 +DδΨ2

+ νDΨ0 + (π − 3α+ β̄)∆Ψ0 + (µ− µ̄− 4γ)δ̄Ψ0

+ (2γ − 2µ+ µ̄)DΨ1 + (ϵ− ϵ̄+ 3ρ)∆Ψ1 + (3α− β̄ − π)δΨ1 + (2β + π̄ + 4τ)δ̄Ψ1

− (π̄ + 3τ)DΨ2 − 2κ∆Ψ2 − (ϵ− ϵ̄+ 3ρ)δΨ2 − 3σδ̄Ψ2 + 2σDΨ3 + 2κδΨ3

+Ψ0[(4γ − µ)(3α− β̄ − π) + µ̄(4α− π) + ν(ϵ̄− ϵ− 3ρ)− λπ̄ +Dν − 4δ̄γ + δ̄µ]

+ 2Ψ1[2κν + (µ− γ)(ϵ− ϵ̄+ 3ρ)− µ̄(2ρ+ ϵ) + (β + 2τ)(π − 3α+ β̄) + π̄(π − α)

+ Dγ −Dµ+ δ̄β + 2δ̄τ ]

+ 3Ψ2[κ(µ̄− 2µ) + π̄ρ+ σ(3α− β̄ − π) + τ(ϵ− ϵ̄+ 3ρ)−Dτ − δ̄σ]

+ 2Ψ3[κ(2β − π̄ − 2τ) + σ(ϵ̄− ϵ− 3ρ) + Dσ] + 2Ψ4κσ

+ δδΨ̄1 − δDΨ̄2 −DδΨ̄2 +DDΨ̄3

− 2λ̄δΨ̄0 + 3λ̄DΨ̄1 + σ∆Ψ̄1 + (4π̄ − 3ᾱ− β)δΨ̄1

+ (ᾱ+ β − 5π̄)DΨ̄2 − κ∆Ψ̄2 + (ϵ− ϵ̄+ 5ρ̄)δΨ̄2 − σδ̄Ψ̄2

+ (3ϵ̄− ϵ− 4ρ̄)DΨ̄3 − 3κ̄δΨ̄3 + κδ̄Ψ̄3 + 2κ̄DΨ̄4

+ Ψ̄0[λ̄(5ᾱ+ β − 3π̄)− ν̄σ − δλ̄]

+ 2Ψ̄1[κν̄ + ᾱ(ᾱ+ β) + π̄(2π̄ − 3ᾱ− β)− λ̄(4ρ̄+ ϵ) + σ(µ̄− γ̄) + Dλ̄− δᾱ+ δπ̄]

+ 3Ψ̄2[2κ̄λ̄− κµ̄+ π̄(ϵ− ϵ̄) + ρ̄(4π̄ − ᾱ− β) + στ̄ −Dπ̄ + δρ̄]

+ 2Ψ̄3(κ(β̄ − τ̄) + κ̄(β − 4π̄)− σσ̄ + (ρ̄− ϵ̄)(ϵ− ϵ̄+ 2ρ̄) + Dϵ̄−Dρ̄− δκ̄)

+ Ψ̄4[κ̄(5ϵ̄− ϵ− 3ρ̄) + κσ̄ +Dκ̄] , (4.21)
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• the ll-projection of BZ
ab, i.e., B

Z
(1)(1) = BZ

abl
alb :

BZ
(1)(1) =∆∆Ψ2 −∆δΨ3 − δ∆Ψ3 + δδΨ4

− 4ν∆Ψ1 + (γ + γ̄ + 6µ)∆Ψ2 + 5νδΨ2 − ν̄δ̄Ψ2

+ ν̄DΨ3 + (3τ − ᾱ− 5β)∆Ψ3 − (3γ + γ̄ + 7µ)δΨ3 + λ̄δ̄Ψ3

− λ̄DΨ4 − σ∆Ψ4 + (ᾱ+ 7β − 2τ)δΨ4

+ 2Ψ0ν
2 + 2Ψ1[ν(γ − γ̄ − 5µ) + λν̄ −∆ν]

+ 3Ψ2[µ(γ + γ̄ + 3µ) + ν(ᾱ+ 3β − 3τ)− λλ̄− ν̄π +∆µ+ δν]

+ 2Ψ3[ν̄(ϵ− ρ) + λ̄(α+ 2π) + γ(2τ − ᾱ− 4β) + γ̄(τ − β) + µ(5τ − 2ᾱ− 9β) + 2νσ

−∆β +∆τ − δγ − 2δµ]

+ Ψ4[κν̄ + λ̄(ρ− 4ϵ)− σ(γ + γ̄ + 3µ) + 4β(3β + ᾱ) + τ(τ − ᾱ− 7β)

−∆σ + 4δβ − δτ ] + c.c. , (4.22)

• the lm-projection of BZ
ab, i.e., B

Z
(0)(1) = BZ

abl
amb :

BZ
(1)(2) =∆∆Ψ1 −∆δΨ2 − δ∆Ψ2 + δδΨ3

− 2ν∆Ψ0 + (4µ− 3γ + γ̄)∆Ψ1 + 3νδΨ1 − ν̄δ̄Ψ1

+ ν̄DΨ2 + (5τ − ᾱ− β)∆Ψ2 + (γ − γ̄ − 5µ)δΨ2 + λ̄δ̄Ψ2

− λ̄DΨ3 − 3σ∆Ψ3 + (ᾱ+ 3β − 4τ)δΨ3 + 2σδΨ4

+Ψ0[ν(5γ − γ̄ − 3µ) + λν̄ −∆ν]

+ 2Ψ1[ν(ᾱ− 4τ) + ν̄(α− π)− λλ̄+ (γ − µ)(γ − γ̄ − 2µ)−∆γ +∆µ+ δν]

+ 3Ψ2[µ(4τ − ᾱ− β) + λ̄π − ν̄ρ+ 2νσ + τ(γ̄ − γ) + ∆τ − δµ]

+ 2Ψ3[κν̄ − σ(γ̄ + 4µ) + τ(2τ − ᾱ− 3β) + β(ᾱ+ β) + λ̄(ρ− ϵ)−∆σ + δβ − δτ ]

+ Ψ4[−κλ̄+ σ(ᾱ+ 5β − 3τ) + δσ]

−∆DΨ̄3 +∆δΨ̄2 + δ̄DΨ̄4 − δ̄δΨ̄3

− 2λ̄∆Ψ̄1 − 2ν̄δΨ̄1 + 2ν̄DΨ̄2 + (3π̄ + τ)∆Ψ̄2 + (γ̄ − γ + 3µ̄)δΨ̄2 + 3λ̄δ̄Ψ̄2

+ (γ − γ̄ − 3µ̄)DΨ̄3 + (2ρ̄− ρ− 2ϵ̄)∆Ψ̄3 + (α− 3β̄ + τ̄)δΨ̄3 − (2ᾱ+ 4π̄ + τ)δ̄Ψ̄3

+ (3β̄ − α− τ̄)DΨ̄4 − κ̄∆Ψ̄4 + (4ϵ̄+ ρ− ρ̄)δ̄Ψ̄4

+ 2Ψ̄0λ̄ν̄ + 2Ψ̄1[λ̄(γ − γ̄ − 3µ̄) + ν̄(2ᾱ− 2π̄ − τ)−∆λ̄]

+ 3Ψ̄2[λ̄(3β̄ − τ̄ − α) + π̄(3µ̄− γ + γ̄) + ν̄(ρ− 2ρ̄) + µ̄τ +∆π̄ + δ̄λ̄]

+ 2Ψ̄3[2κ̄ν̄ + (ϵ̄− ρ̄)(γ − γ̄ − 3µ̄)− ρ(γ̄ + 2µ̄) + τ(τ̄ − β̄) + (ᾱ+ 2π̄)(α− 3β̄ + τ̄)

−∆ϵ̄+∆ρ̄− δ̄ᾱ− 2δ̄π̄]

+ Ψ̄4[κ̄(γ − γ̄ − 3µ̄) + ρ(4β̄ − τ̄) + ρ̄(α− 3β̄ + τ̄) + 4ϵ̄(3β̄ − τ̄ − α)− σ̄τ

−∆κ̄+ 4δ̄ϵ̄− δ̄ρ̄] , (4.23)
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• the mm-projection of BZ
ab, i.e., B

Z
(2)(2) = BZ

abm
amb :

BZ
(2)(2) =∆∆Ψ0 −∆δΨ1 − δ∆Ψ1 + δδΨ2

+ (2µ− 7γ + γ̄)∆Ψ0 + νδΨ0 − ν̄δ̄Ψ0

+ ν̄DΨ1 + (7τ − ᾱ+ 3β)∆Ψ1 + (5γ − γ̄ − 3µ)δΨ1 + λ̄δ̄Ψ1

− λ̄DΨ2 − 5σ∆Ψ2 + (ᾱ− β − 6τ)δΨ2 + 4σδΨ3

+Ψ0[µ(µ− 7γ + γ̄) + ν(ᾱ− β − 3τ) + ν̄(4α− π) + 4γ(3γ − γ̄)− λλ̄

− 4∆γ +∆µ+ δν]

+ 2Ψ1[2νσ − ν̄(ϵ+ 2ρ) + λ̄(π − α) + (γ̄ − 2γ)(β + 2τ) + (µ− γ)(5τ − ᾱ+ 2β)

+ ∆β + 2∆τ + δγ − δµ]

+ 3Ψ2[κν̄ + λ̄ρ+ σ(3γ − γ̄ − 3µ) + τ(3τ − ᾱ+ β)−∆σ − δτ ]

+ 2Ψ3[−κλ̄+ σ(ᾱ+ β − 5τ) + δσ] + 2Ψ4σ
2

+DDΨ̄4 −DδΨ̄3 − δDΨ̄3 + δδΨ̄2

− 4λ̄δΨ̄1 + 5λ̄DΨ̄2 + σ∆Ψ̄2 + (ᾱ− β + 6π̄)δΨ̄2

+ (β − 3ᾱ− 7π̄)DΨ̄3 − κ∆Ψ̄3 + (ϵ− 5ϵ̄+ 3ρ̄)δΨ̄3 − σδ̄Ψ̄3

+ (7ϵ̄− ϵ− 2ρ̄)DΨ̄4 − κ̄δΨ̄4 + κδ̄Ψ̄4

+ 2Ψ̄0λ̄
2 + 2Ψ̄1[λ̄(ᾱ+ β − 5π̄)− ν̄σ − δλ̄]

+ 3Ψ̄2[κν̄ + λ̄(3ϵ̄− ϵ− 3ρ̄) + µ̄σ + π̄(ᾱ− β + 3π̄) + Dλ̄+ δπ̄]

+ 2Ψ̄3[2κ̄λ̄− κ(2µ̄+ γ̄) + σ(τ̄ − β̄) + (ρ̄− ϵ̄)(2ᾱ− β + 5π̄) + (ϵ− 2ϵ̄)(2π̄ + ᾱ)

−Dᾱ− 2Dπ̄ − δϵ̄+ δρ̄]

+ Ψ̄4[κ(4β̄ − τ̄) + κ̄(β − ᾱ− 3π̄) + (ρ̄− 4ϵ̄)(ϵ− 3ϵ̄+ ρ̄)− σσ̄

+ 4Dϵ̄−Dρ̄− δκ̄] . (4.24)

The shorthand c.c. in the above expressions denotes the complex conjugation. Finally, the complete
Bach tensor projections can be constructed as

B(0)(0) =BZ
(0)(0) +Φ20Ψ0 +Φ02Ψ̄0 − 2Φ10Ψ1 − 2Φ01Ψ̄1 +Φ00(Ψ2 + Ψ̄2) , (4.25)

B(0)(1) =BZ
(0)(1) +Φ21Ψ1 +Φ12Ψ̄1 − 2Φ11(Ψ2 + Ψ̄2) + Φ01Ψ3 +Φ10Ψ̄3 , (4.26)

B(0)(2) =BZ
(0)(2) +Φ21Ψ0 − 2Φ11Ψ1 +Φ01(Ψ2 − 2Ψ̄2) + Φ02Ψ̄1 +Φ00Ψ̄3 , (4.27)

B(1)(2) =BZ
(1)(2) +Φ22Ψ1 +Φ12(−2Ψ2 + Ψ̄2) + Φ02Ψ3 − 2Φ11Ψ̄3 +Φ10Ψ̄4 , (4.28)

B(2)(2) =BZ
(2)(2) +Φ22Ψ0 − 2Φ12Ψ1 +Φ02(Ψ2 + Ψ̄2)− 2Φ01Ψ̄3 +Φ00Ψ̄4 , (4.29)

B(1)(1) =BZ
(1)(1) +Φ22(Ψ2 + Ψ̄2)− 2Φ12Ψ3 − 2Φ21Ψ̄3 +Φ02Ψ4 +Φ20Ψ̄4 . (4.30)

It may seem that some components are missing above. However, since m is a complex vector,
there is, e.g., B̄(0)(2) = B(0)(3), and since the Bach tensor is traceless, it holds B(0)(1) = B(2)(3) and
actually, also BZ

(0)(1) = BZ
(2)(3).

This formulation of QG constraints, accompanied by the geometric identities, is especially
useful to prove general propositions like, e.g., a vacuum solution to QG (2.19) with the Ricci
tensor of the form Rab = Λgab+s kakb, where s ̸= 0 and kaka = 0, and aligned Weyl tensor of any
Petrov type is necessarily the Kundt spacetime. In A.1.3 this result was proved in a complicated
way in comparison with the simple substitution of initial assumptions into the above expressions.
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4.2 Geodesic deviation

The geodesic deviation is a typical textbook example that demonstrates how the gravitational field
inhomogeneities, encoded in the Riemann curvature tensor Ra

bcd, tidally deform congruences of
freely falling observers. Technically, this is described by the equation of geodesic deviation which
serves as an important source of information about the gravitational field, namely

D2Za

dτ2
= Ra

bcd u
bucZd , (4.31)

with ub representing components of the time-like reference observer velocity, which moves along a
geodesic γ(τ) with τ being its proper time. In this linear approximation Za stand for components of
the vector connecting the reference observer with another nearby one moving along geodesic γ̄(τ).
This illustrates figure 4.1.

Figure 4.1: Schematic description of the kinematic quantities entering the geodesic deviation.
Evolution of the connecting vector Za along the geodesic γ(τ) is given by the spacetime curvature.

In D-dimensional spacetime, all the above indices range from 0 to D − 1 and particular results
are coordinate-dependent which makes the extraction of any information more difficult. To do
so, it is very natural to calculate corresponding frame projections where the frame is associated
with the fiducial reference observer. Subsequently, specific components of the curvature effects
can be identified and connected with the matter distribution via particular theory of gravity and
its field equations, see, e.g., works in classic GR [89–92], the D > 4 extension in section A.1.1 and
its application in the case of Kundt spacetimes [93], or specific examples in sections A.2 and A.4.
It is useful to briefly describe this approach on the generic geometric level without any assumption
on the particular gravity theory.

Consider the orthonormal frame {e(0), e(1), e(i)}, i.e.,

ea · eb = ηab . (4.32)

It is natural to associate this frame with the reference test observer in such a way that the
observer D-velocity corresponds to the frame time-like vector, i.e., e(0) ≡ u = ẋa∂a. Projecting
the equation (4.31) onto such a frame immediately gives

Z̈(a) = R
(a)

(0)(0)(b) Z
(b) , (4.33)
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where Z̈(a) ≡ e
(a)
b

D2Zb

d τ2 and Z(b) ≡ e
(b)
a Za with a, b = 0, 1, . . . , D − 1. The Riemann tensor anti-

symmetry implies Z̈(0) = 0 and, without loss of generality, Z(0) = 0 can be fixed which corresponds
to the location of test observers on the same space-like surface synchronized by the proper time τ .
Moreover, standard decomposition of the Riemann tensor [51] is used to separate its traceless
Weyl part. Then the projection of the equation of geodesic deviation (4.33) takes the form

Z̈(i) =

[
C(i)(0)(0)(j) +

1

D − 2

(
R(i)(j) − δij R(0)(0)

)
− Rδij

(D − 1)(D − 2)

]
Z(j) , (4.34)

with i, j = 1, 2, . . . , D − 1. Finally, to connect the above expression with the Newman–Penrose-like
quantities introduced in section 3.1, and to analyze their particular contributions to the overall
deformation of a test geodesic congruence, the orthonormal frame vectors are combined into the
null interpretation frame3 as

kint =
1√
2

(
u+ e(1)

)
, lint =

1√
2

(
u− e(1)

)
, mint

i = e(i) , (4.35)

see figure 4.2 as an illustration.

Figure 4.2: The orthonormal frame vectors associated with the fiducial test observer moving along
γ(τ) are combined into the null interpretation frame {kint, lint, mint

i }. This prefers the time-like
direction e(0) and one of the space-like directions, w.l.o.g., e(1) referred as a longitudinal direction.
Remaining D − 2 vectors e(i) ≡ mint

i cover the transverse space.

Subsequently, the Weyl tensor projections C(i)(0)(0)(j) can be decomposed in terms of the null
interpretation frame and scalars defined by (3.9), namely

C(1)(0)(0)(1) =Ψint
2S ,

C(1)(0)(0)(j) =
1√
2
(Ψint

1T j −Ψint
3T j ) ,

C(i)(0)(0)(1) =
1√
2
(Ψint

1T i −Ψint
3T i) , (4.36)

C(i)(0)(0)(j) = − 1

2
(Ψint

0ij +Ψint
4ij )−Ψint

2T (ij) ,

3At this place the natural null frame {k, l, mi}, adapted to the algebraic structure of the Weyl tensor and thus
simplifying the NP equations, and the null interpretation frame {kint, lint, mint

i }, associated with a particular
geodesic observer, are distinguished. Their mutual relation is given by the Lorentz transformations (3.5)–(3.8), see
the example at the end of this section.
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and the relevant Ricci tensor components R(i)(j) and R(0)(0) can be expressed using the definitions
(3.11) as

R(0)(0) =Φint
00 +Φint

22 +Φint
11 − R

D
,

R(1)(1) =Φint
00 +Φint

22 − Φint
11 +

R

D
,

R(1)(j) =Φint
01j − Φint

12j , (4.37)

R(i)(j) =Φint
02ij +

R

D
δij ,

where the i, j indices cover the D − 2-dimensional transverse space orthogonal to the privileged
longitudinal direction e(1), i.e., i, j = 2, . . . , D − 1 . The influence of particular terms on the overall
deformation is affected by their inherent symmetries, see A.1.1. The typical example corresponds
to the transverse traceless effect of Ψ4ij related to the gravitational waves in GR.

Until now the discussion of geodesic deviation was on a completely general level. However, in
the context of this thesis, it is important to introduce the interpretation frame in the particular
case of non-twisting geometries (3.22) parametrized by coordinate set (r, u, xp). The observer
velocity thus becomes e(0) ≡ u = ṙ∂r + u̇∂a + ẋp∂p and a combination of the normalization (4.32)
with the definition (4.35) then leads to the frame

kint =
1√
2 u̇

∂r ,

lint =
(√

2 ṙ − 1√
2 u̇

)
∂r +

√
2 u̇ ∂u +

√
2 ẋp∂p , (4.38)

mint
i =

1

u̇
mp

i (gupu̇+ gpq ẋ
q) ∂r +mp

i ∂p .

The above frame, adapted onto the motion of the arbitrary timelike observer, can be obtained from
the simple natural frame (3.27) by a boost (3.7) with B = 1√

2 u̇
followed by the null rotation with

k fixed (3.5) taking parameters Li = gpq m
p
i ẋ

q. In the opposite way, the natural frame (3.27)
corresponds to the transversely static observer, i.e., ẋp = 0, with

√
2 u̇ = 1 and ṙ given by the

normalization of u.

This general concept was employed within the discussion of possibly observable effects distin-
guishing Schwarzschild and Schwarzschild–Bach black holes in QG, see section A.2, or within the
analysis of the Kundt solutions to the Einstein–Gauss–Bonnet theory in A.4.





CHAPTER

5

CONCLUSIONS AND OUTLOOK

The present thesis can be classified as theoretical research in the field of gravitational theories
and their exact solutions. From the scientific point of view, my main interests have been related
to the geometrically characterized exact solutions and methods of their studies in the case of
Einstein’s general relativity and its higher-dimensional and/or quadratic extensions including,
e.g., the Einstein–Weyl gravity or the Gauss-Bonnet theory. Generic tools suitable for particular
solution analysis as well as its physical interpretation have been derived, namely the generalized
Newman–Penrose formalism in the case of four-dimensional quadratic gravity, see chapter 4, the
invariant form of the geodesic deviation in higher dimensional GR [41] (A.1.1), or description of the
non-twisting and shear-free geometries in terms of their algebraic structure [42] (A.1.2). Discussion
of generic solution structure to the quadratic gravity was presented in [43] (A.1.3). On the level of
specific geometries, we have been mainly interested in the static spherically symmetric solutions
to the quadratic gravity where we have presented a comprehensive discussion of admitted solution
types [44–47] (A.2) since the space of spherical geometries is much richer than in classic GR. The
entropy behavior related to the Vaydia-like scenarios within a specific subclass of such theories
was discussed in [48] (A.3). Finally, a complete non-twisting, shear-free, and non-expanding
Kundt class of geometries within the Einstein–Gauss–Bonnet theory was analyzed in [49] (A.4).
The performed research has been motivated by the questions about the uniqueness of Einstein’s
general relativity in comparison with its extensions, looking for the answer on the level of exact
solutions. In the above-mentioned works, various situations and qualitative differences related to
particular theories were identified and analyzed.

Let me finish the thesis with a brief outlook for possible further research topics naturally
extending the previous studies. Their expected results should deepen our knowledge about various
theories of gravity in terms of admitted exact spacetimes and their implications which most likely
emphasize the GR uniqueness. This should be understood more as a medium-term prospect than
a detailed fixed plan.

One of the goals would be to better understand the non-twisting geometries irrespectively of
any particular gravity theory. This extends studies of the Robinson–Trautman and Kundt families
to allow, in addition, a non-vanishing shear. Although these geometries have been studied in
various contexts for a very long time, there is still a lack of their more suitable parametrization
and compact explicit presentation of all geometric quantities. This would enable to discuss the
algebraic structure of the Weyl tensor with respect to the privileged non-twisting null frame which,
in general, does not coincide with the spacetime principal null directions (PNDs). Subsequently,
specifying an appropriate Lorentz transformation to the PNDs frame the conditions on particular
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algebraic types can be determined in full generality. The suitability of parametrization is closely
related to the metric form and values of the shear and expansion. In the case of non-twisting
and shear-free geometries, we have already shown that the specific value of expansion can be
encoded in an artificial conformal transformation of the seed non-expanding line element. In
general, this generates the Robinson–Trautman geometry from a simpler non-expanding Kundt
one, simultaneously preserving the algebraic Weyl type and structure of the null directions. This
is extremely important in scenarios with quantities nicely behaving under the conformal rescaling
such as the Bach tensor which appears in the quadratic gravity field equations. The question arises
if there is an analogous procedure accessible also in the case of non-trivial shear. More precisely,
whether the shear could be generated by some analogous formal approach from a simpler seed
non-shearing geometry. Such a procedure has to be surely more involved than a simple conformal
transformation. This could also clarify the foundation of the Newman–Janis algorithm on a purely
geometric level.

The second large group of problems is related to the geodesic motion and, in particular,
geodesic deviation. This should support physical interpretation and discussion of, in principle,
observable effects within investigated exact spacetimes. It would be useful to extend the descrip-
tion of section 4.2 and derive the invariant frame form of the geodesic deviation equation, where
the curvature decomposition appears in terms of the Newman–Penrose quantities, for the generic
non-twisting geometries without any preceding assumptions on the theory. This can serve in both
directions. Naturally, it can be used as a tool for analysis of a known solution to the specific
theory, where the field equations imply constraints between particular curvature contributions. In
such a case the test particle relative motion is fixed. However, we can proceed vice versa. That
is not to analyze existing solutions, but to primarily prescribe specific behavior of test particles
which should impose additional restrictions on the initial metric functions, e.g., black-hole tidal
deformations or purely transverse traceless deformations, classically interpreted as gravitational
waves far from the source. The geometry has to be further constrained by the field equations.
However, these supplementary conditions may simplify their integration. For example, using such
an approach in the context of quadratic gravity and assuming that the relative deformations of
the test body are compatible with the known GR spacetime should allow to explore a specific
part of the quadratic gravity solution space mimicking the implications of Einstein’s theory. Si-
multaneously, such solutions may provide extra free parameters arising from the QG higher-order
nature. Surprisingly, in the case of spherical symmetry with constant scalar curvature, this type
of behavior is not possible.

Finally, with the Newman–Penrose formulation of generic four-dimensional QG in hand, more
ambitious and even more realistic situations could be discussed. In particular, the entire class
of Robinson–Trautman solutions possibly including non-trivial matter fields, e.g., an extension of
the pure radiation Vaidya-like spacetimes is a very natural candidate. However, the ultimate goal
within the quadratic gravity is to study the rotating black holes generalizing the Kerr solution.
Besides these particular problems, the Newman–Penrose like analysis should be extended even
for the quadratic gravity within the higher dimensional scenarios where the Gauss–Bonnet term
enters the game and the Bach tensor is no more consistently defined.
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APPENDIX

A

ORIGINAL PAPERS

This chapter contains nine of my co-authored research works, which represent studies in the field
of exact spacetimes in various extensions of classic four-dimensional Einstein’s general relativity.

Section A.1 begins with results on the geodesic deviation in higher-dimensional general rela-
tivity [41] which can be simply formulated also without any assumption on a particular gravity
theory, see section 4.2, and then straightforwardly applied, e.g., in the case of quadratic gravity
or the Einstein–Gauss–Bonnet theory. In the subsequent work [42], the Weyl tensor algebraic
properties of non-twisting shear-free geometries are analyzed and all curvature quantities are cal-
culated in the unified form. The last part of this section investigates solutions to the quadratic
gravity on a general level [43] and, as its byproduct, derives the conformal relation between the
Kundt and Robinson–Trautman geometries. The unpublished results on the Newman–Penrose
formalism in quadratic gravity, see section 4.1, would also naturally belong to this section.

The second part A.2, formed by four papers [44–47], studies spherically symmetric vacuum
solutions to quadratic gravity with a constant scalar curvature. The previous general results are
extensively used to formulate the field equations and to analyze the solution properties.

Finally, the last sections A.3 and A.4 correspond to the papers [48,49] and investigate specific
model situations within the critical gravity and the Einstein–Gauss–Bonnet theory, respectively.
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A.1 Mathematical methods and general concepts

A.1.1 Interpreting spacetimes of any dimension using geodesic deviation

Authors: Jǐŕı Podolský and Robert Švarc

Journal reference: Physical Review D 85 044057 (2012)

Abstract: We present a general method that can be used for geometrical and physical
interpretation of an arbitrary spacetime in four or any higher number of dimen-
sions. It is based on the systematic analysis of relative motion of free test parti-
cles. We demonstrate that the local effect of the gravitational field on particles,
as described by the equation of geodesic deviation with respect to a natural or-
thonormal frame, can always be decomposed into a canonical set of transverse,
longitudinal and Newton–Coulomb-type components, isotropic influence of a
cosmological constant, and contributions arising from specific matter content
of the Universe. In particular, exact gravitational waves in Einstein’s theory
always exhibit themselves via purely transverse effects with D(D − 3)/2 in-
dependent polarization states. To illustrate the utility of this approach, we
study the family of pp-wave spacetimes in higher dimensions and discuss spe-
cific measurable effects on a detector located in four spacetime dimensions. For
example, the corresponding deformations caused by generic higher-dimensional
gravitational waves observed in such physical subspace need not be trace-free.

DOI: 10.1103/PhysRevD.85.044057

arXiv: arXiv:1201.4790

Interesting to know: In opposite way to the abstract last sentence, the hypothetical discovery of the
non-traceless, however still gravitation-wave-like, deformation of the detector
could be interpreted in terms of the higher-dimensional GR where the trace-free
wave generically deforms the wholeD-dimensional space whereas we observe its
non-traceless effect as a result of restriction on its four-dimensional subspace.
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A.1.2 Algebraic structure of Robinson–Trautman and Kundt
geometries in arbitrary dimension

Authors: Jǐŕı Podolský and Robert Švarc

Journal reference: Classical and Quantum Gravity 32 015001 (2015)

Abstract: We investigate the Weyl tensor algebraic structure of a fully general family of
D-dimensional geometries that admit a non-twisting and shear-free null vector
field k. From the coordinate components of the curvature tensor we explicitly
derive all Weyl scalars of various boost weights. This enables us to give a
complete algebraic classification of the metrics in the case when the optically
privileged null direction k is a (multiple) Weyl aligned null direction (WAND).
No field equations are applied, so the results are valid not only in Einstein’s
gravity, including its extension to higher dimensions, but also in any metric
gravitation theory that admits non-twisting and shear-free spacetimes.
We prove that all such geometries are of type I(b), or more special, and we
derive surprisingly simple necessary and sufficient conditions under which k is
a double, triple or quadruple WAND. All possible algebraically special types,
including the refinement to subtypes, are thus identified, namely II(a), II(b),
II(c), II(d), III(a), III(b), N, O, IIi, IIIi, D, D(a), D(b), D(c), D(d), and their
combinations. Some conditions are identically satisfied in four dimensions.
We discuss both important subclasses, namely the Kundt family of geome-
tries with the vanishing expansion (Θ = 0) and the Robinson–Trautman family
(Θ ̸= 0, and in particular Θ = 1/r). Finally, we apply Einstein’s field equa-
tions and obtain a classification of all Robinson–Trautman vacuum spacetimes.
This reveals fundamental algebraic differences in the D > 4 and D = 4 cases,
namely that in higher dimensions there only exist such spacetimes of types
D(a) ≡ D(abd), D(c) ≡ D(bcd) and O.

DOI: 10.1088/0264-9381/32/1/015001

arXiv: arXiv:1406.3232

Interesting to know: In the case of non-twisting and shear-free geometries, it is useful to employ the
adapted coordinates. These allow to express derivatives along the privileged
null vector field in terms of its expansion. Moreover, it seems that its specific
values typically identify the subclass of Einstein’s spacetimes within various
extended theories, see e.g., the subsequent section.
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Authors: Vojtěch Pravda, Alena Pravdová, Jǐŕı Podolský, and Robert Švarc

Journal reference: Physical Review D 95 084025 (2017)

Abstract: Since all Einstein spacetimes are vacuum solutions to quadratic gravity in four
dimensions, in this paper we study various aspects of non-Einstein vacuum
solutions to this theory. Most such known solutions are of traceless Ricci and
Petrov type N with a constant Ricci scalar. Thus we assume the Ricci scalar
to be constant which leads to a substantial simplification of the field equations.
We prove that a vacuum solution to quadratic gravity with traceless Ricci ten-
sor of type N and aligned Weyl tensor of any Petrov type is necessarily a Kundt
spacetime. This will considerably simplify the search for new non-Einstein so-
lutions. Similarly, a vacuum solution to quadratic gravity with traceless Ricci
type III and aligned Weyl tensor of Petrov type II or more special is again
necessarily a Kundt spacetime. Then we study the general role of conformal
transformations in constructing vacuum solutions to quadratic gravity. We find
that such solutions can be obtained by solving one nonlinear partial differential
equation for a conformal factor on any Einstein spacetime or, more generally,
on any background with vanishing Bach tensor. In particular, we show that
all geometries conformal to Kundt are either Kundt or Robinson–Trautman,
and we provide some explicit Kundt and Robinson–Trautman solutions to
quadratic gravity by solving the above mentioned equation on certain Kundt
backgrounds.

DOI: 10.1103/PhysRevD.95.084025

arXiv: arXiv:1606.02646

Interesting to know: The conformal relation between Kundt and Robinson–Trautman classes of
geometries discussed in this paper has become even more important in the
subsequent series of works analyzing the spherically symmetric solutions to
quadratic gravity. In general, the complexity of the Bach tensor, and thus the
QG field equations, within the Robinson–Trautman setting can be simply re-
duced in terms of the unphysical Kundt seed metric and its suitable conformal
rescaling.
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A.2.1 Explicit black hole solutions in higher-derivative gravity

Authors: Jǐŕı Podolský, Robert Švarc, Vojtěch Pravda, and Alena Pravdová

Journal reference: Physical Review D 98 021502(R) (2018)

Abstract: We present, in an explicit form, the metric for all spherically symmetric
Schwarzschild-Bach black holes in Einstein-Weyl theory. In addition to the
black hole mass, this complete family of spacetimes involves a parameter that
encodes the value of the Bach tensor on the horizon. When this additional
“non-Schwarzschild parameter” is set to zero, the Bach tensor vanishes every-
where, and the “Schwa-Bach” solution reduces to the standard Schwarzschild
metric of general relativity. Compared with previous studies, which were
mainly based on numerical integration of a complicated form of field equa-
tions, the new form of the metric enables us to easily investigate geometrical
and physical properties of these black holes, such as specific tidal effects on test
particles, caused by the presence of the Bach tensor, as well as fundamental
thermodynamical quantities.

DOI: 10.1103/PhysRevD.98.021502

arXiv: arXiv:1806.08209

Interesting to know: In general, it is not surprising that a suitable parametrization simplifies the
problem formulation and its solution. However, the way how to find such a
parametrization is not clear at all. Here, the conformal-to-Kundt metric form
of the spherical geometry allows writing the quadratic gravity field equations
in just one line, while the standard Schwarzschild-like line element leads to the
one-page expressions.
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Authors: Jǐŕı Podolský, Robert Švarc, Vojtěch Pravda, and Alena Pravdová

Journal reference: Physical Review D 101 024027 (2020)

Abstract: We study static, spherically symmetric vacuum solutions to quadratic gravity,
extending considerably our previous rapid communication [Phys. Rev. D 98,
021502(R) (2018)] on this topic. Using a conformal-to-Kundt metric ansatz,
we arrive at a much simpler form of the field equations in comparison with
their expression in the standard spherically symmetric coordinates. We present
details of the derivation of this compact form of two ordinary differential field
equations for two metric functions. Next, we apply analytical methods and
express their solutions as infinite power series expansions. We systematically
derive all possible cases admitted by such an ansatz, arriving at six main classes
of solutions, and provide recurrent formulas for all the series coefficients. These
results allow us to identify the classes containing the Schwarzschild black hole
as a special case. It turns out that one class contains only the Schwarzschild
black hole, three classes admit the Schwarzschild solution as a special subcase,
and two classes are not compatible with the Schwarzschild solution at all since
they have strictly nonzero Bach tensor. In our analysis, we naturally focus
on the classes containing the Schwarzschild spacetime, in particular on a new
family of the Schwarzschild-Bach black holes which possesses one additional
non-Schwarzschild parameter corresponding to the value of the Bach tensor
invariant on the horizon. We study its geometrical and physical properties,
such as basic thermodynamical quantities and tidal effects on free test particles
induced by the presence of the Bach tensor. We also compare our results
with previous findings in the literature obtained using the standard spherically
symmetric coordinates.

DOI: 10.1103/PhysRevD.101.024027

arXiv: arXiv:1907.00046

Interesting to know: The solution space for the spherically symmetric metric ansatz is much richer
within the quadratic gravity than in classic GR, where Birkhoff’s theorem
identifies the Schwarzschild spacetime as the only possibility.
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Authors: Robert Švarc, Jǐŕı Podolský, Vojtěch Pravda, and Alena Pravdová

Journal reference: Physical Review Letters 121 231104 (2018)

Abstract: We present a new explicit class of black holes in general quadratic gravity with
a cosmological constant. These spherically symmetric Schwarzschild–Bach–
(anti-)de Sitter geometries, derived under the assumption of constant scalar
curvature, form a three-parameter family determined by the black-hole horizon
position, the value of the Bach invariant on the horizon, and the cosmological
constant. Using a conformal to Kundt metric ansatz, the fourth-order field
equations simplify to a compact autonomous system. Its solutions are found
as power series, enabling us to directly set the Bach parameter and/or cos-
mological constant equal to zero. To interpret these spacetimes, we analyze
the metric functions. In particular, we demonstrate that for a certain range
of positive cosmological constant there are both black-hole and cosmological
horizons, with a static region between them. The tidal effects on free test
particles and basic thermodynamic quantities are also determined.

DOI: 10.1103/PhysRevLett.121.231104

arXiv: arXiv:1806.09516

Interesting to know: To include the cosmological constant into the field equations is straightforward
even within the conformal-to-Kundt metric form. However, it non-trivially
affects the spacetime geometry and causes various qualitative changes, e.g.,
within the thermodynamic quantities.
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Authors: Vojtěch Pravda, Alena Pravdová, Jǐŕı Podolský, and Robert Švarc

Journal reference: Physical Review D 103 064049 (2021)

Abstract: We study static spherically symmetric solutions to the vacuum field equa-
tions of quadratic gravity in the presence of a cosmological constant Λ. Moti-
vated by the trace no-hair theorem, we assume the Ricci scalar to be constant
throughout a spacetime. Furthermore, we employ the conformal-to-Kundt
metric ansatz that is valid for all static spherically symmetric spacetimes and
leads to a considerable simplification of the field equations. We arrive at a
set of two ordinary differential equations and study its solutions using the
Frobenius-like approach of (infinite) power series expansions. While the indi-
cial equations considerably restrict the set of possible leading powers, careful
analysis of higher-order terms is necessary to establish the existence of the
corresponding classes of solutions. We thus obtain various non-Einstein gener-
alizations of the Schwarzschild, (anti-)de Sitter [or (A)dS for short], Nariai, and
Plebański-Hacyan spacetimes. Interestingly, some classes of solutions allow for
an arbitrary value of Λ, while other classes admit only discrete values of Λ. For
most of these classes, we give recurrent formulas for all series coefficients. We
determine which classes contain the Schwarzschild-(A)dS black hole as a spe-
cial case and briefly discuss the physical interpretation of the spacetimes. In
the discussion of physical properties, we naturally focus on the generalization
of the Schwarzschild-(A)dS black hole, namely the Schwarzschild-Bach-(A)dS
black hole, which possesses one additional Bach parameter. We also study
its basic thermodynamical properties and observable effects on test particles
caused by the presence of the Bach tensor. This work is a considerable exten-
sion of our Letter [Phys. Rev. Lett. 121, 231104 (2018)].

DOI: 10.1103/PhysRevD.103.064049

arXiv: arXiv:2012.08551

Interesting to know: This work ultimately summarizes and simultaneously provides all technical
details on spherical solutions to the vacuum quadratic gravity with any cos-
mological constant. The landscape of admitted spacetimes is surprisingly rich,
especially in comparison with classic GR where the Schwarzschild–(anti-)de
Sitter spacetime is the only allowed possibility. Interestingly, in quadratic
gravity, various peculiar geometries arise due to the coupling with a cosmolog-
ical constant. Even the standard cases are in principle distinguishable from
those of GR in terms of the geodesic deviation.
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Journal reference: Journal of High Energy Physic 06 118 (2018)

Abstract: Critical gravity is a quadratic curvature gravity in four dimensions which is
ghost-free around the AdS background. Constructing a Vaidya-type exact
solution, we show that the area of a black hole defined by a future outer
trapping horizon can shrink by injecting a charged null fluid with positive
energy density, so that a black hole is no more a one-way membrane even
under the null energy condition. In addition, the solution shows that the
Wald–Kodama dynamical entropy of a black hole is negative and can decrease.
These properties expose the pathological aspects of critical gravity at the non-
perturbative level.

DOI: doi.org/10.1007/JHEP06(2018)118

arXiv: arXiv:1805.00026

Interesting to know: This work corresponds to the case, where discussion of the explicit analytical
model shows the peculiarity of the whole theory standing behind.
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Abstract: We systematically investigate the complete class of vacuum solutions in the
Einstein–Gauss–Bonnet (EGB) gravity theory which belong to the Kundt fam-
ily of nonexpanding, shear-free, and twist-free geometries (without gyratonic
matter terms) in any dimension. The field equations are explicitly derived
and simplified, and their solutions classified into three distinct subfamilies.
Algebraic structures of the Weyl and Ricci curvature tensors are determined.
The corresponding curvature scalars directly enter the invariant form of the
equation of geodesic deviation, enabling us to understand the specific local
physical properties of the gravitational field constrained by the EGB theory.
We also present and analyze several interesting explicit classes of such vacuum
solutions, namely, the Ricci type-III spacetimes, all geometries with constant-
curvature transverse space, and the whole pp-wave class admitting a covari-
antly constant null vector field. These exact Kundt EGB gravitational waves
exhibit new features which are not possible in Einstein’s general relativity.

DOI: 10.1103/PhysRevD.102.084012

arXiv: arXiv:2007.06648

Interesting to know: Surprisingly, there exists a specific coupling between the transverse space ge-
ometry and the theory constants such that the crucial metric function guu,
encoding for example transverse wave-like deformations, remains free. Prelim-
inary results in the Robinson–Trautman class, restricted by the EGB theory,
exhibit the same behavior. This would imply that the non-existence of the
Weyl type N Robinson–Trautman solutions within higher-dimensional GR is
much more the unique property of Einstein’s theory than the geometric con-
straint implied by the Robinson–Trautman class in higher dimensions itself.


