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Abstract

This habilitation thesis summarizes some of the author’s contributions in mathema-
tics—probability and mathematical statistics in particular—related to the research
area well-known among mathematical statisticians as the changepoint problem.

Changepoints—or model instabilities alternatively—introduce a very important
and substantial direction in advanced statistical modeling requiring sophisticated
approaches and complex methodological foundations with many open questions.
In this thesis, the changepoints are addressed from various theoretical and practi-
cal perspectives using different stochastic models while providing rigid answers
to some crucial problems—all under generally very non-restrictive technical as-
sumptions beyond an existing changepoint literature. There is always a formal
mathematical theory, proper stochastic model, and a complex methodological frame-
work postulated throughout the whole thesis. All this together—based on rigorous
theoretical proofs—allows for an advanced mathematical changepoint analysis
involving an implicit changepoint detection and an explicit changepoint estimation—all
within a well formulated underlying probabilistic model—thus, under the presence
of uncertainty, random fluctuations, and unobserved disturbances.
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Preface

„Most people use statistics like a drunk man uses
a lamppost; more for support than for illumination.

— Andrew Lang

(Scottish poet, novelist, and literary critic)

Model instabilities and the changepoint problem in general attract a huge attention
with an outstanding research going on in this area over the last years. However, this
is not only the case of scientists—mathematicians and mathematical statisticians
in particular—but, taken a much wider perspective, the changepoint problem
affects—roughly speaking—everyone and the whole population all at once.

Government authorities around the world try to instantly react to changes due to the
most recent Covid-19 infection spread, financial experts deal with unprecedented
volatility of asset markets when managing portfolios, all kinds of companies and
institutions want to control their daily updated data, varying resources, or uncertain
employee staff, and basically every living individual does its best to adapt to sudden
changes and the most recent (random) outcomes. This all can be mathematically—
and more importantly statistically—formulated in terms of some changepoint
problem or, alternatively but equivalently, it can be all described and rigorously
addressed by some underlying stochastic model with instabilities.

If such mathematical approach is adopted and the changepoint problem and insta-
bilities are analyzed within a proper stochastic framework then the mathematical
statistics itself becomes a lamppost that indeed serves for illumination as it can
provide very useful, relevant, and most importantly valid conclusions. Moreover,
such conclusions can be further used is a straightforward way to govern practical
decisions basically related to almost all areas of human lives.

This was also an indigenous intention, later percolated as the main aim, of this
habilitation thesis and the overall author’s research: to ensure that the lamppost
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is truly used for illumination purposes and, thus, the conclusions drawn from
an advanced mathematical changepoint analysis of models with instabilities are
stochastically valid and practically useful.

The first chapter provides a rather vague motivation of the changepoint problem
itself and some important related mathematical research is sketched out. The main
problems are described and the main goals of this thesis are formulated there as well.
The central part of the thesis—the second and the third chapter—focuses on two
very particular aspects of the mathematical statistics when dealing with models with
instabilities: The estimation of changepoint effects (change magnitudes respectively)
is considered in different models in Chapter 2 and the detection of the changepoint
presence (change existence respectively) is formally addressed in Chapter 3. Both
of these aspects are, however, closely related and they can be even considered
simultaneously in an omnibus model briefly mentioned at the end of the third
chapter.

The most important facts are again gathered together with some final remarks
in Chapter 4 and all (seven) scientific papers which serve as the theoretical core
of this thesis are provided in full at the end, in Appendix1.

1The appendix itself may or may not be the part of this habilitation thesis—depending on the thesis
version (long/short) and specific requirements of the Department of Research and International
Affairs of the Faculty of Mathematics and Physics, Charles University.
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1Introduction

„The statistics of yesterday should not be used
to solve the problems of tomorrow.

— John Tukey (1915 – 2000)

(American mathematician and statistician)

Instabilities of any types are usually considered to be system flaws, imperfections
in general. This may seem to become even more serious issue when such instabilities
come into scene in sophisticated theoretical models—methodological frameworks
and data structures used to base complex decisions on—especially when trying
to govern some underlying non-deterministic mechanism.

On the other hand, when the instabilities are approached with more caution, using
a proper mathematical approach, rigorous stochastic background, and valid sta-
tistical inference, imperfections may turn into valuable assets—undeniable pieces
of precious information with huge relevance with respect to the underlying data
generating process.

In this thesis, formal mathematical and stochastic theory is advocated in order to
achieve such goals. Instabilities of various types—abrupt breaks, gradual structural
changes, or changepoints—are all analyzed using sophisticated statistical models
while focusing at two specific methodological aspects which are typical in practical
situations: a) estimation of the changepoint magnitude(s) and b) detection of the
changepoint presence. The first one tries to correctly quantify the effect caused by
the underlying change while the second one aims to answer a relatively simple
question whether some change indeed occurs in the system or not.

Both of these aspects are handled from a formal statistical—data-based and data-
driven—perspective: the mathematical theory and the underlying data generated
by some stochastic mechanism (which is the primary target of our interest) are used
together in conjunction with the indigenous intention to pursuit the given goal.
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1.1 Motivation

Instabilities, or changepoints in general, attract a lot of attention in recent years.
Continuous and even smooth character of theoretical models used to describe real
data generating processes turns out to be very often rather unrealistic and various
model improvements have been proposed over the last decades in order to more
closely adapt the models that are used with the data which are observed.

Some of the first initiatives in this direction appeared already in late 60’s and 70’s
when Hinkley (1969) and Brown et al. (1975) assumed simple parametric regres-
sion lines in two separate stages—before and after a possible changepoint—and,
after that, the resulting change was incorporated into the final model in terms
of a jump in an intercept parameter, or a break in a slope parameter respectively.
In 90’s, an analogous idea was also elaborated for more complex scenarios by
Müller (1992) and Loader (1996) as they proposed specific generalizations of non-
parametric models to account for a changepoint in location and a changepoint
in location and direction simultaneously (see also Wu and Chu (1993) and Eubank
and Speckman (1994)).

In the following years, a huge effort resulting in many different proposals has
been dedicated to this problem—the statistical changepoint analysis in particular—
while considering a whole range of realistic or even rather unrealistic models and
assumptions. From the overall statistical perspective, the existing changepoint
literature could fall into three main categories: It either refers to a changepoint esti-
mation within some underlying regression framework, or it deals with the problem
of the changepoint detection in terms of a formal statistical test, or both together—
performed either simultaneously or in a step-by-step manner. This thesis deals with
all aforementioned situations.

Considering the theoretical/methodological point of view, relatively straightfor-
ward techniques for the changepoint detection and estimation are based on standard
approaches and two-stage procedures where the unknown changepoint location is
firstly detected and, later, the underlying model is estimated separately before and
after the detected change using already the knowledge about the estimated change-
point location learned from the first phase (Csörgő and Horváth (1988); Yao (1988);
Bai and Perron (1998); Qiu and Yandell (1998); Kim et al. (2009b), and many others).
If more changepoints with unknown locations are assumed, the detection and es-
timation is typically performed in multiple stages and the final model is usually
selected using the likelihood theory (Hinkley (1971); Feder (1975)), statistical (per-
mutation) tests (Kim et al. (2000); Bosetti et al. (2008); Qui et al. (2009)), or various
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selection criteria and Bayesian framework (Carlin et al. (1992); Liu et al. (1997);
Tiwari et al. (2005); Zhang and Siegmund (2007); Martinez-Beneito et al. (2011)).

Advanced (usually data-driven and mostly just one stage) strategies typically
rely on standard theoretical assumptions—independent observations, Gaussian
(or sub-Gaussian respectively) error distributions, and linearity induced by the
L2-norm based objective function in particular (Chu et al. (1996); Horváth and
Kokoszka (2002); Horváth et al. (2004); Antoch et al. (2006); Friedrich et al. (2008);
Jeng et al. (2010); Chan and Walther (2013); Frick et al. (2014), etc.). Non-standard
but, on the other hand, also way more realistic assumptions (for instance, de-
pendent or extreme data, heavy-tailed error distributions, outlying observations,
heteroscedasticity, multidimensionality, nonstationarity, or even nonlinearity) are
imposed rather rarely and only partially and such model assumptions only ap-
peared recently over the last years. This is mainly due to the fact that a) theoretical
properties are challenging to derive under non-linearity and non-Gaussian error
distributions and b) practical utilization of such complex models is almost impos-
sible from the computational point of view without efficient algorithms enabling
intensive computations and advanced IT equipment. The primary focus in this the-
sis is particularly given to the models under such atypical, non-standard, generally
non-restrictive, and robust assumptions.

Finally, there are two specific conceptual approaches always adopted and fur-
ther elaborated in the scientific papers summarized in this thesis when dealing
with the changepoint estimation and the changepoint detection problem under various
model/data scenarios. Both of these concepts only percolated into the statistical
methodology in the most recent years mainly due to an enormous growth of publicly
available data and, also, a huge burst of machine learning algorithms and artificial
intelligence applications. The first concept—regularization—allows for an effective
filtering of relevant information out of huge amount of mostly irrelevant data. The
second concept—self-normalization—implements a convenient definition of some
fundamental quantities avoiding rather redundant calculations while introducing
a fully data-driven statistical testing approach.

The changepoint estimation based on sparsity and the regularization concept is de-
scribed in details in Chapter 2 and some relevant theoretical aspects and statistical
properties are elaborated and proved in four scientific papers comprehended in this
chapter. Similarly, the changepoint detection with the self-normalization principle plays
the key role in Chapter 3 where another three original scientific papers provide the
main theoretical pivots for the contributions summarized in the chapter.
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1.2 Research rudiments

The research results summarized exclusively in this thesis were all fully obtained
during the tenure track period at Charles University (Prague, Czech Republic)
which started in January 2015.

As already evoked above, the theoretical and methodological core of the thesis is
grounded in two seemingly unrelated ideas, both with very strong individual math-
ematical background and rich personal experience. The first idea comes from the
theory of estimation and detection of changepoints in advanced regression models and
complex data structures—contemplated and studied, for instance, in Maciak (2010),
Maciak and Hušková (2017), or Maciak (2018a)—all during the author’s Ph.D. stud-
ies at Charles University (Czech Republic). The second idea arose later, during the
author’s postdoctoral stay at University of Alberta (Edmonton, Canada), and it
takes an advantage of modern concepts in mathematical statistics, recent achieve-
ments in atomic pursuit methods, and algorithmic improvements in computer
intensive calculations (Maciak and Mizera (2016); Maciak (2018b); Maciak (2018c),
or Maciak and Mizera (2022)), all considered with respect to a popular phenomena
of so called “big data” which typically requires some form of regularization and
self-normalization in order to effectively handle finite sample problems.

The research was also partially driven by emergent problems occurring over time
in various real life situations (epidemiology, ecology, econometrics & insurance,
pharmacology & medicine, engineering, etc.) and it was catalyzed by numerous
collaborations with many experts from top universities and research institutions
around the World (University of British Columbia, McGill, University of Alberta,
University of Lyon, Hamburg University, Cologne University, Dresden Univer-
sity of Technology, Czech University of Life Sciences Prague, Mayo Clinic, Euro-
pean Commission Joint Research Centre, Scottish Environment Protection Agency,
T.G.Masaryk Water Research Institute, etc.).

Some of the results were also successfully applied and rich experience was gained
in practical collaborations with, for instance, Škoda automobile manufacturer, Gen-
erali ČP insurance company, Erst & Young, F.D. Roosevelt Teaching Hospital, Motol
University Hospital, Central Military Hospital Ružomberok, and others.

1.3 Thesis structure & results

The thesis is based on seven original theoretical (mathematical and statistical)
papers. All seven papers are published in well recognized international (WoS
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indexed/impact factor) journals. The papers are structured into two intuitive
groups (four and three papers) and for each group there is one thesis chapter
entirely devoted to a detailed description and an overall summary of the main
results derived and proved in the given papers.

Different regularization concepts utilized for the changepoint estimation problem within
various models and data structures are described in Chapter 2. In particular, Chap-
ter 2 is based on the following four manuscripts:

o Ciuperca, G. and Maciak, M. (2020). ‘Changepoint Detection by the Quantile LASSO Method’.
Journal of Statistical Theory and Practice 14(11), 1–38.
DOI: 10.1007/s42519-019-0078-z

o Ciuperca, G. and Maciak, M. (2019). ‘Change-point detection in a linear model by adaptive
fused quantile method’. Scandinavian Journal of Statistics 47(1), 425–463.
DOI: 10.1111/sjos.12412

o Ciuperca, G., Maciak, M., and Wahl, F. (2020). ‘Detection of similar successive groups in a model
with diverging number of variable groups’. Sequential Analysis 39(1), 92–114.
DOI: 10.1080/07474946.2020.1726687

o Maciak, M. (2019). ‘Quantile LASSO with changepoints in panel data models applied to option
pricing’. Econometrics and Statistics 20(2021), 166–175.
DOI: 10.1016/j.ecosta.2019.12.005

In Chapter 3, self-normalization concepts employed for the changepoint detection prob-
lem implemented in terms of formal statistical tests are introduced and briefly
described. In particular, Chapter 3 is based on the following three papers:

o Maciak, M., Peštová, B., and Pešta, M. (2018). ‘Structural breaks in dependent, heteroscedastic,
and extremal panel data’. Kybernetika 54(2018), 1106–1121.
DOI: 10.14736/kyb-2018-6-1106

o Maciak, M., Pešta, M., and Peštová, B. (2020). ‘Changepoint in dependent and non-stationary
panels’. Statistical Papers 61(2020), 1385–1407.
DOI: 10.1007/s00362-020-01180-6

o Pešta, M., Peštová, B., and Maciak, M. (2020). ‘Changepoint estimation for dependent and
non-stationary panels’. Applications of Mathematics 65(3), 299–310.
DOI: 10.21136/AM.2020.0296-19

Some additional comments and important remarks are again highlighted in the con-
clusion in Chapter 4. Finally, all seven scientific papers are attached in Appendix1,
at the end of the thesis. The key (individual) theoretical contributions are always
summarized at the end of the following two chapters and, also, in a paper-wise
manner at the beginning of each reprint in the appendix part.

1The appendix itself may or may not be the part of this habilitation thesis—depending on the thesis
version (long/short) and specific requirements of the Department of Research and International
Affairs of the Faculty of Mathematics and Physics, Charles University.
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2Estimation via Regularization

„I never guess. It is a shocking habit destructive
to the logical faculty.

— Sir Arthur Conan Doyle

(British writer and creator of Sherlock Holmes)

In this chapter, we describe four different changepoint models being considered
in four underlying scientific papers which frame the main theoretical core of this
section. The models are formulated in terms of their increasing mathematical and
structural complexity and, also, somehow more general and less restrictive practical
applicability. On the other hand, the main theoretical pivots remain the same for all
considered models throughout the chapter and they always rely on six fundamental
cornerstones.

Firstly, hypothetical (unknown) changepoints are always implemented in the model
by using some conveniently formulated sparsity principle—a concept well-known
in statistics but rather peculiar in the changepoint analysis. Second, the final model
is obtained by minimizing an objective function together with some appropriate reg-
ularization penalty while performing the changepoint estimation and the change-
point detection both at once. Third, very general and relatively non-restrictive
theoretical assumptions are considered and all theoretical proofs are exclusively
derived under such conditions. Fourth, additional robustness and a complex char-
acterization of the underlying data-generating mechanism is acquired by estimating
arbitrary conditional quantiles rather than just the conditional mean. Fifth, impor-
tant theoretical properties are derived and the proposed methodology is proved to
be consistent in some desirable asymptotic sense. Last but not least, straightforward
applicability is guaranteed due to a convex formulation and the overall changepoint
estimation and detection is performed within a fully data-driven framework.

The sparsity principle and regularization are both used simultaneously with a proper
mathematical and statistical theory in order to construct valid estimates for the
unknown changepoints occurring in the underlying data generating model. The
number of true changepoints, their corresponding magnitudes, and the changepoint
locations are all supposed to be apriori unknown and appropriate finite sample
surrogates are to be found for all.
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2.1 Penalized changepoint estimation

The most crucial problem in stochastic modeling and statistics in general lies
in a proper trade-off between the precision of a constructed estimate and its variabil-
ity. Flexible models tend to be very precise when adapting to some underlying data
but uncertainty increases correspondingly. On the other hand, simple models can
be preferred because of their generally smaller volatility but the overall precision
with respect to the observed data may be relatively low.

It is not an easy task to decide which model from a set of all plausible models should
be used. Various selection criteria can be adopted, expert knowledge can be brought
into the decision process, or, alternatively, complex models handling the so-called
“bias-variance trade-off” automatically, on a data-driven basis, can be used instead.
This is also the case of the penalized model estimation—the changepoint estimation
via regularization addressed on the following lines.

The first ideas of using regularized (changepoint) estimation to achieve sparsity
can be already tracked back to the work of Logan (1965) and Breiman (1995) who
proposed an estimation approach for finding a (sparse) subset regression model
while shrinking and zeroing irrelevant coefficients. Thus, initial models are defined
by relatively many coefficients (i.e., unknown parameters) but the final solutions
always contain—by principle—many zeros. This is known as the sparsity principle.
Initially, such regularization techniques and sparsity principles were especially pop-
ular in signal processing and filtering problems (Donoho and Stark (1989); Donoho
and Logan (1992); Chen et al. (1998)) and, only later, they were also popularized
in mathematical statistics—mostly by Tibshirani (1996).

The main idea is to use a model which is overparametrized (too flexible) in some
sense (having an ability to easily adapt itself to the given data) while some addi-
tional penalty is implemented in the estimation algorithm to automatically balance
the overall bias-variance trade-off—not allowing the final model to become too
rugged. In a very vague and general form, the model estimated via regularization
can be expressed by the minimization problem

Estimated model = Arg min
h

Objective function + Penalty term
i

(2.1)

where the objective function depends on the underlying model formulation and
the given data while the penalty term usually depends on some tuning parameter,
the model formulation, and possibly the data as well. The right-hand side is
minimized with respect to a class of all plausible models and the outcome of this
minimization—the left-hand side—provides the final (regularized) model.

8 Chapter 2 Estimation via Regularization



In the following, we firstly briefly describe three specific forms of the penalty term
in (2.1) which will be further used for the regularized changepoint estimation in the
models introduced later. The objective function will be also specified later when
providing explicit model formulations in Section 2.2.

2.1.1 Total variation penalty

Vaguely speaking, the total variation penalty is essentially a standard L1-norm of
some form of a model based derivative (Dodge, 1987) derived from the total varia-
tion concept of an infinitesimal L1-norm (Jordan, 1881). Historically, the L1-norm
methods in mathematical statistics go back to Galileo and Laplace where, in com-
parison with more common least squares with a closed form linear solution and
relatively simple calculations, the L1-based estimation is nonlinear, computationally
challenging, but generally more robust.

In terms of a sparse estimation via regularization, the L1-norm plays its main
role in the penalty term in (2.1)—-enforcing sparsity in the estimated model. For
simplicity, if the model is defined in a way that some of its derivative is piece-wise
constant in terms of some consecutive parameters — = (�1, . . . ,�n)> 2 Rn then the
corresponding total variation penalty can be expressed as

�
n-1X

i=1

|�i+1 -�i|, (2.2)

for some tuning parameter � > 0. Such penalty directly penalizes differences
between each two consecutive coefficients and the overall sparsity is, therefore,
interpreted in terms of zero differences �i+1 - �i, which should ideally hold for
many i 2 {1, . . . ,n- 1} but some few exceptions—changepoints. This type of the
penalty term is implemented in the first theoretical paper summarized in this thesis
(Ciuperca and Maciak, 2019a). Such penalty can be also found in, for instance,
Rudin et al. (1992), Künsch (1994), Mammen and Geer (1997), Tibshirani et al. (2005),
Kim et al. (2009a), Tibshirani (2014), or Sadhanala and Tibshirani (2019).

2.1.2 Lasso type penalty

The lasso type penalty firstly appeared only implicitly in a constrained minimiza-
tion proposed in Breiman (1995) while an explicit formulation was given later
in Tibshirani (1996). The idea is, again, based on the L1-norm and, despite the
fact that the theoretical principle behind is different, the lasso penalty can be seen,

2.1 Penalized changepoint estimation 9



in some (computational) sense, as an analogy of the total variation penalty. Using
a reparametrization ✓i = �i+1 -�i, for i = 1, . . . ,n- 1, it is easy to see that

�
n-1X

i=1

|�i+1 -�i| = �
n-1X

i=1

|✓i|,

where the right-hand side of the equation above is typically known as a lasso type
penalty being typically expressed as

�k◊k1, (2.3)

where k · k1 stands for a standard L1-norm and ◊ = (✓1, . . . , ✓n-1)> 2 Rn-1. The
lasso type penalty is also applied and further elaborated for the changepoint estima-
tion problem in the first theoretical paper of this thesis (Ciuperca and Maciak, 2019a)
where some similarities with the total variation type penalty are discussed and
additional theoretical results are proved. The lasso type penalty can be also found
in the work of Zou and Hastie (2005), Tibshirani (2011), Tibshirani and Taylor (2011),
Tibshirani and Taylor (2012), Lee et al. (2016), and many others.

2.1.3 Group lasso penalty

Finally, the group lasso penalty originates in the previous two versions: By consid-
ering a model being determined by a set of consecutive multivariate parameters
—1, . . . , —n 2 Rp it may be of interest, similarly as in (2.2), to again compare two
consecutive quantities—vectors in this case—which can be straightforwardly done
using the L2-norm and the expression

�
n-1X

i=1

k—i+1 -—ik2, (2.4)

again for some � > 0 where k · k2 stands for the L2-norm (i.e., kuk2 =
qPp

i=1 u
2
i

for some u = (u1, . . . ,up)> 2 Rp). The expression in (2.4) can be also seen as
a multivariate generalization of the total variation penalty in (2.2). Despite the fact
that the L2-norm appears in its definition, the nature of the whole penalty term is
still grounded within the L1-norm framework. Indeed, it is easy to see, that for
univariate parameters �1, . . . ,�n 2 R the penalty in (2.4) reduces to (2.2) due to the
L1 and L2-norm definitions, where

�
n-1X

i=1

k�i+1 -�ik2 = �
n-1X

i=1

q
(�i+1 -�i)2 = �

n-1X

i=1

|�i+1 -�i|.
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Going back to the multivariate case, an analogous reparametrization as before
can be used (e.g., ◊i = —i+1 - —i, for ◊i 2 Rp and i = 1, . . . ,n - 1) to obtain
a multivariate analogy of the lasso type penalty in (2.3), as it holds that

�
n-1X

i=1

k—i+1 -—ik2 = �
n-1X

i=1

k◊ik2 = �
n-1X

i=1

q
✓2
i,1 + · · ·+ ✓2

i,p, (2.5)

where ◊i = (✓i,1, . . . , ✓i,p)>. The last expression above again simply reduces to
(2.3) in a univariate case (if ✓1, . . . , ✓n 2 R). The expression on the right-hand side
of (2.5) is known as the group lasso type penalty.

The intuition behind the group lasso type penalty can be, however, also put from
another perspective. Assuming again univariate parameters �1, . . . ,�n 2 R it may
be sometimes appropriate to define disjoint groups

�1, . . . ,�i1| {z }
group 1

,�i1+1, . . . ,�i2| {z }
group 2

, . . . , . . . ,�iK-1 ,�iK-1+1, . . . ,�n| {z }
group K

,

for K 2 N groups being defined by indexes 0 = i0 < i1 < · · · < iK = n. Such
groups can be considered separately in the group lasso type penalty of the form

�
K-1X

k=0

q
�2
ik+1 + · · ·+�2

ik+1
,

achieving sparsity with respect to the underlying groups in the final model. The
whole principle of the parameter groups can be easily generalized for multivariate
parameters as well. The group lasso type penalties are implemented in the models
proposed in the second, third, and fourth theoretical paper of this thesis (Ciuperca
and Maciak (2019b), Ciuperca et al. (2020), and Maciak (2021b)) where advanced
theoretical properties are investigated and proved.

Similar penalties are also addressed, for instance, in Tibshirani and Saunders (2005),
Yuan and Lin (2006), Friedman et al. (2010), Simon and Tibshirani (2012), Lim and
Hastie (2015), and others.

2.2 Changepoints models via sparsity

The key idea in this section (and all four underlying theoretical papers considered
in this chapter) is to use the sparsity principle (model over-parametrization) for
incorporating hypothetical changepoints—various types of instabilities—into the
underlying model. Of course, different models can be considered and different
changepoint hierarchy structures can be implemented within such models (sudden
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x(i) ⌧ x(i+1) x(i) ⌧ x(i+1)

(a) Same data points, different changepoint location ⌧ 2 (x(i), x(i+1)), but equivalent models

x(i) ⌧ x(i+1) x(i) ⌧ x(i+1)

(b) Same data points, different changepoint location ⌧ 2 (x(i), x(i+1)), but different models

Fig. 2.1. Illustration of the effect of the imposed smoothness assumption: For a piece-wise constant
model (top two panels) there is no information about the true changepoint location given
in the data if there are no more observations given between x(i) and x(i+1) (white area).
Therefore, both models (left and right panels) are equivalent (in gray shaded areas).
In contrary, for any higher order of smoothness (e.g., piece-wise linear models in the
bottom panels), there is already some implicit information about the true changepoint
location available (within the same data collection) and both models (left and right again)
are, therefore, clearly different (considering the gray shaded areas again).

breaks, jumps in higher order derivatives, or some combinations of both). However,
different smoothness assumptions imposed on the underlying model induce also
different restrictions regarding the ability to estimate the true changepoint locations.
This—rather philosophical problem—is illustrated in Figure 2.1. From the empirical
point of view the problem will be practically disregarded by assuming changepoint
locations occurring only at the available observations.

Pioneering attempts to combine the changepoint estimation in some underlying
model and the sparsity principle with regularization can be tracked back to Tibshi-
rani and Wang (2008) and Harchaoui and Lévy-Leduc (2010) where the underlying
model is suitably over-parametrized such that the unknown changepoints may
occur—hypothetically speaking—at each available observation. The regularization
penalty enforces the overall sparsity in terms of picking up only a few relevant
changepoints while the remaining ones are eliminated from the final model—the
corresponding parameter estimates are shrunk to zero (see also Rinaldo (2009),
Ciuperca (2014), Tibshirani (2014), Leonardi and Bühlmann (2016), or Qian and
Su (2016b)). All these approaches, however, involve simple (linear) model structure
and standard L2-norm based minimization. Thus, the resulting model is interpreted
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in terms of a standard conditional mean. This is convenient for interpretation pur-
poses but it only offers a very limited insight about the underlying stochastic nature
of the model itself and, more importantly, it strictly determines the set of imposed
model assumptions required for the theoretical proofs of the model validity.

Different techniques can be used to “over-parametrize” the underlying stochastic
model in order to allow for changepoint occurrences. In the following four papers,
there are four specific models considered under the four specific data structures be-
ing all motivated by four real-life problems. All four models and the corresponding
data types generated by the assumed models are illustrated in Figure 2.2.

2.2.1 Location model

A relatively very simple model is considered in the first paper (Ciuperca and
Maciak, 2019a). However, the exceptionality and the strength of the proposed
model do not rely on its explicit formulation but the main advantage of the model
is rather brought in by a complex estimation framework and a set of simple and
non-restrictive assumptions considered for the proofs of the model validity.

Independent observations Y1, . . . , Yn, for n 2 N, are supposed to be given together
with a specific location structure (i.e., stochastic model)

Yt = µt + "t, t = 1, . . . ,n, (2.6)

where, hypothetically, each random variable Yt may have its own mean parameter
µt 2 R while no specific restrictions are imposed on random error terms {"t}

n
t=1.

The sparsity principle is introduced by an additional assumption that not necessarily
all µt parameters are different. More precisely, it is assumed that the observations
are somehow naturally ordered and µt+1 -µt 6= 0 holds only for some small subset
of indexes t 2 {1, . . .n- 1}.

In other words, for some unknown changepoint locations—indexes t⇤1 . . . t⇤K⇤ 2
{1, . . . ,n}, such that 1 < t⇤1 < t⇤2 < · · · < t⇤K⇤ < n with an unknown number of total
changepoints K⇤ 2 N, the model in (2.6) can be also expressed as

Yt = µ⇤
k + "t, for t = 1, · · · ,n, k = 1, · · · ,K⇤ + 1, t⇤k-1 6 t 6 t⇤k - 1, (2.7)

where t⇤0 = 1 and t⇤K⇤+1 = n + 1. The key goal is to estimate the overall num-
ber of changepoints K⇤ 2 N, the corresponding changepoints locations (indexes
t⇤1 . . . t⇤K⇤ 2 {1, . . . ,n}), and, also, the set of the true mean parameters µ⇤

k 2 R,
for k = 1, . . . ,K⇤ + 1. As far as K⇤ 2 N is fixed and n ! 1, it is obvious that
mostly it will hold that µt+1 - µt = 0 (sparsity in terms of many zero differences of
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t

Y1 Y2 Yn (n ! 1)

(a) piece-wise constant profile

xt

Y1

x1

Y2

x2

Yn

xn

(n ! 1)

(b) non-constant, non-smooth, and possibly discontinuous profile

xi,j

Y1 Y2 Yn

(n ! 1)

(g ! 1)x1,1

x1,g

x2,1

x2,g

xn,1

xn,g

(c) finite set of non-constant, non-smooth, and possibly discontinuous profiles

t

Y1,1

Y1,T

Y2,1

Y2,T

Yn,1

Yn,T

(n ! 1)

(T 2 N)
x1,1

x1,T

x2,1

x2,T

xn,1

xn,T

(d) infinitely many non-constant, non-smooth, and possibly discontinuous profiles

Fig. 2.2. Illustration of four underlying models (piece-wise constant (location) model (top row),
linear regression model (second row), group linear model (third row), and panel data
model in the last row) on left panels and the corresponding data structures generated
by the assumed models on the right panels. Dashed vertical lines (in left panels) denote
the locations of two true changepoints. Different smoothness assumptions, changepoint
hierarchy structures, and the overall data complexity are assumed across all four models.
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the consecutive parameters). The underlying model and the corresponding data
structure are both illustrated in Figure 2.2a. Analogous model formulations were
considered by many authors (see, for instance, Yao and Au (1989); Mammen and
Geer (1997); Lavielle and Moulines (2000); Boysen et al. (2009); Harchaoui and Lévy-
Leduc (2010); Frick et al. (2014); Fryzlewicz (2014); Hyun et al. (2016); Li et al. (2019);
Yu and Chatterjee (2020)).

The key difference in our approach is the assumption regarding the error distribu-
tion. In all the aforementioned papers the authors consider Gaussian (sub-Gaussian
respectively) error distributions and a standard L2-norm objective function. Our
approach is, therefore, more robust, free of restrictive distributional assumptions,
complex in terms of the overall insight given by the model (estimating any condi-
tional quantile rather than just the conditional mean), and consistent in terms of the
changepoint detection and the model estimation when the sample size increases
(n ! 1). In addition, the proposed estimation approach offers a fully data-driven
methodological framework and effective algorithms for obtaining the solution.

The estimation of the model in (2.6) is based on the minimization problem

bu = Arg min
u1,...,un2

 nX

i=1

⇢⌧(Yi - ui) +n�n

n-1X

i=1

|ui+1 - ui|

�
, (2.8)

where bu = (bu1, . . . , bun)> 2 Rn are the given estimates and ⇢⌧(x) = x(⌧- I(x<0)) is
a so-called quantile check function (see Koenker (1998) for more details) defined for
any ⌧ 2 (0, 1) and x 2 R.

The total variation type penalty in (2.8) penalizes for too flexible models in terms
of too many changepoints and the regularization parameter �n > 0 controls for
the overall number of changepoints appearing in the final model: for �n ! 0 the
minimization in (2.8) results in bu where but 6= but-1, for each t = 2, . . . ,n, while
for �n ! 1 one gets but = but-1, for all t = 2, . . . ,n. The estimated changepoint
locations are defined by indexesbt 2 {1, . . . ,n- 1}, for which bubt+1 6= bubt, and the true
number of changepoints K⇤ 2 N is estimated as bK = #{bt 2 {1, . . . ,n- 1}; bubt+1 6= bubt}.
All together, there are bK estimated changepoints at the locationsbt1 < · · · < btbK which
specify the final (regularized) piece-wise constant model with bK+ 1 pieces bµk 2 R,
for k = 1, . . . , bK+ 1. The minimization problem in (2.8) is convex and standard
optimization toolboxes can be used to obtain the solution.

The theoretical results derived and proved in Ciuperca and Maciak (2019a) are
based on a careful inspection of the Karush-Kuhn-Tucker (KKT) optimality condi-
tions determined by the minimization problem formulated in (2.8)—see Kuhn and
Tucker (1951) for details.
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Specifically, the following statistical properties are derived and proved in the paper:

(a) efficiency in terms of detecting at least K true changepoints

P[bK < K⇤] ! 0, as n ! 1;

(b) consistency with respect to the true changepoint location estimation if bK = K⇤

P


max

16k6K⇤
|btk - t⇤k| > n�n

�
! 0, for n ! 1 and some �n ! 0;

(c) consistency with respect to the true changepoint location estimation if bK > K⇤

P


sup

16k⇤6K⇤
inf

16k6bK
|btk - t⇤k⇤ | > n�n

�
! 0, for n ! 1 and �n ! 0;

(d) consistency with respect to the true model parameters estimation

|bµk - µ⇤
k| = OP

 r
logn

n

!

, for any k = 1, · · · ,K⇤ + 1.

In addition, some further technical details are provided and finite sample compar-
isons with respect to various competitive approaches are performed using an ex-
tensive simulation study. Practical applicability is illustrated on a hot spot region
detection in CGH genomic hybridization data. The full paper is in Appendix A.1.

2.2.2 Multiple regression model

In the second paper (Ciuperca and Maciak, 2019b), the location model from Sec-
tion 2.2.1 is generalized for a multiple regression framework and the overall perfor-
mance of the estimation algorithm is further improved by implementing an adaptive
version of the penalty term. Analogous properties as for the model in (2.6) are inves-
tigated from the stochastic point of view but the more general model formulation
and the adaptive penalty in addition require some more advanced mathematical
theory and more complex derivations in general.

The underlying data are assumed to be of the form {(Yt, xt); t = 1, . . . ,n}, where,
in addition to random variables {Yt}nt=1, there are also some subject specific vectors
of covariates xt 2 Rp. A formal mathematical model can be expressed as

Yt = x>
t —t + "t, t = 1, · · · ,n, (2.9)
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where —t = (�t,1, . . . ,�t,p)> 2 Rp for t = 1, . . . ,n are some unknown p-dimensional
vectors of unknown parameters which may change from one observation to another.
Nevertheless, there is again a specific sparsity structure imposed as it is supposed
to hold that —t = —t+1 for almost all indexes t 2 {1, . . . ,n- 1} but a few exceptions—
changepoints—while some underlying (natural) ordering is implicitly expected.
Similarly as before, the key task is to identify the true number of changepoints,
the corresponding indexes where —t 6= —t+1 (changepoint locations detection),
and to find finite-sample surrogates for the unknown vector parameters (model
estimation). The model and the corresponding data are visualized in Figure 2.2b.

Similar models were considered, for instance, in Zhang and Siegmund (2012),
Zheng et al. (2013), Zheng et al. (2015), Lin et al. (2016), Lee et al. (2016), and others
but always under the standard L2-norm minimization. In our approach, we offer
a complex insight by estimating arbitrary conditional quantiles—similarly as in Lee
et al. (2018) where, however, the authors only considered one possible changepoint
in the model. No specific distributional assumptions are postulated and the final
model can be again obtained in a fully data-driven manner.

Moreover, in order to improve the overall performance of the total variation penalty
(in terms of both, the changepoint detection and the model estimation) there is
a two stage approach proposed in the paper. The first step is analogous with the
estimation performed in Section 2.2.1 as the parameter estimates for the model
in (2.9) are obtained as

(
_
—1, . . . ,

_
—n) = Arg min

—1,...,—n2Rp

 nX

i=1

⇢⌧(Yi -x>
i —i) +n�n

nX

i=2

k—i -—i-1k2

�
, (2.10)

with the quantile check function ⇢⌧(x) = x(⌧- I{x<0}) where ⌧ 2 (0, 1) defines the

corresponding conditional quantile to be estimated and kvk2 =
q
v2

1 + · · ·+ v2
p is

a standard L2-norm for some p-dimensional real vector v = (v1, . . . , vp)> 2 Rp.
The minimization formulation in (2.10) is again convex and the solution can be
effectively obtained by standard optimization algorithms.

Depending on the choice of the regularization parameter �n > 0 one can control the
overall number of changepoints occurring in the final model. For �n ! 0 there will

be
_
—t 6=

_
—t-1 for each t 2 {2, . . .n} while for �n ! 1 the model reduces to a simple

linear regression model with some
_
— 2 Rp, such that

_
—t =

_
— for all t 2 {1, . . . ,n}.

The estimated changepoint locations are again identified by those indexes t 2

{2, . . . ,n} for which it holds that
_
—t 6=

_
—t-1. The true number of changepoints,

K⇤ 2 N, is estimated by
_
K which is, similarly as before, the cardinality of the
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set {t 2 {2, . . . ,n};
_
—t 6=

_
—t-1}. Finally, the true model parameters —t 2 Rp,

for t = 1, . . . ,n, are estimated by the corresponding finite sample surrogates—

regularized vector parameter estimates (
_
—1, . . . ,

_
—n) 2 Rp⇥n.

Analogous statistical properties as for the location model in Section 2.2.1 are proved
in Ciuperca and Maciak (2019b) for the model in (2.9) and the estimation procedure
defined by (2.10). In addition, proper convergence rates for the vector parameter
estimates are derived. However, all these results only serve as a preliminary tool
for improving the model performance and defining the adaptive penalty.

Estimation by the adaptive fused penalty

The modification in the model formulation is very minor but the differences in the
theoretical proofs are substantial. Instead of the minimization problem in (2.10)
with the standard group lasso type penalty we assume a modified version of the
minimization problem where the final model is now estimated by solving a slightly
altered minimization problem

(b—1, . . . , b—n) = Arg min
—1,...,—n2Rp

 nX

i=1

⇢⌧(Yi -x>
i —i) +n�n

nX

i=2

!ik—i -—i-1k2

�
, (2.11)

with some additional weights !i > 0, for i = 2, . . . ,n. The penalty term above is
known as an adaptive version of the penalty used in (2.10). The weights depend
on the differences between two consecutive parameter estimates obtained from the
minimization problem in (2.10). Briefly, the weights are defined as

!i =


max

✓
k
_
—i -

_
—i-1k1; dn

◆�-�

, i = 2, . . . ,n,

for k · k1 denoting the supremum norm, dn ! 0 being some deterministic sequence,
and � > 0. Some additional reduction of the changepoints detected by (2.10) can
be applied (more details can be found in the underlying paper—Ciuperca and
Maciak (2019b)). Thus, the estimation with the adaptive penalty in (2.11) can not be
performed without some initial pre-estimation step (in this case in terms of (2.10)).
Analogously as before, the true changepoint locations are estimated by indexes
t 2 {2, . . . ,n} for which b—t 6= b—t-1 and for the overall number of the estimated
changepoints we have bK = #{t 2 {2, . . . ,n}; b—t 6= b—t-1}.

The main advantage of using the adaptive penalty is an additional improvement
with respect to the changepoint detection performance. Standard total variation
and lasso based penalties have a well-known tendency to overfit the final model.
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This can be seen also from the results mentioned in Section 2.2.1 and explicitly
derived in Ciuperca and Maciak (2019a) where it is proved that

P[bK < K⇤] ! 0, as n ! 1

but also
P[bK 6 CK⇤] ! 1, as n ! 1

for some constant C < 1, usually greater than one. Thus, the number of the esti-
mated changepoints using the standard total variation penalty—as in (2.8) or (2.10)
respectively—overestimates the true number of the unknown changepoints. The
adaptive penalty in (2.11) can effectively correct for this drawback while achieving—
under some reasonable assumptions—a consistent detection in a sense

P
h
{t 2 {2, . . . ,n}; b—t 6= b—t-1} = {t 2 {2, . . . ,n}; —t 6= —t-1}

i
! 1, as n ! 1.

The theoretical results (based on the KKT optimality conditions and the theory of
stochastic (quantile) processes) derived and proved in the second theoretical paper
of this chapter (Ciuperca and Maciak, 2019b), include the following:

(a) all results analogous to those being derived for the location model in Sec-
tion 2.2.1 are also derived and proved for the model in (2.9) considering both
estimation approaches—the group lasso type penalty formulated in (2.10) and
the adaptive version of the penalty given in (2.11);

(b) rates of convergence for the parameter estimates
_
—1, . . . ,

_
—n obtained in (2.10);

(c) rates of convergence for the parameter estimates b—1, . . . , b—n obtained in (2.11);

(d) the true changepoints recovery with probability tending to one

P
h
{t 2 {2, . . . ,n}; b—t 6= b—t-1} = {t 2 {2, . . . ,n}; —t 6= —t-1}

i
! 1, as n ! 1.

In addition, some further technical derivations are provided in the paper and
a detailed discussion is dedicated to a theoretical and empirical comparison of the
model being estimated in terms of (2.10) and its adaptive version in (2.11). Extensive
simulations and real data applications accompany the paper as well. The paper is
given in full in Appendix A.2.
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2.2.3 Group linear model

The third paper (Ciuperca et al., 2020) discusses a specific generalization of the
model from Section 2.2.2 where, in addition, multiple covariates may form some
consecutive groups—which are, however, unknown. Similar models are frequently
applied for econometric and financial data, market analysis, meteorological predic-
tions, and other analogous situations.

The main difference lies in the domain where the changepoints are expected to occur
now. In the previous two models (Section 2.2.1 and Section 2.2.3) the observations
were assumed to be somehow naturally ordered (for instance, over time t = 1, . . .n)
and the changepoints occurred after some specific fraction of the data. In the model
formulation used in this section, the changepoints are not implemented with respect
to the consecutive observations but rather in terms of the given subject specific
covariates (with an increasing/diverging dimension as n ! 1).

From the mathematical point of view, the model can be formalized as

Yi =
gX

j=1

x>
i,j—j + "i, i = 1, . . . ,n, (2.12)

where (x>
i,1, . . . , x>

i,g)
> 2 Rp⇥g is a vector of subject specific covariates (for subject

i 2 {1, . . . ,n}) being grouped into g 2 N same sized groups where —j 2 Rp for
j = 1, . . . ,g are p-dimensional vectors of unknown parameters which correspond to
the groups. Visual illustration of the model and the underlying data of the form
{(Yi, (x>

i,1, . . . , x>
i,g)); i = 1, . . . ,n} are given in Figure 2.2c.

The key task is to identify consecutive groups for j = 2, . . . ,g, such that the estimated
effect of two consecutive groups on the response Yi will be different. In other words,
we want to identify two consecutive groups for which —j 6= —j-1. The sparsity
and the regularization principle are again both used to achieve the goal. This time,
however, more competitive models are proposed and their statistical properties are
studied in the paper (standard L2-norm and the quantile check function are used
for the objective function and they are both combined either with the total variation
type penalty or its adaptive modification).

Similar model also appears in Liu et al. (2018) for non-grouped variables, in Jiang
et al. (2013) and Jiang et al. (2014) for a finite number of groups, in Wei and
Huang (2010), Guo et al. (2015), or Campbell and Allen (2017) for Gaussian er-
rors with the least squares approach, or Zhang and Xiang (2015) for non-Gaussian
errors. Unlike all the aforementioned works, the primary focus in our work is given
on a situation where the number of the consecutive groups diverges for n ! 1
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(thus, g ! 1 as well). Moreover, no specific assumptions on the error distribution
are postulated (distribution free approach) and the theoretical results are derived
for the model estimation performed in terms of the standard least squares sense
and, also, within a more complex conditional quantile estimation framework.

Quantile loss function

Similarly as in the models discussed in the previous sections, the minimization
problem related to the model in (2.12) can be expressed as

(b—1, . . . , b—g)Q = Arg min
—1,...,—g2Rp

 nX

i=1

⇢⌧
⇣
Yi -

gX

j=1

x>
i,j—j

⌘
+n�n

gX

j=2

k—j -—j-1kq
�

,

(2.13)
for some q 2 {1, 2}. It should be obvious from the form of the penalty term that the
regularization parameter �n > 0 enforces now sparsity with respect to the differ-
ences between two consecutive groups of subject specific covariates—unknown
vector parameters {—j}

g
j=1. In general, it is expected that b—j = b—j-1 should hold for

most of the indexes j 2 {2, . . . ,g}.

The consistency (including proper convergence rates) of the parameter estimates
(b—1, . . . , b—g)Q in (2.13) is proved for three different regularization scenarios:

o consistency of the parameter estimates when �n = 0 (thus, no penalty term is
considered for the estimation and no regularization is involved)

kb—g -—0k1 = OP(bn),

for b—g = (b—>
1 , . . . , b—>

g )> 2 Rp⇥g, the true values —0 2 Rp⇥g and some
deterministic sequence bn ! 0, as n ! 1;

o consistency of the parameter estimates in (2.13) for some �n > 0 (estimation
via regularization) in the same sense as before, i.e.

kb—g -—0k1 = OP(bn),

however, for a generally different sequence bn ! 0, which now also depends
on �n > 0;

o consistency of the parameter estimates when the penalty term in (2.13) is
replaced by an adaptive version with weights !j > 0 being defined with
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respect to some preliminary estimates from a pre-estimation step (in our case,
the minimization in terms of (2.13)), similarly as in Section 2.2.2.

In addition, detailed theoretical derivations of explicit boundaries for the number
of the estimated changepoints are provided for both scenarios—the regularized
estimation in terms of (2.13) and, also, its adaptive version implemented in order to
improve the overall finite sample performance.

Least squares loss function

For the least squares approach, the quantile check function ⇢⌧(·) in (2.13) is replaced
with the standard L2-norm, resulting in the minimization problem

(b—1, . . . , b—g)LS = Arg min
—1,...,—g2Rp

 nX

i=1

⇣
Yi -

gX

j=1

x>
i,j—j

⌘2
+n�n

gX

j=2

k—j -—j-1kq
�

,

(2.14)
where q 2 {1, 2}. Similarly as before—when considering the quantile check function
in (2.13)—three specific regularization scenarios are also considered for the least
squares estimation approach and analogous results are derived and proved.

The consistency of the parameter estimates (b—1, . . . , b—g)LS in (2.14) with the corre-
sponding convergence rates are provided for

o �n = 0 (thus, no penalty term is considered for the estimation and no regular-
ization is, therefore, involved);

o �n > 0 (estimation via regularization);

o the adaptive estimation when the penalty in (2.14) is replaced by an adaptive
version with some weights !j > 0 being defined analogously as in Sec-
tion 2.2.2.

From the overall point of view, the proposed group model allows for very general
modeling situations. The novelty of the model also lies within a unique com-
bination of the objective function and the penalty term (for different values of
q 2 {1, 2}). In addition, non-restrictive assumptions imposed for the quantile es-
timation in particular introduce a very robust estimation framework and a fully
data-driven changepoint detection and estimation approach. The paper also con-
tains some additional theoretical details and extensive finite sample comparisons
with different competitive methods. The full paper is provided in Appendix A.3.
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2.2.4 Panel data model

Finally, the last paper of this chapter (Maciak, 2021b) introduces a stochastic change-
point model for partially dependent data usually known as panel data. Such data
structure is also considered in the next chapter where some slightly different per-
spective is adopted.

From the structural point of view, the underlying model and the corresponding
data can be considered to be the most complex from all four models postulated
in this chapter so far. The overall illustrative comparison is given in Figure 2.2 (with
the panel data structure and the panel data model in Fig. 2.2d).

Let us assume the underlying data of the form {(Yt,i, xt,i); t = 1, . . . , T , i = 1, . . . ,n},
where T 2 N is assumed to be fixed and n ! 1. This is known as a (relatively
complex) panel data scheme, where for each panel—individual i 2 {1, . . . ,n}—the
response variable Yt,i is observed for some specific follow-up period t 2 {1, . . . T }
(common for all subjects) while some additional subject specific and time specific
information {xt,i}

T ,n
t=1,i=1 may be provided (for p-dimensional vectors xt,i 2 Rp).

As far as we are dealing with repeated observations here (within subject/panel
observations) it is reasonable to assume some form of dependence among {Yt,i}

T
t=1.

Individual panels are assumed to be independent for i = 1, . . . ,n.

Such and similar models (usually with a simpler structure in terms of the over-
all model flexibility, the available information, and the data complexity) are very
frequent in empirical econometric, for instance, for modeling a financial devel-
opment of a set of companies, economic growth of some specific countries, or
assessing a qualitative performance of various industrial businesses or indexes
(Qian and Su (2014); Qian and Su (2016a); Qian and Su (2016b); Maciak et al. (2020b);
Maciak (2021a); Maciak and Vitali (2022); Drábek et al. (2022)).

For simplicity and for the purposes of the underlying theoretical paper and this
section correspondingly it is assumed that xt,i = xi for all i = 1, . . . ,n. Thus the
subject specific information is stable over time. This can be nicely motivated, for
instance, by using some option market and a riskiness analysis of some specific
option contract in particular. The risk assessment is usually performed by analyzing
an implied volatility which is repeatedly observed over time for a certain set of the
underlying strikes—panels i = 1, . . . ,n. The strike value—panel label xi 2 D ✓ R

represents the price of the underlying asset and xi = ('1(xi), . . . ,'p(xi))> 2 Rp

can bee seen as some explicit functional basis expansion defined over the domain
D and evaluated at the given strike price xi 2 D.
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The underlying stochastic model, for some independent random error vectors Ái =

["1,i, . . . , "T ,i] (where the elements within each vector may form some unspecified
dependent structure), can be formalized as

Yt,i = x>
i —t + "t,i, t = 1, . . . , T ; i = 1, . . . ,n, (2.15)

where the unknown vector parameters —t 2 Rp may change at different time
points t 2 {1, . . . , T } in order to reflect the development of the underlying time
dependence of {Yt,i}

n
i=1 on {xi}

n
i=1. The sparsity principle is again imposed with

respect to the consecutive differences of the unknown vector parameters —t 2 Rp

over time: the underlying dependence of {Yt,i}
n
i=1 on {xi}

n
i=1 is supposed to be

relatively stable over time—reflected by the fact that —t+1 = —t for most of the time
points t 2 {1, . . . , T - 1} and, occasionally, the underlying dependence may change
to adapt for the situation on the market—thus, —t+1 6= —t for some unknown
changepoint location—time point t 2 {1, . . . , T }.

The model formulated in (2.15) can be directly estimated by solving the convex
minimization problem

(b—1, . . . , b—T ) = Arg min
—1,...,—T2Rp

 TX

t=1

nX

i=1

⇢⌧
⇣
Yti -x>

i —t

⌘
+n�n

TX

t=2

k—t -—t-1k2

�
,

(2.16)
using again the quantile check function to estimate conditional quantiles for an ar-
bitrary ⌧ 2 (0, 1) and the group lasso type penalty to achieve the final sparse
(regularized) solution. The estimated changepoint locations are determined by the
indexes t 2 {2, . . . , T } where b—t 6= b—t-1 and the number of the true changepoints is
estimated by the cardinality of the set {t 2 {2, . . . , T }; b—t 6= b—t-1}. Recall, that the
follow-up period T 2 N is fixed.

Additional restrictions—shape constraints—may be implemented to guarantee
some specific qualitative properties. Illustrated again on the implied volatility
and the financial theory on arbitrage free markets, it is desired to obtain a final
model which is convex with respect to the strikes. Non-increasing property can be
sometimes imposed as well. Both can be easily implemented into the estimation
process by solving the original minimization problem in (2.16) with respect to the
linear constraints

D—t 6 0, t = 1, . . . , T ; (non-increasing in the strike) (C1)
C—t > 0, t = 1, . . . , T ; (convexity in the strike) (C2)

(2.17)

where both inequality signs in (C1) and (C2) are meant in an element-wise manner
and D and C are some well-defined explicit matrices—derivatives of the basis ex-
pansion over the domain D ✓ R (see Maciak (2021b) for further technical details).
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Di�erent regularization sources

Beside the overall model complexity already mentioned above there might be an-
other theoretical and computational issue involved: the estimation via regularization
in terms of (2.16) under the constraints in (2.17) is simultaneously governed by two
regularization sources which are, by their main principle, very different.

If the minimization problem in (2.16) is considered together with some optional
shape restrictions in (2.17) then the final estimate is regularized with respect to its
both domains. Firstly, same as in the previous models, the first regularization is
provided by the penalty term which penalizes for too many changepoints occurring
in the final model. This is controlled by the regularization parameter �n > 0. By the
model definition in (2.15) the changepoints may only occur over time t 2 {1, . . . , T }
and, therefore, the first regularization source plays its role with respect to the time
domain. However, there is also another regularization source implicitly present
within the given (optional) shape restrictions in (2.17). Indeed, the final model
can not be too rough with respect to the subject specific covariates {xi}

n
i=1 if, for

instance, some convexity or monotonicity is required. The final model is, therefore,
regularized and, thus, the second regularization source—the linear constraints
in (2.17)—plays its role with respect to the spatial domain D ✓ R.

Of course, not necessarily both regularization sources must be considered simul-
taneously. For instance, for �n ! 0 there is no regularization with respect to the
time domain and the underlying dependence of {Yt,i}

n
i=1 on {xi}

n
i=1 changes at each

time point t 2 {1, . . . , T }. On the other hand, when no shape restrictions are consid-
ered the final estimate becomes rough with respect to the spatial domain D and
sometimes it may be useful to considered additional penalty terms to control for the
overall bias-variance trade-off in the final model. This is, however, already beyond
the scope of the underlying paper (Maciak, 2021b) and it is further discussed, for
instance, in Maciak (2021a).

An extreme situation occurs when none of the two regularization sources is in effect
during the estimation phase. In such scenarios the final model may even interpolate
all available observation {Yt,i}

T ,n
t=1,i=1. Such model becomes useless from the practi-

cal point of view and, therefore, some considerable amount of caution is always
needed when handling such data and such complex models.

The fourth paper of this chapter (Maciak, 2021b) provides the consistency result
for the estimated vector parameters b—1, . . . , b—T 2 Rp obtained in (2.16). Some
additional theoretical details are given as well together with the finite sample
investigation and a real option market application. The consistency proof derived
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in the paper is based on the KKT optimality conditions and a detailed investigation
of the theoretical properties of two specific stochastic (quantile) processes defined
as

Gn(—1, . . . , —T ) =
TX

t=1

nX

i=1

⇢⌧
⇣
Yt,i -x>

i —t

⌘

and

G?
n(—1, . . . , —T ) = Gn(—1, . . . , —T ) +n�n

TX

t=2

k—t -—t-1k2,

both for —1, . . . , —T 2 Rp.

Specifically, the novelty of the paper Maciak (2021b), which is given in full in Ap-
pendix A.4., relies on the following:

o complex panel data structure with changepoints and subject specific informa-
tion estimated in terms of the conditional quantiles—achieving robustness
with respect to the error distributions and outlying observations while pro-
viding a complex insight about the underlying stochastic data generating
mechanism;

o regularized changepoint estimation and detection with respect to the time
domain performed via sparsity and a convex minimization obtaining in a fully
data-driven methodological framework;

o additional shape properties of the final model (e.g., convexity, monotonicity)
obtained automatically by implementing explicit linear constraints;

o asymptotic consistency with respect to an increasing number of the given
panels (n ! 1) derived for the unknown model parameter estimates

kb—t -—⇤
tk1 = OP

 r
logn

n

!

, t = 1, . . . , T .

In addition, a finite sample performance of the proposed model is investigated and
compared with a competitive approach in terms of a simulation study and a practi-
cal application on options’ implied volatility time-dependent surface estimation
under the arbitrage free conditions is illustrated.
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2.3 Key contributions

o All proposed models allow for the changepoint detection and esti-
mation under very general, non-restrictive, and widely applicable
assumptions—in particular, no distributional restrictions, heavy-tailed
or asymmetric error distributions, or outlying observations;

o A complex and robust insight about the underlying probabilistic
model—the data generating mechanism—is provided from the the-
oretical, as well as the empirical/practical point of view—all due to the
estimation of arbitrary conditional quantiles;

o Detailed rigorous mathematical proofs of consistency with respect to
various perspectives (such as the model parameters estimation, change-
points detection, changepoint locations estimation, or the estimation of
the true number of changepoints) are provided;

o The final solutions are always obtained effectively and uniquely—all
guaranteed by the convex minimization problem formulations where,
in addition, the solution is derived within a fully data-driven method-
ological framework;

o In all four papers, the formulated models and the proposed estimation
approaches seem to empirically outperform standard estimation tech-
niques which are usually based on more restrictive assumptions and
less complex model definitions.
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3Detection via Self-normalization

„The aim of science is to seek
the simplest explanation of complex facts.

— Alfred North Whitehead (1861-1947)

(English mathematician, author of Principia Mathematica)

Unlike the previous chapter, which was rather devoted to the problem of the
changepoint estimation in some underlying model, the key interest of this chapter
does not lie on the quantification of the change magnitude but, instead, it provides
a statistically valid answer to a relatively very simple question: “Did the change
indeed occur in the model, or not?” This is known as a changepoint detection problem.

The theoretical core of this chapter is based on three original theoretical papers.
The ultimate goal of all three of them is to develop a fully data-driven method-
ological approach for testing a changepoint significance within a standard panel
data structure—similar to the one used in the last model of the previous chapter—
however, assuming a set of even less restrictive (universal) assumptions with respect
to the given panels and the overall errors’ dependence form. Firstly, formal statisti-
cal tests based on the self-normalization principle are constructed in a step-by-step
manner. Second, various competitive test statistics are proposed and their theo-
retical and finite sample properties are investigated. Third, a so-called bootstrap
add-on is suggested to finally achieve the given goal of having a fully data-driven
detection method. Last but not least, the whole changepoint problem can be also
considered within an omnibus model where the changepoint estimation and the
changepoint detection play both their substantial roles simultaneously in one overall
mathematical/statistical approach.

Formal changepoint detection techniques—statistical changepoint tests in particular—
developed from simpler two sample problems and some related statistical tests
being applied in various real-life situations (Quandt (1960); Chow (1960); Bai (2006)).
However, unlike the aforementioned situations where the changepoint locations are
a priori known, for the changepoint detection problem the locations are supposed
to be generally unknown. This of course introduces some additional complexity
from both—the theoretical point of view as well as the computational one.
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Fig. 3.1. Illustrative example of a simple but very general panel data structure. The location panels
are allowed to be dependent, heteroscedastic, non-stationary, with a common changepoint
location ⌧ 2 {1, . . . , T }, but different jump magnitudes and possibly an extremely short
follow-up period T 2 N.

Restricting our attention to changepoint detection problems within simple panel
data structures as illustrated in Figure 3.1, the underlying data, represented by
a collection of observations {Yi,t}

N,T
i=1,t=1 for N 2 N and T 2 N, satisfy

Yi,t = µi + �iI{t>⌧} + "i,t, (3.1)

for some panel specific mean parameters µi 2 R, some common (but unknown)
changepoint location ⌧ 2 {1, . . . , T }, the corresponding panel specific jump magni-
tudes �i 2 R, and some random error vectors Ái = ["i,1, . . . , "i,T ]. All quantities
on the right-hand side of (3.1) are generally unknown and they are supposed to be
estimated using the available data—observations {Yi,t}

N,T
i=1,t=1. From the theoretical

point of view, the number of subjects N 2 N is allowed to tend to infinity while the
follow-up period, T 2 N, is supposed to be fixed and it can be even extremely short
(referring mainly to the situations being explicitly discussed in this chapter).

The changepoint detection problem related to the panel data structure in (3.1) can be
reformulated in terms of a formal statistical test where the null hypothesis of no
changepoint presence is formally expressed as

H0 : ⌧ = T (3.2)

while a general alternative hypothesis specifies the following:

H0 : ⌧ < T ^ 9i 2 {1, . . . ,N} such that �i 6= 0. (3.3)
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Referring to the existing literature, statistical tests in terms of the null hypothe-
sis in (3.2) and the alternative hypothesis in (3.3) are performed under various
scenarios. Typical assumptions mostly involve independent panels—either with
homoscedastic errors (De Wachter and Tzavalis, 2012) or heteroscedastic ones (Pe-
saran (2006); Kim (2011); Baltagi et al. (2016)). In terms of the follow-up period
specification, one can assume that T ! 1, same as N ! 1 (Chan et al. (2013b);
Chan et al. (2013a); Horváth and Hušková (2012)), or, alternatively, the follow-up
period may be considered to be fixed (Bai (2010); Peštová and Pešta (2015); Antoch
et al. (2019), and others).

In what follows, we rather impose very general—non-restrictive—conditions, where
the panels are allowed to be mutually dependent and the error terms within each
panel may again form some dependent sequence of random variables. The follow-
up period is assumed to be fixed but no further restrictions are given and it can be
even extremely short—as short as, for instance, 3–10 observations.

3.1 Panel data dependence

Dependent panel data structures appeared in the statistical literature quite recently
while there are mainly two different concepts being used to implement the mutual
panel data dependence. A theoretically simpler idea is based on a common factor
model investigated, for instance, in Kim (2014), Barigozzi et al. (2018), or Wester-
lund (2019). More complex dependence structures can be imposed by relaxing the
random error assumptions—allowing for almost any arbitrary dependence form—
similarly as in Cho (2016) or Bhattacharjee et al. (2019). Both of these approaches
are subsequently considered in this chapter.

3.1.1 Common factors

The first theoretical paper of this chapter (Maciak et al., 2018) specifically deals
with the changepoint detection within a dependent panel data structure where the
dependence is imposed in terms of some common factors and the corresponding
panel specific loadings. Assuming the observations {Yi,t}

N,T
i=1,t=1, the underlying

panel data structure can be expressed as

Yi,t = µi + �iI{t>⌧} + ⇣i⇠t + �i"i,t, i = 1, . . . ,N, t = 1, . . . , T , (3.4)

where µi 2 R, for i = 1, . . . ,N, are the unknown panel specific mean parameters, the
true changepoint location is represented by an unknown time point ⌧ 2 {1, . . . , T },
and the corresponding panel specific change magnitudes are �i 2 R, again for
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i = 1, . . . ,N. Note, that the formulation also allows for situations where only some
panels are subjected to the change and for the remaining panels it may hold that
�i = 0. Random error vectors Ái = ["i,1, . . . , "i,T ]> are independent and identically
distributed for i = 1, . . . ,N with a zero mean vector and some finite, positive-
definite variance-covariance matrix. However, the random elements within each
random vector Ái are not assumed to be independent and they may form some
fragments of a dependent random sequence. Different variance parameters �i > 0,
for i = 1, . . . ,N, may incorporate a general heteroscedasticity form.

In addition, there is a mutual dependence between the panels introduced by im-
plementing random factors {⇠t}Tt=1 and some panel specific (deterministic) loading
parameters {⇣i}Ni=1, which are usually left unknown. The level of the overall depen-
dence between the panels is modeled by the magnitudes of the unknown loading
parameters. If ⇣i = 0 for some i 2 {1, . . .N} then the panel i is independent of the
remaining panels. The changepoint detection problem within the panel data structure
in (3.4) reduces to a formal statistical test of the null hypothesis in (3.2) against the
alternative hypothesis in (3.3).

For a more coherent text formulation, the proposed test statistics and some further
theoretical details continue in Section 3.2.1. The paper itself (Maciak et al., 2018) is
provided in Appendix A.5.

3.1.2 Dependent errors

Another way how to introduce a mutual dependence between the panels is more
complex but it also allows for more general variance-covariance assumptions which
may turn out to be far more realistic from the practical point of view. The underlying
panel data structure is now formulated as

Yi,t = µi + �iI{t>⌧} + "i,t, i = 1, . . . ,N, t = 1, . . . , T , (3.5)

which may rather look as a simpler model than the one formulated in (3.4) however,
the panel specific disturbances Ái = ["i,1, . . . , "i,T ] are now allowed to form more
general random sequences. Particularly, there is no stationarity assumed within
the panels and, also, no stationarity among the panels. Again, the changepoint
detection problem reduces to a formal statistical test of the same null hypothesis as
in (3.2), against the alternative (3.3). The theoretical justification of the test must be,
however, different and it is much more complex. The proposed test statistics and
the corresponding statistical properties are addressed in the second paper of this
chapter (Maciak et al., 2020a). The paper is given in full in Appendix A.6. Some
more details are further provided in Section 3.2.2.
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3.2 Formal statistical tests

A mathematical framework needed to perform a statistical test is typically based
on some test statistic—a random variable—which is defined in a way that it be-
comes sensitive/large in situations described by the alternative hypothesis. More
formally, if the null hypothesis in (3.2) is true, the test statistic should be rather small
(it actually follows some specific probabilistic distribution usually concentrated
around zero). On the other hand, if the alternative hypothesis (3.3) is valid, the test
statistic should reflect this by diverging to infinity (in probability, as the sample
size increases). In the following, there are four such test statistics proposed. Two
ratio type statistics described in Section 3.2.1 are designed to handle the changepoint
detection problem in the panel data structure in (3.4). The theoretical properties and
the test consistency are proved in Maciak et al. (2018). Another two test statistics,
specified in Section 3.2.2, are intended to hande the changepoint detection problem
in the panel data structure in (3.5) and the theoretical details and the test validity
are proved in Maciak et al. (2020a).

3.2.1 Ratio type statistics

Various types of the test statistics can be of course formulated to handle the change-
point detection problem in terms of the null hypothesis in (3.2) and the alter-
native hypothesis in (3.3). The most common approaches involve cumulative
sum statistics, maximum type statistics, or some Cramér von Mises type statis-
tic. In our approach, so-called ratio type statistics are used as they do not require
any estimation of the nuisance variance parameters (see, for instance, Csörgő and
Horváth (1997), Horváth et al. (2008), Liu et al. (2008), Chen and Tian (2014), or
Pešta and Wendler (2019)) which will turn out to be very useful when approaching
the ultimate goal of having a fully data driven changepoint detection framework.

In our particular situation, the following two competitive test statistics are proposed
and they are in detail investigated in the underlying paper (Maciak et al., 2018)

RN(T) = max
t=2,...,T-2

maxs=1,...,t

���
PN

i=1

hPs
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where Yi,t and eYi,t respectively are the sample averages of the first t observations
in the panel i 2 {1, . . . ,N} or the last T - t observations respectively, i.e.,

Yi,t =
1
t

tX

s=1

Yi,s and eYi,t =
1

T - t

TX

s=t+1

Yi,s.

The main reason for two different test statistics is the following: The first one
performs more robustly with respect to possible outliers while the second one may
have relatively more power to reject the null hypothesis. Otherwise, both test
statistics are equivalent in terms of the underlying test which is formally performed
by comparing the observed value of the test statistic with the theoretical quantile
of the asymptotic distribution valid under the null hypothesis. In particular, it is
derived in Maciak et al. (2020a) that
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and
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�2 , (3.7)

where Zt = XT -Xt and [X1, . . . ,XT ]> is a multivariate normal random vector with
a zero mean vector and some specific variance covariance matrix » = (�t,v)

T ,T
t=1,v=1,

where �t,t is the so-called cumulative autocorrelation function

�t,t = Var
 tX

s=1

"i,s

�

for t 2 {1, . . . , T } and �t,v is a shifted cumulative correlation function defined as

�t,v = �t,t + Cov
✓ tX

s=1

"i,s,
vX

u=t+1

"i,u

◆
,

for t, v 2 {1, . . . , T }, such that t < v. Statistical tests based either on the test statistic
defined in (3.6) or the test statistic given in (3.7) are both proved to be consistent
in a sense that the corresponding test statistics converge to infinity in probability
as the number of panels increases (N ! 1) and the alternative hypothesis holds
true. Technical details, theoretical proofs, finite sample performance, and empirical
comparisons of both ratio type test statistics under various scenarios are provided
in Maciak et al. (2018), given in Appendix A.5.
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3.2.2 Self-normalized statistics

More complex dependence structures are assumed in the second paper of this
chapter (Maciak et al., 2020a), however, the same principles of using the ratio-type
statistics with self-normalization are advocated and investigated again.

Recall, that the underlying dependence between and within the panels is now fully
determined by the structure of the panel specific error vectors Ái = ["i,1, . . . , "i,T ].
The corresponding self-normalized test statistics, proposed in the paper, are

QN(T) = max
t=1,...,T-1

|LN(t, T)|
maxs=1,...,t |LN(s, t)|+ maxs=t,...,T-1 |RN(s, t)|

(3.8)
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defined in terms of two types of the cumulative sums of the partial residuals
LN(s, t) =

PN
i=1

Ps
r=1(Yi,r-Yi,t) and RN(s, t) =

PN
i=1

PT
r=s+1(Yi,r- eYi,t), where

Yi,t denotes the average of the first t observations in the panel i 2 {1, . . . ,N}

and eYi,t is the average of the last T - t observations within the same panel, i.e.,
Yi,t =

1
t

Pt
s=1 Yi,s and eYi,t =

1
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PT
s=t+1 Yi,s.

The asymptotic behavior of the test statistics in (3.8) and (3.9) under the null hy-
pothesis in (3.2) is proven to be of the form
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where, again, Zt = XT - Xt and [X1, . . . ,XT ]> is a multivariate normal random
vector with a zero mean vector and the unknown (theoretical) variance covariance
matrix

» = lim
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The errors vectors Ái = ["i,1, . . . , "i,T ]> are neither independent nor identically
distributed. Similarly as before, the test of the null hypothesis in (3.2) against the
alternative in (3.3) based on the test statistic in (3.8) or (3.9) is proved to be consistent
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in a sense that both test statistics converge to infinity in probability if the alternative
hypothesis holds true and the number of panels increases (N ! 1).

Despite the fact that the ratio type statistics and the self-normalization principle are
used, there are still some nuisance parameters that do not cancel out automatically
when performing the test. This involves the covariance parameters reflecting not
the true variance but, instead, the underlying dependence structure between and
within the given panels. This can be, however, effectively handled by a proper
resampling—a bootstrap add-on—which can avoid estimation of the covariance
structure (the matrix » occurring in the asymptotic distribution of the ratio type
statistics and the self-normalized test statistics).

3.3 Data-driven approach

The next step towards the ultimate goal of this chapter (a fully data driven change-
point detection approach) is to avoid the estimation of any nuisance parameters
and tuning constants and to eliminate any non-expert—user-based—intervention
during the changepoint detection process itself. As already mentioned above,
this can be effectively handled by a proper bootstrap resampling algorithm but
there is another challenge that arises with it: A consistent changepoint estimator
b⌧ 2 {1, . . . , T - 1} is needed for a proper bootstrap resampling. The tricky part of
this step lies within the fact that it is usually not known whether the changepoint
really occurs in the model (thus, some changepoint location estimate should be
indeed given) or not (thus, no changepoint location estimate is needed).

This problem is closely studied and properly solved in the third theoretical paper
in this chapter and the last (seventh) paper contained in this habilitation thesis
(Pešta et al., 2020). The paper is given in full in Appendix A.7.

3.3.1 Location estimation

In most situations considered in the literature, the changepoint estimator is con-
structed under the situation where it is apriori known that the changepoint occurs
for sure (see, for instance, Pesaran (2006), Bai (2010), or Baltagi et al. (2016)). This is,
however, clearly not the case in our situations, therefore, some different approach
must be adopted. In the paper, we propose the estimator of the form

b⌧N = Arg max
t=1,...,T

UN(t), (3.13)
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where

UN(t) =

�
1

t(T-t)

PN
i=1

Pt
u=1

PT
v=t+1(Yi,u - Yi,v)2 t < T ;

2
(T-t)2

PN
i=1

PT
v=2

Pv-1
u=1(Yi,u - Yi,v)2 t = T .

This estimator does not suffer from any boundary issues (very common for other
types of the estimators proposed in the literature), similarly as in Peštová and
Pešta (2017) or Bardwell et al. (2019) but, in addition to the previous authors, our
estimator is proved to be consistent under the same non-restrictive assumptions as
those assumed for the panel data structure in (3.5) in Sections 3.1.2 and 3.2.2.

The consistency of the proposed nuisance parameters free estimator is proved re-
gardless of the presence or absence of the changepoint in (3.5). In other words,
if there is no changepoint present in in the panel data structure in (3.5), the pro-
posed estimator points out at the very last time point T 2 N with probability
tending to one, as N ! 1. Theoretical proofs are all given in the underlying paper
(Pešta et al., 2020). An existence of such changepoint estimator allows us to finally
build a fully data driven changepoint detection methodological framework—while
achieving the ultimate goal laid down in this chapter.

3.3.2 Bootstrap add-on

Because there are dependent panels considered in general, the Moving Block Boot-
strap (MBB) algorithm is proposed to handle the underlying dependence properly
(see, for instance, Künsch (1989), Dehling et al. (2015), or Betken and Wendler (2018)).
MMB is based on resampled residuals however, the residuals are supposed to be
resampled under the validity of the null hypothesis. This is where the proposed
changepoint location estimator from the previous section comes into play.

Using the proposed changepoint estimator, the residuals can be defined as

bei,t =

�
Yi,t - Yi,b⌧N

, t 6 b⌧N;
Yi,t - eYi,b⌧N

, t > b⌧N;
(3.14)

where b⌧N 2 {1, . . . , T } is the given (consistent) changepoint location estimator
from Section 3.3.1 and Yi,b⌧N

and eYi,b⌧N
are panel specific partial averages—i.e.,

sample means of the observations up to the estimated changepoint location and
the observations after). The bootstrap algorithm itself is based on resampling with
replacement of the blocks of residuals from {bei}

N
i=1, where bei = [bei,1, . . . , bei,T ]. The
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bootstrapped residuals, denoted as be(b)i,t , are further centered by their conditional
expectation yielding the bootstrapped panel data structure of the form

bY(b)
i,t = be(b)i,t -

1
N

NX

i=1

bei,t. (3.15)

Formal steps of the moving block bootstrap algorithm are described below.

Procedure 3.3.1 Moving block bootstrap for the test statistics (3.8) and (3.9)

Input: Block-size b, number of bootstrap replications M, and panel data consist-
ing of N = bn panels with length T , i.e., N row vectors of the observations
[Yi,1, . . . ,Yi,T ]

Output: Bootstrap distribution of Q
(b)
N (T) and W

(b)
N (T), i.e., the empirical

distribution where the probability mass 1/M concentrates at each of

(1)Q
(b)
N (T), . . . , (M)Q

(b)
N (T) and (1)W

(b)
N (T), . . . , (M)W

(b)
N (T), respectively

1: estimate the changepoint by calculating b⌧N as in (3.13)
2: compute residuals bei,t as in (3.14)
3: for j = 1 to N- b+ 1 do // construct the blocks
4: define a block of sub-panels j, which is a (b ⇥ T) matrix having rows

bej, . . . , bej+b-1
5: end for

6: for m = 1 to M do // repeat in order to obtain the empirical distributions
7: independently resample with replacement (b ⇥ T)-dimensional blocks

(m)
(b)
1 , . . . , (m)

(b)
n from { 1, . . . , N-b+1} with equal probability 1/(N-

b+ 1)
8: the MBB of resample of size N, denoted by {(m)be

(b)
i,t }N,T

i,t=1, is formed by joining
(stacking) the resampled blocks (m)

(b)
1 , . . . , (m)

(b)
n to one big block, i.e.,

[(m)
(b)>
1 , . . . , (m)

(b)>
n ]> = [(m)be

(b)>
1 , . . . , (m)be

(b)>
N ]>

9: calculate bootstrap panel data (m)
bY(b)
i,t as in (3.15)

10: compute bootstrap test statistics (m)Q
(b)
N (T) and (m)W

(b)
N (T) as in (3.8)

and (3.9), where Yi,t’s are replaced by bY(b)
i,t ’s

11: end for

The fully data-driven changepoint detection framework is laid out in three consecutive
steps and the theoretical results obtained for each stage—the corresponding statisti-
cal tests, the changepoint location estimator, and the bootstrap add-on validity—are
summarized and proved in the three theoretical papers of this chapter (Maciak
et al. (2018), Maciak et al. (2020a), and Maciak et al. (2020a)). In particular, the
following theoretical proofs are provided:
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o asymptotic distribution under the null hypothesis for all four test statistics
defined by (3.6), (3.7), (3.8), and (3.9);

o consistency of the statistical tests based on the proposed statistics which
converge, under the alternative hypothesis in (3.3), to infinity in probability;

o consistency of the nuisance parameter free changepoint estimator defined by
(3.13) given regardless of the presence/absence of the true changepoint;

o validity of the bootstrap add-on as described in Algorithm/Procedure 3.3.1
and the justification of the overall fully data-driven approach.

All three papers also contain an extensive empirical based finite sample comparisons
under various scenarios (e.g., different within and between panel dependence forms,
error distributions, various proportions of panels being subjected to the change,
and others). Practical illustrations based on real data examples are provided.

To conclude, let us consider the whole changepoint problem and both of its aspects
explicitly mentioned in Chapter 2 and Chapter 3—the changepoint estimation and
the changepoint detection—together in one omnibus model where both aspects play
their substantial roles within just one stochastic framework. For instance, consider-
ing some basic applicational principles of the changepoint problem there are two
different methodological attitudes that were not explicitly mentioned yet. All the
situations described so far concerned the changepoint problem where all the data
were already available. However, it maybe also of some practical interest to design
a so called online procedure where the data arrive in time (usually in an observation-
by-observation manner) and the model estimation process and the changepoint
detection algorithm run both concurrently as the new observations appear. Such
procedures are especially important in situations where an immediate changepoint
detection in some data generating mechanism may trigger some retraining process
or, even more frequently, it may help to govern important decisions effecting specific
subjects or even the whole populations—such as different pandemic restrictions
related to the very recent SARS-CoV-2 virus spread. This is a particular situation
where both—the changepoint estimation and the changepoints detection may go hand-
in-hand in order to provide mathematically valid real-time conclusions. This also
shows that despite some obvious conceptual, methodological, and theoretical differ-
ences the changepoint estimation and the changepoints detection are both just two sides
of the same coin. Such online procedures—which formally bring together the ideas
summarized in Chapter 2 and Chapter 3—are further investigated in an ongoing
author’s research, for instance, in Ciuperca et al. (2022) or Maciak et al. (2022) but
this already aims beyond the scope of this thesis.
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3.4 Key contributions

o All changepoint detection tests considered in all three theoretical papers
in this chapter are derived under the very general and non-restrictive
assumptions that go beyond typically imposed conditions in existing
literature (e.g., generally dependent panels, hetereroscedasticity, non-
stationarity, extreme follow-up period);

o The proposed changepoint tests based on the designed competitive test
statistics (bearing in mind, for instance, different robustness assump-
tions or a variable power of the test) are all proved to be consistent and,
moreover, with a closed form asymptotic distribution under the null
hypothesis;

o The asymptotic distribution of the test statistics can be always easily
obtained either in terms of some resampling method (e.g., moving
block bootstrap), or some simulations (e.g., the multivariate normal
process with the given variance-covariance matrix);

o All the proposed changepoint tests are closely investigated from the
theoretical as well as the empirical perspective—detailed comparisons
are always provided and practical pieces of advice for a real problem
utilization are complemented.
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4Conclussion

„Where we’re going, we don’t need roads....

— Christopher Lloyd

(As Dr. Emmett Brown in ‘Back to the Future’)

This habilitation thesis summarizes some important mathematical and statistical
contributions to the well-known changepoint problem while the theoretical results rely
only on very non-restrictive, generally applicable, and easily verifiable theoretical
assumptions. The stochastic framework of the changepoint analysis postulated
in this thesis apriori assumes some inconsiderable presence of unobserved fluctua-
tions and random error disturbances with no further specifications. The key goal is
to provide (practical) conclusions which are valid from the mathematical/statistical
perspective—despite any uncertainty involved.

This is all achieved by adopting two seemingly different but mutually closely
related methodological frameworks: the changepoint estimation performed under
the sparsity principle and regularization and the changepoint detection utilized via
the ratio based test statistics and self-normalization. Both approaches are equally
important and, moreover, their importance is eventually illustrated within just
one ominibus model sketched at the end and further elaborated, for instance,
in Ciuperca et al. (2022), where both—the changepoint estimation and the changepoint
detection—play their key roles simultaneously in an online regime model providing
instant conclusions for real-time decisions.

Advanced mathematical and statistical theory is applied to derive the underlying
theoretical results briefly summarized in Chapter 2 and Chapter 3. Similarly, com-
plex algorithms and sophisticated numerical techniques are needed to obtain the
finite sample solutions. All theoretical details, non-trivial mathematical proofs, and
empirical comparisons are given in seven original manuscripts (published in well
recognized international impact factor journals) comprehended in this habilitation
thesis and provided in full in Appendix1.

1The appendix itself may or may not be the part of this habilitation thesis—depending on the thesis
version (long/short) and specific requirements of the Department of Research and International
Affairs of the Faculty of Mathematics and Physics, Charles University.
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All seven original theoretical papers significantly contribute to both—the math-
ematical part of the changepoint problem as well as its finite sample—empirical
counterpart. However, the papers do not represent a full, complex, and complete
methodological framework, nor the author’s overall research. They are only meant
to serve as a brief illustration of the authors research interests and some of the
author’s research contributions achieved over the last few years. There is always
a room for some new ideas, there is always a way for some new progress—for
instance, trying to relax the theoretical assumptions being used or improving the
finite sample performance, or both simultaneously. This was actually also the
author’s primary inspiration that drove the research summarized in this thesis.
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