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1
I N T R O D U C T I O N

In this chapter, we survey all the main results that are contained in this
thesis. First, we state some necessary preliminaries and give a brief
introduction to Ramsey theory and discrete geometry. The content of
the remaining sections of this chapter is then described at the end of
Section 1.1.

1.1 preliminaries

We assume that the reader is familiar with the basics of graph theory
to the extent covered, for example, by [MN09]. Throughout the whole
thesis, we consider only finite simple graphs with no loops nor multi-
ple edges. We also assume familiarity with the basics of geometry and
linear algebra to the extend covered, for example, by [Mat02].

For a positive integer n, we use [n] to denote the set {1, . . . , n}. We
omit floor and ceiling signs whenever they are not crucial and we
use log and ln to denote base 2 logarithm and the natural logarithm,
respectively.

For a positive integer r, an r-coloring of a hypergraph H is any
function that assigns one of r colors to each edge of H. Unless stated
otherwise, we assume that the colors of an r-coloring form the set [r].

We let λd(K) be the d-dimensional Lebesgue measure of a Lebesgue
measurable subset K of Rd. We say that λd(K) is the volume of K. The
closed d-dimensional ball with the radius r ∈ R, r ≥ 0, centered in the
origin is denoted by Bd(r). We simply write Bd instead of Bd(1).

For functions f , g : N → N, we write f (n) ≤ O(g(n)) if there is a
constant c1 such that f (n) ≤ c1 · g(n) for all n ∈N. Similarly, we write
f (n) ≥ Ω(g(n)) if there is a constant c2 > 0 such that f (n) ≥ c2 · g(n)
for all n ∈N. If the constants c1 and c2 depend on some parameters
a1, . . . , at, then we emphasize this by writing f (n) ≤ Oa1,...,at(g(n)) and
f (n) ≥ Ωa1,...,at(g(n)), respectively. If f (n) ≤ Oa1,...,at(n) and f (n) ≥
Ωa1,...,at(n), then we write f (n) = Θa1,...,at(n).

1.1.1 Ramsey theory

In broad sense, Ramsey theory refers to any result whose underlying
philosophy can be captured by the statement “Every structure of a
given kind contains a large well-organized substructure”. This part
of discrete mathematics has developed enormously in the last few
decades, emerging into a field with important statements in many
areas, including combinatorics, geometry, logics, and number theory.
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2 introduction

A classical example of a Ramsey-type statement, and one of the old-
est such results, is the Erdős–Szekeres lemma on monotone subsequences
proved by Erdős and Szekeres [ES35] in 1935.

Theorem 1.1.1 (The Erdős–Szekeres lemma [ES35]). For every positive
integer n, every sequence of at least (n − 1)2 + 1 distinct real numbers
contains an increasing or a decreasing subsequence of length n. Moreover,
this bound is tight.

Here, the structure that we study are sequences of distinct real
numbers and the well-organized substructures that we are looking for
are increasing and decreasing subsequences of length n. In this case,
we know the exact minimum size of the structure that guarantees the
existence of the well-organized substructures, it equals (n− 1)2 + 1.

One of the cornerstones of Ramsey theory, from which Ramsey
theory derives its name, is Ramsey’s theorem [Ram29].

Theorem 1.1.2 (Ramsey’s theorem [Ram29]). For all positive integers r,
k and all k-uniform hypergraphs H1, . . . , Hr, there is a positive integer N
such that in every r-coloring χ of K(k)

N there is i ∈ [r] and a subhypergraph
of K(k)

N isomorphic to Hi with all edges of color i in χ.

If we have only two colors (r = 2), we use R(H1, H2) to denote the
smallest such integer N and we call it the Ramsey number of H1 and
H2. If the hypergraphs H1 and H2 are isomorphic, we simply write
R(H1) instead of R(H1, H2). This is called the diagonal case. Otherwise
we call it the non-diagonal case.

By Ramsey’s theorem (Theorem 1.1.2), Ramsey numbers are always
finite and thus well-defined. Estimating the growth rate of Ramsey
numbers is a notoriously difficult problem in general. Despite several
attempts over the last 70 years, Ramsey numbers are not fully under-
stood even for complete graphs. Although there have been smaller
term improvements [Con09, Ash20, Spe75], the best known bounds
on R(Kn) essentially are

2n/2 ≤ R(Kn) ≤ 22n. (1.1)

The lower bound is due to Erdős [Erd47] while the upper bound was
proved by Erdős and Szekeres [ES35] in their seminal paper from
1935. In this paper, Erdős and Szekeres independently rediscovered
Ramsey’s theorem and their work is thus one of the starting points of
Ramsey theory.

For sparser graphs, Ramsey numbers grow at a significantly slower
rate. For example, the following classical result by Chvátal, Rödl, Sze-
merédi, and Trotter [Chv+83] says that Ramsey numbers of bounded-
degree graphs are only linear in the number of vertices.

Theorem 1.1.3 ([Chv+83]). For every positive integer ∆, there is a positive
integer C = C(∆) such that every n-vertex graph G with maximum degree
∆ satisfies

R(G) ≤ C · n.
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The Ramsey numbers R(K(k)
n ) are even less understood for complete

k-uniform hypergraphs with k ≥ 3. For example, it is only known that

2Ω(n2) ≤ R(K(3)
n ) ≤ 22O(n)

, (1.2)

as shown by Erdős, Hajnal, and Rado [EHR65]. A famous conjecture of
Erdős, for whose proof Erdős offered $500 reward, states that there is a
constant c > 0 such that R(K(3)

n ) ≥ 22cn
. The case k = 3 is of particular

importance, as if one determines the growth rate of R(K(3)
n ) precisely,

then the so-called Stepping-up lemma by Erdős and Rado [ER52] would
determine the growth rate of R(K(k)

n ) for every k ≥ 4. The Stepping-up
lemma is quantitatively stated as follows.

Theorem 1.1.4 (The Stepping-up lemma [ER52] ). For all integers k ≥ 3,
s ≥ k, and t ≥ k, we have

R(K(k)
s , K(k)

t ) ≥ 2
(

R
(

K(k−1)
s−1 ,K(k−1)

t−1

)
k−1

)
+ k− 2.

The tower function tk(x) of height k− 1 is defined by the recursive
formula t1(x) = x and tk(x) = 2tk−1(x) for every k ≥ 2. Using (1.2)
together with the Stepping-up lemma (Theorem 1.1.4), one can derive
lower bounds on R(K(k)

n ) for k ≥ 4. However, there is a difference
of one exponential between known upper and lower bounds. More
precisely, we have

tk−1(Ω(2−kn2)) ≤ R(K(k)
n ) ≤ tk(O(n)) (1.3)

for every k ≥ 3.
Perhaps surprisingly, the Ramsey number R(H) of every k-uniform

hypergraph H with bounded k and with bounded maximum degree
is at most linear in the number of vertices of H [Chv+83, CFS09,
Coo+08, Coo+09, Ish07, Nag+08].

1.1.2 Discrete geometry

In their celebrated paper from 1935, Erdős and Szekeres [ES35] not only
established the foundations of Ramsey theory, but they also initiated
the study of discrete geometry, one of the fields of combinatorics with a
wealth of interesting and difficult problems. In discrete geometry, the
emphasis is on combinatorial properties of simple geometric objects
such as finite sets of points, lines, hyperplanes, circles, and so on.
Many questions in discrete geometry are very natural and easy to
state, yet their solutions might be very difficult or even out of reach
by current methods.

The connection between Ramsey theory and discrete geometry is
almost as old as Ramsey theory itself, since one of the earliest and
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most popular applications of Ramsey’s theorem is the Erdős–Szekeres
theorem, a foundational result in discrete geometry. To state it, we first
need to state some definitions.

A finite set P of points in the plane is in general position if no three
points from P lie on a common line. A finite set of points is in convex
position if its points form vertices of a convex polygon.

Theorem 1.1.5 (The Erdős–Szekeres theorem [ES35]). For every positive
integer n, there is a positive integer N(n) such that every set of at least N(n)
points in general position in the plane contains n points in convex position.

We use ES(n) to denote the smallest such integer N(n). The state-
ment of the Erdős–Szekeres theorem is a generalization of Esther
Klein’s problem, which was named the Happy Ending Problem by Paul
Erdős, as it eventually led to the marriage of George Szekeres and
Esther Klein. Erdős and Szekeres provided two proofs of this famous
result. One is an application of Ramsey’s theorem (Theorem 1.1.2) and
yields a rather poor upper bound on the function ES(n). The other
proof uses more geometry and gives the estimate

ES(n) ≤
(

2n− 4
n− 2

)
+ 1 (1.4)

for every n ≥ 2. Already in 1935, Erdős and Szekeres believed that this
bound can be significantly improved. Based on their results for n =

2, 3, 4, they posed the famous and still open Erdős–Szekeres conjecture,
for whose proof Erdős offered $500 reward.

Conjecture 1.1.6 (The Erdős–Szekeres conjecture [ES35]). For every
integer n ≥ 2, we have

ES(n) = 2n−2 + 1.

In the 1960s, Erdős and Szekeres [ES60] supported Conjecture 1.1.6
with the lower bound

ES(n) ≥ 2n−2 + 1. (1.5)

Despite several attempts over the years [CG98, KP98, TV98, MV16,
NY16, SP06], it is still open to decide whether the upper bound
ES(n) ≤ 2n−2 + 1 holds. It is only known that the conjecture is true
for n ≤ 6 [SP06]. However, there has been a recent breakthrough by
Suk [Suk17], who proved a very close estimate ES(n) ≤ 2n+o(n).

Of course, the field of discrete geometry offers much more than
Erdős–Szekeres-type questions. There are, for example, beautiful prob-
lems about numbers of incidences, unit distances in finite point sets,
visibility problems, estimating numbers of faces of polytopes, and
many more. Some of these problems are explored later in this thesis.
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1.1.3 Synopsis of the thesis

We study extremal problems with motivation coming from the field of
discrete geometry. In particular, most of the problems are motivated
by the Erdős–Szekeres theorem (Theorem 1.1.5).

Quite recently, several authors noticed that the Erdős–Szekeres
lemma (Theorem 1.1.1) and the upper bound (1.4) can be derived from
results about Ramsey numbers of 2- and 3-uniform paths with a partic-
ular ordering of their vertices [CP02, EM13, Fox+12, MSW15, MS14].
This initiated a study of so-called ordered Ramsey numbers [Bal+20,
Con+17], which are an analogue of Ramsey numbers for hypergraphs
with a fixed ordering of their vertex sets.

In Section 1.2, we survey known results about ordered Ramsey
numbers of ordered graphs. We state the necessary definitions and
then we cover known estimates on ordered Ramsey numbers for
general classes of ordered graphs as well as for classes of specific
graph orderings. In particular, we solve two open problems posed
by Conlon, Fox, Lee, and Sudakov [Con+17] and refute a conjecture
of Rohatgi [Roh19]. We conclude this section with a rich list of open
problems in this relatively new part of Ramsey theory.

We continue our study of ordered Ramsey numbers in Section 1.3,
where we focus on ordered hypergraphs. We list known results about
ordered Ramsey numbers of ordered k-uniform hypergraphs with
k ≥ 3 and we mention a connection between the Erdős–Szekeres theo-
rem and ordered Ramsey numbers of monotone 3-uniform paths. We
refute a conjecture of Peters and Szekeres [SP06] about an abstract
combinatorial strengthening of the Erdős–Szekeres conjecture (Con-
jecture 1.1.6). When investigating the ordered Ramsey numbers of
monotone paths with restricted colorings, we solve an open problem
posed by Eliáš and Matoušek [EM13] and also by Moshkovitz and
Shapira [MS14]. We also introduce a variant of ordered Ramsey num-
bers for graphs with ordered edges instead of vertices. Again, this
section is concluded with a list of several open problems.

In Section 1.4, we focus on a strengthening of the Erdős–Szekeres
theorem to so-called holes proposed by Erdős [Erd78]. We survey
known bounds for this problem with a particular emphasis on the
minimum number of 5-holes, where we solve a folklore problem that
has been open since the 1980s and that is mentioned, for example,
by Brass, Moser, and Pach [BMP05]. We also explore the problem
of estimating the minimum number of holes in random point sets,
obtaining several asymptotically tight estimates.

Section 1.5 is devoted to visibility problems, a classical topic in discrete
geometry. We study so-called obstacle numbers of graphs, where we
refute a conjecture of Mukkamala, Pach, and Pálvölgyi [MPP12]. We
also explore the index of convexity of measurable subsets of Rd, giving
an affirmative answer to a conjecture of Cabello et al. [Cab+17].
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Finally, we explore covering and incidence problems in Section 1.6. This
part falls within the intersection of discrete geometry and geometry
of numbers. We prove new results about covering lattice points by
linear subspaces, nearly settling a problem mentioned in the book by
Brass, Moser, and Pach [BMP05]. We also use these results to obtain
the currently strongest bounds on the number of incidences between
points and hyperplanes from Rd.
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1.2 graph ordered ramsey numbers

An ordered graph is a pair G = (G,≺) where ≺ is a linear ordering of
the vertex set of G. We call G an ordering of G. Two ordered graphs
G = (G,≺1) and H = (H,≺2) are isomorphic if the graphs G and H
are isomorphic via a one-to-one correspondence g : V(G) → V(H)

that preserves the orderings. That is, we have u ≺1 v if and only
if g(u) ≺2 g(v) for all u, v ∈ V(G). Note that, for every positive
integer n, there is only one ordered complete graph on n vertices up
to isomorphism. We use Kn to denote such ordered complete graph.

An ordered graph G = (G,≺1) is an ordered subgraph of an ordered
graph H = (H,≺2) if G is a subgraph of H and ≺1 is a suborder of ≺2.
If an ordered graph H contains an ordered subgraph isomorphic to
an ordered graph G, then we say that H contains a copy of G.

We can now define an analogue of Ramsey numbers for ordered
graphs. The ordered Ramsey number R(G,H) of two ordered graphs G
and H is the minimum positive integer N such that every red-blue
coloring of the edges of KN contains a red copy of G or a blue copy
of H. If G and H are isomorphic, then we simply write R(G) instead
of R(G,H) and we call it the diagonal case. We refer to R(G,H) with
non-isomorphic G and H as the non-diagonal case.

Note that we have R(G) ≤ R(G) for every graph G and each its
ordering G . Moreover, R(Kn) = R(Kn) for every positive integer n.
Since every ordered graph G = (G,≺) on n vertices is an ordered
subgraph of Kn, we thus obtain the bounds

R(G) ≤ R(G) ≤ R(Kn).

It follows that the number R(G) is finite for every ordered graph G.
Similarly, R(G,H) is also finite for any ordered graphs G and H and
thus ordered Ramsey numbers are well-defined.

From some point of view, the study of ordered Ramsey numbers is
as old as Ramsey theory itself. For example, the Erdős–Szekeres lemma
(Theorem 1.1.1) is a special case of a Ramsey-type result for ordered
graphs. To see this, consider the following ordering Pn = (Pn,≺),
called the monotone path, of the path Pn on n vertices. If v1 ≺ · · · ≺ vn

are the vertices of Pn, then the edges of Pn are the pairs {vi, vi+1}
for every i = 1, . . . , n − 1; see Figure 1.1. Given a sequence S =

(s1, . . . , sN) of distinct real numbers, we construct an ordered graph
(KN ,≺) with vertex set S and the ordering of the vertices given by
their positions in S. That is, for si, sj ∈ S, we have si ≺ sj if i < j. Then
we color an edge {si, sj} with i < j red if si < sj and blue otherwise.
Afterwards, red monotone paths on n vertices correspond to increasing
subsequences of S of length n and blue monotone paths on n vertices
to decreasing subsequences of S of length n. The Erdős–Szekeres
lemma now follows from the fact

R(Pn) = (n− 1)2 + 1 (1.6)
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proved, for example, by Choudum and Ponnusamy [CP02] or by
Milans, Stolee, and West [MSW15].

Figure 1.1: The monotone path Pn for n = 7. In all figures of ordered graphs
in this thesis, the vertices are ordered from left to right.

Similarly, the Erdős–Szekeres theorem (Theorem 1.1.5) can be de-
rived from estimates on ordered Ramsey numbers of 3-uniform mono-
tone hyperpaths; see Subsection 1.3.2. The ordered Ramsey numbers
are also closely connected to the extremal theory of {0, 1}-matrices
and to variants of Ramsey numbers from discrete geometry, for ex-
ample, to so-called geometric Ramsey numbers [KPT97, Kár+98]. Given
these results and connections, there is a strong motivation to study
ordered Ramsey numbers and their variants.

While there had been a lot of results about ordered Ramsey num-
bers of monotone hyperpaths [CP02, EM13, Fox+12, MSW15, MS14],
there was a surprisingly little work on ordered Ramsey numbers of
more general ordered graphs and hypergraphs. The first systematic
study of ordered Ramsey numbers was conducted by Balko, Cibulka,
Král, and Kynčl [Bal+20] and independently by Conlon, Fox, Lee,
and Sudakov [Con+17]. Since then there has been much progress on
understanding the ordered Ramsey numbers.

In this section, we survey the recent developments about ordered
Ramsey numbers with focus on the graph Ramsey theory. We start
by mentioning general bounds on ordered Ramsey numbers. Then,
we will focus on specific classes of ordered graphs such as ordered
matchings, paths, or cycles, where we can prove much more precise
estimates and, in many cases, even the exact formulas for the ordered
Ramsey numbers. We conclude this section by mentioning several
open problems about ordered Ramsey numbers and directions for
future research in this relatively new field.

1.2.1 General bounds

Since R(G) ≤ R(Kn) for every ordered graph G on n vertices, we
see from (1.1) that R(G) grows at most exponentially in n. For dense
ordered graphs, a standard probabilistic argument shows that this
is asymptotically tight. However, the ordered Ramsey numbers may
differ substantially from the usual Ramsey numbers for sparser graphs.
This result was proved independently by Balko, Cibulka, Král, and
Kynčl [Bal+20] and by Conlon, Fox, Lee, and Sudakov [Con+17] who
showed that there are ordered matchings with superpolynomial or-
dered Ramsey numbers. Here, a matching is a graph with maximum
degree 1.
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Theorem 1.2.1 ([Bal+20, Con+17]). There is a constant C > 0 such that
for every even n ≥ 2, there is an ordered matching Mn on n vertices
satisfying

R(Mn) ≥ nC log n/ log log n.

Note that this result is in sharp contrast with Theorem 1.1.3. For
ordered matchings this is a rather typical behavior, as Conlon, Fox,
Lee, and Sudakov [Con+17] proved that this superpolynomial lower
bound holds for almost all ordered matchings.

Given the lower bound from Theorem 1.2.1, it is natural to ask
how fast can ordered Ramsey numbers grow for ordered graphs with
bounded maximum degree. Balko, Cibulka, Král, and Kynčl [Bal+20]
showed that if we additionally bound the following analogue of the
chromatic number, then we obtain polynomial upper bounds on or-
dered Ramsey numbers.

A subset I of vertices of an ordered graph G = (G,≺) is an interval
if for every pair u, v of vertices of I with u ≺ v, every vertex w of G
satisfying u ≺ w ≺ v is contained in I. The interval chromatic number
of G is the minimum number of intervals the vertex set of G can be
partitioned into so that there is no edge between vertices of the same
interval. We note that there is a variant of the Erdős–Stone–Simonovits
theorem for ordered graphs proved by Pach and Tardos [PT06], which
is expressed in terms of the interval chromatic number. For a positive
integer d, a graph G is d-degenerate if every subgraph of G contains a
vertex of degree at most d.

Theorem 1.2.2 ([Bal+20]). There is a constant C > 0 such that every
ordered d-degenerate graph G on n vertices with interval chromatic number
χ satisfies

R(G) ≤ nCddlog χe
.

Conlon, Fox, Lee, and Sudakov [Con+17] independently proved
the following stronger upper bound. For positive integers t, n1, . . . , nt,
let Kn1,...,nt be an ordering of the complete t-partite graph Kn1,...,nt in
which the vertices of the color class of size ni form the ith interval. If
n1 = · · · = nt = n, we simply write Kt(n) instead of Kn1,...,nt .

Theorem 1.2.3 ([Con+17]). Let G be an ordered d-degenerate graph on
n vertices with maximum degree ∆. For positive integers n′ and χ, let
s = dlog χe and D = 8χ2n′. Then

R(G,Kχ(n′)) ≤ 2s2d+s∆snsDds+1.

In particular, if G is an ordered d-degenerate graph with n vertices
and with interval chromatic number χ, then Theorem 1.2.3 implies

R(G) ≤ n32d log χ, (1.7)
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which is a stronger upper bound than the one from Theorem 1.2.2.
Also note that for d = 1 this bound almost matches the lower bound
from Theorem 1.2.1.

Using a result of Erdős and Szemerédi [ES72], Conlon, Fox, Lee,
and Sudakov [Con+17] derived the following result from the proof of
Theorem 1.2.2, which shows that the ordered Ramsey numbers behave
more like the usual Ramsey number for denser ordered graphs.

Theorem 1.2.4 ([Con+17]). There is a constant C > 0 such that every
ordered d-degenerate graph G on n vertices satisfies

R(G) ≤ 2Cd log2 (2n/d).

This result is close to sharp for very small d by Theorem 1.2.1 and
for very large d by (1.1).

Besides the interval chromatic number, another natural parameter
for ordered graphs is their bandwidth. For an ordered graph G =

(G,≺), the bandwidth of G is the length of the longest edge in G. That
is, it is the maximum from |i − j| taken over all edges {u, v} of G,
where i is the position of u and j is the position of v in ≺. We call the
number |i− j| the length of the edge {u, v}.

Conlon, Fox, Lee, and Sudakov [Con+17] proved that, for every
positive integer k, every ordered matchingM on n vertices with band-
width at most k satisfies R(M) ≤ ndlog ke+2. They also asked whether
this result can be extended by proving a polynomial upper bound
on ordered Ramsey numbers of all ordered graphs with bounded
bandwidth. This problem was solved by Balko, Cibulka, Král, and
Kynčl [Bal+20] who proved the following result.

Theorem 1.2.5 ([Bal+20]). For every positive integer k, there is a constant
C = C(k) such that every n-vertex ordered graph G with bandwidth k
satisfies

R(G) ≤ C · n128k.

Observe that every n-vertex ordered graph G with bandwidth at
most k is an ordered subgraph of the n-vertex ordered graph P k

n
that contains all edges of length at most k. In particular, R(G) ≤
R(P k

n). Note that P1
n = Pn and thus R(P1

n) = (n− 1)2 + 1 by (1.6).
Mubayi [Mub17] improved the upper bound on R(P k

n) in the case
k = 2 by showing

R(P2
n) ≤ O(n19.487)

for every n ≥ 2. He also used this result to determine the correct
tower growth rate of the k-uniform hypergraph Ramsey number of a
(k + 1)-clique versus a monotone k-uniform path; see Section 1.3 for
the definitions.
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1.2.2 Ordered matchings

For every ordered matchingM on n vertices, Conlon, Fox, Lee, and Su-
dakov [Con+17] proved the upper bound ndlog ne. A simple argument
shows that if an ordered matchingM has the interval chromatic num-
ber 2, then this bound can be significantly improved to O(n2). This is
quite close to the truth, as Conlon, Fox, Lee, and Sudakov [Con+17]
constructed an ordered matchingM on n vertices with interval chro-
matic number 2 such that R(M) ≥ cn2

log2 (n) log log n
for some constant

c > 0. This was improved by Balko, Jelínek, and Valtr [BJV19], who
proved a stronger bound, which additionally holds for almost all or-
dered matchings with interval chromatic number 2. To state this result,
we need to introduce some definitions first.

For a positive integer n, the random n-permutation is a permutation
of the set [n] chosen independently uniformly at random from the set
of all n! permutations of the set [n]. For a positive integer n and the
random n-permutation π, the random ordered n-matchingM(π) is the
ordered matching with the vertex set [2n] and with edges {i, n + π(i)}
for every i ∈ [n]. Note that the interval chromatic number of every
random ordered n-matching is 2. The random ordered n-matching
satisfies an event A asymptotically almost surely if the probability that
A holds tends to 1 as n goes to infinity.

Theorem 1.2.6 ([BJV19]). There is a constant C > 0 such that the random
ordered n-matchingM(π) asymptotically almost surely satisfies

R(M(π)) ≥ C ·
(

n
log n

)2

.

For the non-diagonal ordered Ramsey numbers, Conlon, Fox, Lee,
and Sudakov [Con+17] investigated the ordered Ramsey numbers
R(M,K3), where M is an ordered matching on n vertices. It fol-
lows from the well-known bound R(Kn, K3) ≤ O(n2/ log n) by Ajtai,
Komlós, and Szemerédi [AKS80] that

R(M,K3) ≤ O
(

n2

log n

)
.

For R(Kn, K3), this bound is tight as shown by Kim [Kim95], but Con-
lon, Fox, Lee, and Sudakov [Con+17] expect that this upper bound is
far from optimal for R(M,K3). They constructed an ordered matching
M on n vertices satisfying

R(M,K3) ≥ O

((
n

log n

)4/3
)

and posed the following problem.

Problem 1.2.7 ([Con+17]). Does there exist an ε > 0 such that every
ordered matchingM on n vertices satisfies R(M,K3) ≤ O(n2−ε)?
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Problem 1.2.7 is still open and seems to be difficult, but there has
been some partial progress. Rohatgi [Roh19] proved that almost every
ordered matchingM on n vertices with interval chromatic number 2

satisfies R(M,K3) ≤ O(n24/13). He also showed that if M is a non-
crossing ordered matching, then, for every ε > 0, we have R(M,K3) ≤
Oε(n1+ε). Here, an ordered graph G = (G,≺) is non-crossing if it does
not contain two edges {u, v} and {x, y} with u ≺ x ≺ v ≺ y.

A basic building block in the proof of the latter result by Ro-
hatgi [Roh19] is based on so-called nested matchings. An ordered
matchingM = (M,≺) on vertices v1 ≺ · · · ≺ vn is nested if n is even
andM has edges {vi, vn−i+1} for every i = 1, . . . , n/2. We use NMk
to denote the nested matching on 2k vertices.

Figure 1.2: The nested matching NMk for k = 3.

Rohatgi [Roh19] proved

4k− 1 ≤ R(NMk,K3) ≤ 6k.

for every positive integer k. He believed that the lower bound is tight
and posed the following conjecture.

Conjecture 1.2.8 ([Roh19]). For every positive integer k, we have

R(NMk,K3) = 4k− 1.

Conjecture 1.2.8 is true for k ≤ 3, but Balko and Poljak [BP21]
disproved it for any k ≥ 4 by showing the following bounds.

Theorem 1.2.9 ([BP21]). For every positive integer k, we have

R(NMk,K3) ≤ (3 +
√

5)k < 5.3k.

If k ≥ 6, we have

R(NMk,K3) ≥ 4k + 1.

Moreover, R(NM4,K3) = 16 and R(NM5,K3) = 20.

Using the lower bounds from Theorem 1.2.9, Balko and Poljak im-
proved the best-known bounds on the maximum chromatic number
of so-called k-queue graphs, which addresses a problem posed by Duj-
movic̀ and Wood [DW04].
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1.2.3 Ordered stars

For a positive integer n, a star with n vertices is the complete bipar-
tite graph K1,n−1. Ramsey numbers of unordered stars are known
exactly [BR73] and they are given by

R(K1,n−1; c) =

c(n− 2) + 1 if c ≡ n− 1 ≡ 0 (mod 2),

c(n− 2) + 2 otherwise.

The position of the central vertex of an ordered star determines the
ordering of a star uniquely up to isomorphism. Thus, we use Sr,s to
denote the ordered star with r− 1 vertices to the left and s− 1 vertices
to the right of the central vertex; see Figure 1.3.

Sr,s

︸ ︷︷ ︸ ︸ ︷︷ ︸
r − 1 s− 1

Figure 1.3: The ordered star Sr,s with r = 5 and s = 4.

Ordered stars are one of the very few classes of ordered graphs
for which we know ordered Ramsey numbers exactly. Choudum and
Ponnusamy [CP02] determined the ordered Ramsey numbers of all
pairs of ordered stars by the following recursive formulas.

Theorem 1.2.10 ([CP02]). For all integers r1, r2 > 2, we have

R(S1,r1 ,Sr2,1) =

⌊
−1 +

√
1 + 8(r1 − 2)(r2 − 2)

2

⌋
+ r1 + r2 − 2.

Moreover, for all integers r1, r2, s1, s2 ≥ 2, we have

R(S1,r1 ,Sr2,s2) = R(S1,r1 ,Sr2,1) + r1 + s2 − 3

and

R(Sr1,s1 ,Sr2,s2) = R(Sr1,1,Sr2,s2) + R(S1,s1 ,Sr2,s2)− 1.

When we extend the definition of ordered Ramsey numbers to more
than two colors, Balko, Cibulka, Král, and Kynčl [Bal+20] showed that
ordered Ramsey numbers of all ordered stars are linear with respect
to the number of vertices and at most exponential with respect to the
number of colors.
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1.2.4 Ordered paths

The Ramsey numbers of unordered paths are known exactly for a
long time. The exact values were determined by Gerencsér and Gyár-
fás [GG67] who proved that, for 2 ≤ r ≤ s, we have

R(Pr, Ps) = s +
⌊ r

2

⌋
− 1.

For general ordered paths, Cibulka et al. [Cib+15] showed that, for
every ordered path Pr and every s, we have

R(Pr,Ks) ≤ 2dlog se(dlog re+1).

In particular, every ordered path Pn satisfies R(Pn) ≤ nO(log n). This
bound also follows from (1.7). It follows the remark after Theorem 1.2.1
that the ordered Ramsey numbers of ordered paths are typically
superpolynomial.

The exact values of ordered Ramsey numbers of general ordered
paths are not known, but there are some specific orderings for which
we known the ordered Ramsey numbers exactly or we at least have
very close bounds.

The monotone paths are perhaps the most natural due to their
connection to the Erdős–Szekeres lemma (Theorem 1.1.1). Recall
that the monotone path Pn on n vertices is an ordering of the path
Pn where edges connect consecutive vertices in the vertex order.
Choudum and Ponnusamy [CP02] and independently Milans, Stolee,
and West [MSW15] proved the formula

R(Pn1 ,Pn2) = (n1 − 1)(n2 − 1) + 1

and even extended this result to an arbitrary number of colors. In par-
ticular, it follows that the ordered Ramsey number R(Pn) is quadratic
in n.

On the other hand, there are some orderings of the path Pn for
which the diagonal ordered Ramsey numbers are only linear in n.
The alternating path P alt

n = (Pn,≺) is the ordering of Pn on vertices
v1 ≺ · · · ≺ vn with edges {vi, vj} for i + j ∈ {n + 1, n + 2}; see
Figure 1.4. Note that the alternating path P alt

n is an ordered subgraph
of Kdn/2e,bn/2c, and so it has interval chromatic number 2.

Figure 1.4: The alternating path P alt
n for n = 7.
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Using a result from the extremal theory of {0, 1}-matrices, Balko,
Cibulka, Král, and Kynčl [Bal+20] proved the following linear bounds
on R(P alt

n ).

Proposition 1.2.11 ([Bal+20]). For every integer n > 2, we have

5bn/2c − 4 ≤ R(P alt
n ) ≤ 2n− 3 +

√
2n2 − 8n + 11.

The proof of the lower bound was later extended by Neidinger and
West [NW19] to obtain various linear lower bounds for various classes
of ordered graphs with interval chromatic number 2.

The precise multiplicative factor in R(P alt
n ) is unknown, but the

computer experiments by Balko, Cibulka, Král, and Kynčl [Bal+20]
indicate that R(P alt

n ) could be equal to b(n− 2) 1+
√

5
2 c+ n; see Table 1.1.

n 2 3 4 5 6 7 8 9 10 11 12

R(n) 2 4 7 9 12 15 17 ≥ 20 ≥ 22 ≥ 25 ≥ 28

Table 1.1: Estimates and precise values of the ordered Ramsey numbers
R(n) = R(P alt

n ) for n ≤ 12.

Balko, Jelínek, and Valtr [BJV19] also proved the following Turán-
type result for alternating paths.

Proposition 1.2.12 ([BJV19]). Let ε > 0 be a real constant. Then, for every
integer n, every ordered graph on N ≥ n/ε vertices with at least εN2 edges
contains P alt

n as an ordered subgraph.

The alternating paths form an interesting class of path orderings as
their diagonal ordered Ramsey numbers seem to be minimal among
all path orderings; see Problem 1.2.25 in Subsection 1.2.7.

1.2.5 Ordered cycles

As the last class of specific ordered graphs, we mention ordered cycles.
Again, except of some specific orderings, we do not know any precise
formulas for ordered Ramsey numbers of ordered cycles. However, we
can determine the ordered Ramsey numbers for a particularly natural
ordering of the cycle Cn, called the monotone cycle Cn, which is obtained
from the monotone path Pn by adding an edge between the first and
the last vertex in the vertex ordering; see Figure 1.5.

The precise formula for ordered cycles covers even in the non-
diagonal case and is given by the following result by Balko, Cibulka,
Král, and Kynčl [Bal+20].

Theorem 1.2.13 ([Bal+20]). For all integers r ≥ 2 and s ≥ 2, we have

R(Cr, Cs) = 2rs− 3r− 3s + 6.



16 introduction

Figure 1.5: The monotone cycle Cn for n = 7.

Theorem 1.2.13 has an application in discrete geometry. The geomet-
ric Ramsey numbers [Cib+15, KPT97, Kár+98] are natural analogues
of ordered Ramsey numbers. For a finite set of points P ⊂ R2 in
general position, let KP be the complete geometric graph on P, which is a
complete graph drawn in the plane so that its vertices are represented
by the points in P and the edges are drawn as straight-line segments
between the pairs of points in P. The graph KP is convex if P is in
convex position. The geometric Ramsey number of a graph G, denoted by
Rg(G), is the smallest N such that every complete geometric graph KP

on N vertices with edges colored by two colors contains a non-crossing
monochromatic drawing of G. If we consider only convex complete
geometric graphs KP in the definition, then we get so-called convex
geometric Ramsey number Rc(G). Note that these numbers are finite
only if G is outerplanar and that Rc(G) ≤ Rg(G) for every outerplanar
graph G.

Balko, Cibulka, Král, and Kynčl [Bal+20] observed that the geometric
and convex geometric Ramsey numbers of cycles are equal to the
ordered Ramsey numbers of monotone cycles.

Corollary 1.2.14 ([Bal+20]). For every integer n ≥ 3, we have Rc(Cn) =

Rg(Cn) = 2n2 − 6n + 6.

We also note that Ramsey numbers of unordered cycles are known
exactly by results of Rosta [Ros73] and Faudree and Schelp [FS74]
who extended earlier works by Chartrand and Chuster [CS71] and by
Bondy and Erdős [BE73]. Together, these results give

R(Cr, Cs) =



2r− 1 if (r, s) 6= (3, 3), r ≥ s ≥ 3,

s is odd,

r + s/2− 1 if (r, s) 6= (4, 4), r ≥ s ≥ 4,

r, s are even,

max{r + s/2, 2s} − 1 if r > s ≥ 4,

s is even and r is odd.
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1.2.6 Minimum ordered Ramsey numbers

Conlon, Fox, Lee, and Sudakov [Con+17] characterized graphs G for
which the ordered Ramsey number R(G) is linear in the number of
vertices of G for every ordering G of G. These are precisely graphs G
whose edges can be covered by a constant number vertices. A similar
problem is to determine graphs that admit an ordering for which the
corresponding ordered Ramsey number is linear. This motivates the
following definition.

For an unordered graph G, the minimum ordered Ramsey number of G
is defined as

min R(G) = min{R(G) : G is an ordering of G}.

Since Ramsey numbers of bounded-degree graphs are linear in the
number of vertices by Theorem 1.1.3, it is natural to ask whether
the minimum ordered Ramsey numbers of bounded-degree graphs
are always at most linear. Conlon, Fox, Lee, and Sudakov [Con+17]
considered this unlikely for random regular graphs and posed the
following problem.

Problem 1.2.15 ([Con+17]). Do random 3-regular graphs have superlinear
ordered Ramsey numbers for all orderings?

Balko, Jelínek, and Valtr [BJV19] gave an affirmative answer to
Problem 1.2.15. In fact, they solved the problem in a slightly more
general setting, by extending the concept of d-regular graphs to non-
integral values of d.

For a real number ρ > 0 and a positive integer n with dρne even,
a graph G on n vertices is ρ-regular, if every vertex of G has degree
bρc or dρe and the total number of edges of G is dρne/2. Note that
this definition coincides exactly with the standard notion of ρ-regular
graphs when ρ is an integer. We let G(ρ, n) denote the random ρ-
regular graph on n vertices drawn uniformly and independently from
the set of all ρ-regular graphs on the vertex set [n].

Theorem 1.2.16 ([BJV19]). The following two statements are true.

(a) For every fixed real number ρ > 2, asymptotically almost surely

min R(G(ρ, n)) ≥ n3/2−1/ρ

4 log n log log n
.

In particular, almost every 3-regular graph G on n vertices satisfies

min R(G) ≥ n7/6/(4 log n log log n),

(b) Asymptotically almost surely,

min R
(

G
(

2 +
9 log log n

log n
, n
))
≥ n log n

2 log log n
.
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Part (a) of Theorem 1.2.16 shows that random ρ-regular graphs have
superlinear minimum ordered numbers for any fixed real number
ρ > 2. Part (b) shows that there are actually “almost 2-regular” graphs
with superlinear minimum ordered Ramsey numbers.

Note that the minimum ordered Ramsey numbers of ordered match-
ings are linear. This can be seen by considering the nested matchings
NMk and by applying a simple pigeonhole-type argument to obtain
R(NMk) ≤ 4k − 2. Thus, it remained to decide whether 2-regular
graphs always admit an orderings with linear ordered Ramsey num-
bers. Balko, Jelínek, and Valtr [BJV19] showed that this is indeed the
case by proving the following result.

Theorem 1.2.17 ([BJV19]). There is a constant C such that for every
graph G on n vertices with maximum degree 2, we have

min R(G) ≤ Cn.

In fact, Balko, Jelínek, and Valtr [BJV19] proved the following
stronger Turán-type statement for bipartite graphs.

Theorem 1.2.18 ([BJV19]). For every real ε > 0, there is a constant C(ε)
such that, for every integer n, every bipartite graph G on n vertices with
maximum degree 2 admits an ordering G of G that is contained in every
ordered graph with N = C(ε)n vertices and with at least εN2 edges.

Note that no such Turán-type statement is true for a 2-regular
graph G that is not bipartite, since then G contains an odd cycle and
thus no ordering of such a graph is contained in any ordering of the
complete bipartite graph KN/2,N/2 with N2/4 edges.

For the upper bounds in the case of a larger maximum degree,
a simple corollary of Theorem 1.2.3 states that every graph G on n
vertices with constant maximum degree ∆ admits an ordering G with
R(G) polynomial in n. More precisely, every graph G with n vertices
and with maximum degree ∆ satisfies

min R(G) ≤ O(n(∆+1)dlog(∆+1)e+1). (1.8)

1.2.7 Open problems

Since the study of ordered Ramsey numbers is a relatively new topic
in Ramsey theory, there are many interesting and difficult new open
problems. Here, we would like to draw attention to some of them.

By Theorem 1.2.1, there are ordered matchingsM on n vertices such
that R(M) ≥ nΩ(log n/ log log n). On the other hand, it follows from (1.7)
that every n-vertex ordered matching M satisfies R(M) ≥ nO(log n).
Although the bounds are quite close, there is still a small gap in the
exponent. Conlon, Fox, Lee, and Sudakov [Con+17] thus posed the
following problem.
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Problem 1.2.19 ([Con+17] ). Close the gap between the upper and lower
bounds for ordered Ramsey numbers of matchings.

They also posed a similar problem for ordered matchings with inter-
val chromatic number 2, where the best-known bounds are between
Ω((n/logn)2) and O(n2).

Problem 1.2.20 ([Con+17] ). Close the gap between the upper and lower
bounds for ordered Ramsey numbers of matchings with interval chromatic
number 2.

Geneson et al. [Gen+19] posed a similar problem for ordered paths
with interval chromatic number 2. Here, it follows from a modified
proof of Theorem 1.2.2 that the ordered Ramsey number R(P) of any
ordered path P on n vertices with interval chromatic number 2 is at
most O(n3) while the best known lower bound Ω((n/logn)2) follows
from Theorem 1.2.6.

Problem 1.2.21 ([Gen+19] ). Is it true that R(P) ≤ O(n2) for every
ordering P of the path on n vertices with interval chromatic 2?

It follows from (1.7) (or from Theorem 1.2.2) that bounded-degree
ordered graphs with bounded interval chromatic number have polyno-
mial ordered Ramsey numbers. However, we have no non-trivial lower
bounds for this case and thus Balko, Cibulka, Král, and Kynčl [Bal+20]
stated the following problem.

Problem 1.2.22 ([Bal+20]). Is there a constant c > 0 such that for every
fixed ∆ there is a sequence {Gn}n∈N of ordered ∆-regular graphs Gn with n
vertices and interval chromatic number 2 such that R(Gn) ≥ nc∆?

By Theorem 1.2.5, ordered graphs of bounded bandwidth have
polynomial ordered Ramsey numbers. Again, we do not have any
nontrivial lower bounds in this case. Since every such ordered graph
on n vertices is an ordered subgraph of the ordered graph P k

n, one
might consider only the ordered graphs P k

n for the lower bounds. The
currently best lower bound is only quadratic and follows from (1.6),
which is the case of P k

n for k = 1.

Problem 1.2.23 ([Bal+20]). For an integer k ≥ 2, what is the growth rate
of R(P k

n) with respect to n?

When addressing Problem 1.2.7, Rohatgi [Roh19] considered a vari-
ant of this problem for bounded interval chromatic number and posed
the following interesting conjecture.

Conjecture 1.2.24 ([Roh19]). For a positive integer χ, there is a constant
ε(χ) > such that

R(M,K3) ≤ O(n2−ε(χ))

for every ordered matchingM on n vertices with interval chromatic num-
ber χ.
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Balko, Cibulka, Král, and Kynčl [Bal+20] proved the ordered Ramsey
number of the alternating paths are linear with respect to the number
of vertices. They also asked whether these orderings minimize ordered
Ramsey numbers of ordered paths.

Problem 1.2.25 ([Bal+20]). For some positive integer n, is there an ordering
P of the path Pn on n vertices such that R(P) < R(P alt

n )?

The computer experiments performed by Balko, Cibulka, Král, and
Kynčl [Bal+20] also suggested a possible formula for R(P alt

n ). Here,
we state this as an open problem.

Problem 1.2.26 ([Bal+20]). For every integer n ≥ 2, is it true that

R(P alt
n ) =

⌊
(n− 2)

1 +
√

5
2

⌋
+ n?

Finally, there is the question about determining the minimum or-
dered Ramsey numbers of bounded-degree graphs. The following
problem is mentioned by Balko, Jelínek, and Valtr [BJV19].

Problem 1.2.27 ([BJV19]). Close the gap between the upper and lower
bounds for minimum ordered Ramsey numbers of 3-regular graphs.

The currently best known bounds on minimum ordered Ramsey
numbers of 3-regular graphs are of order Ω(n7/6/(log n log log n))
and O(n4dlog(4)e+1) = O(n9) by Theorem 1.2.16 and by (1.8), respec-
tively. Note that the gap is rather large.
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1.3 generalized ordered ramsey numbers

This section is devoted to generalizations and different variants of
the graph ordered Ramsey numbers. First, we extend the notion of
ordered Ramsey numbers to k-uniform hypergraphs and we survey
some of the known results. The hypergraph ordered Ramsey numbers
were mostly studied for so-called monotone paths because of their
connections to the Erdős–Szekeres theorem (Theorem 1.1.5). We ex-
plain these connections and we discuss some results about the ordered
Ramsey numbers of monotone paths for restricted colorings and their
applications in discrete geometry. Finally, we survey the current state
of knowledge about the newly introduced variant of Ramsey numbers
for graphs with ordered edge sets. At the end of this section, we again
list some open problems.

1.3.1 k-uniform hypergraphs

We use K(k)
n to denote the complete k-uniform hypergraph on n ver-

tices, that is, the k-uniform hypergraph with |V| = n and E = (V
k ). For

every integer k ≥ 2, the ordered Ramsey numbers have their natural
analogue for k-uniform hypergraphs. The ordered k-uniform hypergraph
is a pairH = (H,≺) consisting of a k-uniform hypergraph H and a lin-
ear ordering ≺ of its vertex set. The notions of an ordered subhypergraph
and isomorphism of ordered k-uniform hypergraphs are analogous to
their graph counterparts. Again, there is a unique ordered complete
k-uniform hypergraph on n vertices up to isomorphism and we denote
it by K(k)

n .
The ordered Ramsey number R(H,G) of two ordered k-uniform hyper-

graphs H and G is the smallest N ∈N such that every red-blue color-
ing of the hyperedges of K(k)

N contains a blue ordered subhypergraph
isomorphic to H or a red ordered subhypergraph isomorphic to G. In
the diagonal case H = G, we just write R(H) instead of R(H,H).

Similarly as for ordered graphs, the ordered Ramsey number of ev-
ery n-vertex k-uniform hypergraph is bounded from above by R(K(k)

n ).
In particular, these numbers are always finite. It is also easy to see that
the ordered Ramsey numbers of k-uniform hypergraphs grow at least
as fast as the standard Ramsey numbers.

Actually, very little is known about ordered Ramsey numbers of
ordered k-uniform hypergraphs with k ≥ 3 as ordered Ramsey num-
bers have been studied mostly for ordered graphs only. Balko and
Vizer [BV21] studied ordered Ramsey numbers of 3-uniform hyper-
graphs and obtained some of the first nontrivial estimates, so we
primarily focus on the case k = 3.

A simple probabilistic argument provides the lower bound R(H) ≥
2Ω(n2) for every ordered 3-uniform hypergraph with n vertices and
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Ω(n3) hyperedges, which is of the same asymptotic growth rate as we
have for R(K(3)

n ) by (1.2). Thus, we consider mostly sparse 3-uniform
hypergraphs.

The degree of a vertex v in a hypergraph H is the number of hyper-
edges of H that contain v. It follows from a result by Moshkovitz and
Shapira [MS14] that there are ordered 3-uniform hypergraphs H on n
vertices with maximum degree 3 such that R(H) ≥ 2Ω(n).

Therefore, in order to obtain smaller upper bounds on the ordered
Ramsey numbers, it is necessary to bound other parameter besides
the maximum degree. A natural choice is the interval chromatic num-
ber, which is defined analogously as for ordered graphs; see Subsec-
tion 1.2.1. Recall that for ordered graphs, bounding both parameters
indeed helps, as the ordered Ramsey number R(G) of every n-vertex
ordered graph G with bounded maximum degree d and bounded
interval chromatic number χ is at most polynomial in the number of
vertices by Theorem 1.2.3, which actually gives the stronger estimate

R(G,Kχ(n)) ≤ n32d log χ. (1.9)

A natural question is whether we can get similar bounds for ordered
k-uniform hypergraphs with k ≥ 3. For integers k ≥ 2 and χ ≥ k,
we use K(k)

χ (n) to denote the complete k-uniform χ-partite hypergraph,
that is, the vertex set of K(k)

χ (n) is partitioned into χ sets of size n and
every k-tuple with at most one vertex in each of these parts forms a
hyperedge. Let K(k)

χ (n) be the ordering of K(k)
χ (n) in which the color

classes form consecutive intervals. Conlon, Fox, and Sudakov [CFS11]
showed that, for all positive integers χ ≥ 3 and n,

R(K(3)
χ (n)) ≤ 222Rn2

,

where R = R(Kχ−1). Since every ordering of K(3)
χ (χn) contains an

ordered subhypergraph isomorphic to K(3)
χ (n) and every ordered 3-

uniform hypergraph on n vertices with interval chromatic number χ is
an ordered subhypergraph of K(3)

χ (n), we obtain the following bound.

Corollary 1.3.1 ([CFS11, BV21]). For all positive integers χ ≥ 3 and n,
every ordered 3-uniform hypergraph H on n vertices with interval chromatic
number χ satisfies

R(H) ≤ 222Rχ2n2
,

where R = R(Kχ−1). In particular, if the interval chromatic number χ of H
is fixed, we have

R(H) ≤ 2O(n2).

Note that the last bound is asymptotically tight for dense ordered
hypergraphs with bounded interval chromatic number. Thus, Balko
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and Vizer [BV21] considered the sparse case in which we additionally
bound the maximum degree. Since the situation for ordered hyper-
graphs seems to be more difficult than for ordered graphs, Balko and
Vizer [BV21] focused on the first nontrivial case, which is for ordered
3-uniform hypergraphs with interval chromatic number 3. Then they
obtained a better upper bound on R(H) than 2O(n2) by proving an
estimate with a subquadratic exponent.

Theorem 1.3.2 ([BV21]). Let H be an ordered 3-uniform hypergraph on t
vertices with maximum degree d and let s be a positive integer. Then there
are constants C = C(d) and c > 0 such that

R(H,K(3)
3 (s)) ≤ t · 2C(s2−1/(1+cd2)).

In particular, for s = t = n and bounded d, we get the estimate

R(H,K(3)
3 (n)) ≤ 2O(n2−1/(1+cd2)). (1.10)

The main idea of the proof of Theorem 1.3.2 is based on an embed-
ding lemma from [CFS12], where the authors study Erdős–Hajnal-type
theorems for 3-uniform tripartite hypergraphs. Theorem 1.3.2 immedi-
ately gives the following corollary.

Corollary 1.3.3 ([BV21]). Let H be an ordered 3-uniform hypergraph on
n vertices with maximum degree d and with interval chromatic number 3.
Then there exists an ε = ε(d) > 0 such that

R(H) ≤ 2O(n2−ε).

The upper bound (1.10) is quite close to the truth, as even when
H is fixed we get a superexponential lower bound on R(H,K(3)

3 (n)),
as shown by Fox and He [FH19] and independently by Balko and
Vizer [BV21].

Theorem 1.3.4 ([FH19, BV21]). For every t ≥ 3 and every positive integer
n, we have

R(K(3)
t+1,K(3)

3 (n)) ≥ 2Ω(n log n).

For ordered hypergraphs of uniformity k > 3, we recall that it
follows from (1.3) that their ordered Ramsey numbers can grow as
a tower of height k − 1. By modifying a result of Conlon, Fox, and
Sudakov [CFS10], Balko and Vizer [BV21] showed that we do not
have a tower-type growth rate for R(H) once the uniformity and the
interval chromatic number of H are bounded.

Proposition 1.3.5. Let χ, k be integers with χ ≥ k ≥ 2 and let H be
an ordered k-uniform hypergraph on n vertices with interval chromatic
number χ. Then there is a constant c such that

R(H) ≤ 2Rχ(χ−1)(cχn)χ−1
,
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where R = R(K(k)
χ ). In particular, if the uniformity k and the interval

chromatic number χ of H are fixed, we have

R(H) ≤ 2O(nχ−1).

Finally, we mention a very interesting connection between ordered
Ramsey numbers and hypergraph Ramsey numbers observed by Con-
lon, Fox, Lee, and Sudakov [Con+17]. They showed that for any
3-uniform hypergraph H, there is a family of ordered graphs SH such
that the Ramsey number of H is bounded in terms of the ordered Ram-
sey number of the family SH. Here, the ordered Ramsey number R(F )
of a family F of ordered graphs is the smallest positive integer N such
that every 2-coloring of the edges of KN contains a monochromatic
ordered copy of some ordered graph from F .

For an ordered graph G with the vertex set [n], let T(G) be a 3-
uniform hypergraph on vertex set [n + 1] obtained by taking all triples
whose first pair is an edge of G. For a 3-uniform hypergraph H on
n + 1 vertices, we let SH be the collection of ordered graphs G on
[n] such that H is a subhypergraph of T(G). Conlon, Fox, Lee, and
Sudakov [Con+17] then related upper bounds on Ramsey numbers of
3-uniform hypergraphs to ordered Ramsey numbers by proving the
following result.

Theorem 1.3.6 ([Con+17]). Every 3-uniform hypergraph H satisfies

R(H) ≤ 2(
R(SH )

2 ) + 1.

Conlon, Fox, Lee, and Sudakov [Con+17] expect that the bound from
Theorem 1.3.6 is close to sharp in many cases. For example, the choice
H = K(3)

n+1 satisfies SH = {Kn}, for which Theorem 1.3.6 produces the
double-exponential bound from (1.2), which is believed to be tight.
However, Conlon, Fox, Lee, and Sudakov [Con+17] constructed some
cases where the bound from Theorem 1.3.6 is far from the truth.

1.3.2 Monotone paths

We showed at the beginning of Section 1.2 that the Erdős–Szekeres
lemma (Theorem 1.1.1) is a consequence of a stronger Ramsey state-
ment about monotone paths. There is a similar connection between
the Erdős–Szekeres theorem (Theorem 1.1.5) and ordered Ramsey
numbers of 3-uniform hypergraphs.

For an integer k ≥ 2, the monotone k-uniform path on n vertices,
denoted by P (k)

n = (P(k)
n ,≺), is an ordered k-uniform n-vertex hyper-

graph with edges formed by k-tuples of consecutive vertices in ≺; see
Figure 1.6. Note that the monotone path Pn corresponds to P (2)

n . The
monotone paths are sometimes called tight paths in the literature.

We can again rather easily show that ES(n) ≤ R(P (3)
n ). Consider

a set P of points p1, . . . , pN in general position in the plane, ordered
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Figure 1.6: The monotone 3-uniform path P (3)
n for n = 7.

according to their increasing x-coordinates. By rotating the plane
if necessary, we may assume that no two points from P are on a
vertical line. A set of n points from P forms an n-cup if its points
lie on the graph of a convex function. If the points lie on the graph
of a concave function, we call the set an n-cap; see Figure 1.7. Note
that points of each n-cup are in convex position and the same is
true for points of an n-cap. Consider a red-blue-coloring χP of the
edges of K(3)

N on [N] where χP({i, j, k}) is red if {pi, pj, pk} forms a
3-cap and blue otherwise, that is, if {pi, pj, pk} forms a 3-cup. Then
a sequence of n points from P forms an n-cap or an n-cup if and
only if the corresponding vertices of K(3)

N form a monochromatic copy
of P (3)

n in χP. Since n-caps and n-cups are in convex position, we
obtain ES(n) ≤ R(P (3)

n ).

(a) (b)

Figure 1.7: An example of (a) an n-cap and (b) an n-cup for n = 7.

Recall that Erdős and Szekeres [ES35] proved the bound ES(n) ≤
(2n−4

n−2 ) + 1 for the Erdős–Szekeres theorem; see (1.4). This bound now
follows from the fact

R(P (3)
n ) =

(
2n− 4
n− 2

)
+ 1 (1.11)

for every n ≥ 2, which was proved by Moshkovitz and Shapira [MS14].
Moreover, several other interesting geometric applications of estimates
on R(P (k)

n ) for k ≥ 3 appeared, for example, variants of the Erdős–
Szekeres Theorem for convex bodies [Fox+12] or the higher-order
Erdős–Szekeres theorems [EM13].

Given this motivation, the ordered Ramsey numbers R(P (k)
n ) have

been quite intensively studied [CP02, EM13, Fox+12, MSW15, MS14]
and their growth rate is nowadays well understood. Moshkovitz and
Shapira [MS14] showed that, for all positive integers n and k ≥ 3,

R(P (k)
n+k−1) = tk−1((2− o(1))n),
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where tk−1(·) is the tower function of height k− 2; see Subsection 1.1.1
for its definition.

Note that the tower is of height one smaller than the tower-type up-
per bound on R(K(k)

n ) from (1.3) obtained with the Stepping-up lemma
(Theorem 1.1.4). In fact, Moshkovitz and Shapira [MS14] proved

R(P (k)
n+k−1) = ρk(n) + 1,

where ρk(n) is the number of line partitions of n of order k (see [MS14]
for definitions). For k = 3, this gives the exact formula R(P (3)

n ) =

(2n−4
n−2 ) + 1.

Their coloring χP of K(3)
N = (K(3)

N ,≺) that gives R(P (3)
n ) > (2n−4

n−2 )
satisfies the following transitivity property: if v1 ≺ v2 ≺ v3 ≺ v4 are
vertices of K(3)

N such that χP({v1, v2, v3}) = χP({v2, v3, v4}), then all
triples from ({v1,v2,v3,v4}

3 ) have the same color in χP. More generally, for

an integer k ≥ 2, a 2-coloring χ of K(k)
N = (K(k)

N ,≺) is called transitive
if for every (k + 1)-tuple of vertices {v1, . . . , vk+1} that satisfies v1 ≺
· · · ≺ vk+1 and χ({v1, . . . , vk}) = χ({v2, . . . , vk+1}) it holds that all
k-tuples from ({v1,...,vk+1}

k ) have the same color in χ.

Perhaps surprisingly, the colorings of K(k)
N , which were found by

Moshkovitz and Shapira [MS14] and which give R(P (k)
n+k−1) > ρk(n),

are not transitive for k > 3. Thus it is natural to ask the following
question, which was also considered by Eliáš and Matoušek [EM13].

Problem 1.3.7 ([EM13, MS14]). What is the growth rate of R(P (k)
n ) when

restricted only to transitive colorings?

Problem 1.3.7 was settled for k ≤ 4 by a result of by Eliáš and
Matoušek [EM13], who showed that the corresponding numbers grow
at most as a tower of height k− 2 and as t3(Θ(n)) for k = 4.

Balko [Bal19] settled Problem 1.3.7 by constructing, for all n and
k ≥ 3, transitive colorings χk of K(k)

N with no monochromatic copy
of P (k)

2n+k−1, where N ≥ tk−1((1− o(1))n). In fact, the colorings χk sat-
isfy so-called monotonicity property, which is much more restrictive than
the transitivity property and which admits several geometric interpre-
tations. Before stating this result, we first introduce the monotonicity
property.

Let S be a sequence of n elements from some set. For i ∈ [n],
we use S(i) to denote the subsequence of S obtained by deleting
the element from S that is at position i. For k ≥ 2, a 2-coloring χ

of K(k)
N = (K(k)

N ,≺) is a k-monotone coloring of K(k)
N if it assigns −1 or

+1 to every edge of K(k)
N such that the following monotonicity property

is satisfied: for every sequence S of k + 1 vertices of K(k)
N ordered

by ≺ and all integers a, b, c with 1 ≤ a < b < c ≤ k + 1, we have
c(S(c)) ≤ c(S(b)) ≤ c(S(a)) or c(S(c)) ≥ c(S(b)) ≥ c(S(a)). In other
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words, the monotonicity condition says that there is at most one
change of a sign in the sequence (c(S(k+1)), . . . , c(S(1))).

Note that every k-monotone coloring of K(k)
N is a transitive 2-coloring

of K(k)
N . For k = 2, transitive and 2-monotone colorings coincide. How-

ever, for k ≥ 3, the monotonicity property is much more restrictive.
The notion of monotone colorings has been considered by several

researchers [FW01, Miy17, Zie93] under different names. In some
sense, monotone colorings can be viewed as more natural than transi-
tive colorings, as they admit various geometric interpretations [Bal19].
This includes k-intersecting pseudoconfigurations of points [Miy17], Cd-
arrangements of n pseudohyperplanes in Rd [FW01], and extensions of the
cyclic arrangement of hyperplanes with a pseudohyperplane [Zie93].

To state the estimate by Balko [Bal19], we introduce ordered Ramsey
numbers restricted to k-monotone colorings. For an integer k ≥ 2, the
monotone Ramsey number Rmon(H) of an ordered k-uniform hypergraph
H is the minimum positive integer N such that for every k-monotone
coloring χ of K(k)

N there is an ordered sub-hypergraph of K(k)
N that is

monochromatic in χ and isomorphic to H.

Theorem 1.3.8 ([Bal19]). For positive integers k and n with k ≥ 3, we have

Rmon(P (k)
2n+k−1) ≥ tk−1((1− o(1))n).

Since every k-monotone coloring is transitive, Theorem 1.3.8 settles
Problem 1.3.7. For k ∈ {3, 4}, the lower bounds from Theorem 1.3.8
asymptotically match the lower bounds obtained from results of Erdős
and Szekeres [ES35] and Eliáš and Matoušek [EM13], respectively.

Despite having several natural geometric interpretations, the k-
monotone colorings seem to be quite unexplored. The first non-trivial
estimate on the number of k-monotone colorings of K(k)

n for k > 3 was
given by Balko [Bal19].

Theorem 1.3.9 ([Bal19]). For integers k ≥ 3 and n ≥ k, the number Sk(n)
of k-monotone colorings of K(k)

n satisfies

2nk−1/k4k ≤ Sk(n) ≤ 22k−2nk−1/(k−1)!.

Note that the bounds are reasonably close together, even with re-
spect to k. It follows form one of the geometric interpretations of
3-monotone colorings that Theorem 1.3.9 is a generalization of the
well-known fact that the number of simple arrangements of n pseudo-
lines is 2Θ(n2).

Finally, we mention a possible strengthening of the Erdős–Szekeres
conjecture (Conjecture 1.1.6) introduced by Peters and Szekeres [SP06].
The proof of the Erdős–Szekeres theorem (Theorem 1.1.5) using caps
and cups has a natural abstract combinatorial form, which asks about
the value of R(P (3)

n ). We also know that R(P (3)
n ) is exactly the min-

imum size of a planar point set in general position that guarantees
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the existence of an n-cap or an n-cup. However, there are sets of n
points in convex position that are not an n-cap nor an n-cup, thus
the problem of estimating R(P (3)

n ) does not exactly correspond to the
Erdős–Szekeres conjecture. Peters and Szekeres [SP06] proposed the
following abstract reformulation of convex position using 3-uniform
monotone hyperpaths.

If P is a point set in the plane in general position, then every n-tuple
of points from P in convex position is a union of an a-cap and a u-cup
that share only common endpoints where a and u are some integers
satisfying a + u− 2 = n. For n ≥ 2, an ordered 3-uniform hypergraph
H on n vertices is called a (convex) n-gon if H is a union of a red
monotone path and a blue monotone path that are vertex disjoint
except for the two common end-vertices. In this definition, we allow
paths in H with two vertices and no edges.

Let PS(n) be the maximum number N such that there is a coloring
of K(3)

N with no n-gon.
If P is a set of points in the plane in general position, then n-tuples

of points from P in convex position are in one-to-one correspondence
with n-gons in the coloring χP of K(3)

|P| obtained from P as in the proof

ES(n) ≤ R(P (3)
n ) from the beginning of this subsection. Thus we have

2n−2 ≤ ES(n)− 1 ≤ PS(n) for every n ≥ 2 by (1.5). On the other hand,
every monochromatic monotone path on n vertices is an n-gon and
thus PS(n) ≤ (2n−4

n−2 ) by (1.11).
Using a computer-assisted proof, Peters and Szekeres [SP06] showed

PS(n) = 2n−2 for every n with 2 ≤ n ≤ 5. Peters and Szekeres also
conjectured that this equality is true for every n ≥ 2.

Conjecture 1.3.10 ([SP06]). For each n ≥ 2, PS(n) = 2n−2.

Using a refinement of the Erdős–Szekeres conjecture proved by
Erdős, Tuza, and Valtr [ETV96], Balko and Valtr [BV17] refuted Con-
jecture 1.3.10.

Theorem 1.3.11 ([BV17]). We have PS(7) > 32, PS(8) > 64, and
PS(9) > 128.

The proof of Theorem 1.3.11 was carried out using a computer-
assisted proof based on SAT solvers. For 3-monotone colorings, Balko
and Valtr [BV17] did not find any counterexamples and they verified
the refined Erdős–Szekeres conjecture in several new cases.

1.3.3 Edge-ordered graphs

Besides vertices, we can also order edges of a given graph and then
study its extremal properties. An edge-ordered graph G = (G,≺) con-
sists of a graph G = (V, E) and a linear ordering ≺ of the set of
edges E. We sometimes use the term edge-ordering of G for the ordering
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≺ and also for G. An edge-ordered graph (G,≺1) is an edge-ordered
subgraph of an edge-ordered graph (H,≺2) if G is a subgraph of H and
≺1 is a suborder of ≺2. We say that (G,≺1) and (H,≺2) are isomorphic
if there is a graph isomorphism between G and H that also preserves
the edge-orderings ≺1 and ≺2.

Motivated by extremal results for edge-graphs obtained by Gerbner
et al. [Ger+19], Balko and Vizer [BV20] introduced Ramsey numbers
for edge-ordered graphs. The edge-ordered Ramsey number Re(G) of
an edge-ordered graph G is the minimum positive integer N such
that there exists an edge-ordering KN of KN such that every red-blue
coloring of the edges of KN contains a red copy of G or a blue copy
of H as an edge-ordered subgraph of KN .

Note that the definition of edge-ordered Ramsey numbers is defined
quite differently than ordered Ramsey numbers as the edge-ordering
of the complete graph whose edges are being colored depends on the
given edge-ordered graphs. This is necessary, as otherwise there might
be an edge-ordered graph G and an edge-order of KN such that G is
not an edge-ordered subgraph of KN .

The finiteness of ordered Ramsey numbers was quite easy to show,
as it followed from the finiteness of standard Ramsey numbers. This
is not the case for edge-ordered Ramsey numbers, where it takes
some effort to prove that these numbers are finite for any pair of
edge-ordered graphs. This was proved by Balko and Vizer [BV20] who
proved the following result.

Theorem 1.3.12 ([BV20]). For every edge-ordered graph G, the edge-ordered
Ramsey number Re(G) is finite.

Theorem 1.3.12 also follows from a recent deep result of Hubička
and Nešetřil [HN19, Theorem 4.33] about Ramsey numbers of general
relational structures. In comparison, the proof of Theorem 1.3.12 is
less general, but it is much simpler and produces better and more
explicit bound on Re(G). The proof of Theorem 1.3.12 yields a stronger
induced-type statement where additionally the ordering of the vertex
set is fixed and the colorings can use an arbitrary number of colors.

However, the bound on the edge-ordered Ramsey numbers obtained
in the proof of Theorem 1.3.12 is enormous, it grows faster than, for
example, a tower function of any fixed height. Fox and Li [FL20]
improved the bound on edge-ordered Ramsey numbers to single
exponential type.

Theorem 1.3.13 ([FL20]). For each positive integer n, there is an edge-
ordered graph G on N = 2100n2log2n vertices such that, for every 2-coloring
of the edges of G, there exists a monochromatic subgraph containing a copy
of every n-vertex edge-ordered graph.

In particular, if G is an edge-ordered graph on n vertices, then

Re(G) ≤ 2100n2log2n.
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Fox and Li [FL20] also extended their result to more colors and
proved the following polynomial upper bound on edge-ordered Ram-
sey numbers of edge-ordered graphs of bounded degeneracy, improv-
ing earlier estimates by Balko and Vizer [BV20].

Theorem 1.3.14 ([FL20]). If G is an edge-ordered d-degenerate graph on n
vertices, then

Re(G) ≤ n600d3 log (d+1).

1.3.4 Open problems

The ordered Ramsey numbers for ordered k-uniform hypergraphs with
k ≥ 3 and the edge-ordered Ramsey numbers are quite unexplored,
so there is a plenty of open problems. In this subsection, we mention
only few of them; more comprehensive lists of open problem can be
found, for example, in [BV20, BV21, FL20].

Theorems 1.3.2 and 1.3.4 give estimates on the ordered Ramsey
numbers R(G,K(3)

3 (n)) and although the exponents in the bounds are
reasonably close, there is still a gap between them and it would be
interesting to close it.

Problem 1.3.15 ([BV21]). Let d be a fixed positive integer and let H be an
ordered 3-uniform hypergraph on n vertices with maximum degree d. Close
the gap between the lower and upper bounds on R(H,K(3)

3 (n)).

Another interesting problem is to extend the upper bound with
subquadratic exponent from Corollary 1.3.3 to ordered 3-uniform
hypergraphs with bounded maximum degree and fixed interval chro-
matic number that is larger than 3.

Problem 1.3.16 ([BV21]). Let d and χ be fixed positive integers. Is there an
ε = ε(d, χ) > 0 such that, for every ordered 3-uniform hypergraph H on n
vertices with maximum degree d and with interval chromatic number χ, we
have

R(H) ≤ 2O(n2−ε)?

In general, we are not aware of any nontrivial upper bounds on
ordered Ramsey numbers of ordered 3-uniform hypergraphs with
bounded maximum degree.

Problem 1.3.17 ([BV21]). What is the upper bound on ordered Ramsey
numbers of ordered 3-uniform hypergraphs with bounded maximum degree?

For k-monotone colorings, although Theorem 1.3.8 gives asymp-
totically tight estimates, it is still open to decide whether R(P (k)

n ) =

Rmon(P (k)
n ) for all k and n. Currently, this equality is known only for

k ≤ 3.
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Problem 1.3.18 ([Bal19]). Is it true that Rmon(P (k)
n ) = R(P (k)

n ) for all
k ≥ 2 and n?

For edge-ordered graphs, a major open question is to find a better
estimate for edge-ordered Ramsey numbers of edge-ordered complete
graphs on n vertices. In particular, Fox and Li [FL20] asked whether
the exponential lower bound is tight for general edge-orderings of Kn.
For sparser edge-ordered graphs, Fox and Li [FL20] conjectured that
the upper bound from Theorem 1.3.14 can be improved.

Conjecture 1.3.19 ([FL20]). If H is an edge-ordered d-degenerate graph on
n vertices, then Re(H) ≤ nO(d).

Currently, there are no known edge-ordered d-degenerate graphs
with superlinear edge-ordered Ramsey numbers. However, Fox and
Li [FL20] believe that there are such examples and conjectured that
the upper bound from Conjecture 1.3.19 is tight up to the constant in
the exponent.

The edge-ordered Ramsey numbers can be naturally extended to
edge-ordered k-uniform hypergraphs with any k ≥ 2. The existence of
such numbers follows from a result of Hubička and Nešetřil [HN19],
but the resulting bounds are enormous. Fox and Li [FL20] posed a
natural problem to give a better estimate on such hypergraph edge-
ordered Ramsey numbers.
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1.4 counting holes in point sets

Here, we consider a strengthening of the Erdős–Szekeres theorem
(Theorem 1.1.5) suggested by Erdős [Erd78] in the 1970s. For an integer
k ≥ 3, a k-hole in a finite set P of points in general position in the
plane is a k-tuple H of points from P that is in convex position and
that contains no point from P in the interior of the convex hull of H;
see Figure 1.8. Erdős [Erd78] asked whether, for every positive integer
k, every sufficiently large finite point set in general position in the
plane contains a k-hole. Thus, when compared to the statement of the
Erdős–Szekeres theorem, we want to find a k-tuple of points from P
in convex position whose convex hull is additionally empty of other
points from P.

(a) (b) (c)

Figure 1.8: An example of a point set P with (a) a 6-tuple of points from P in
convex position, (b) a 6-hole in P, and (c) a 6-island in P.

Clearly, every set of at least 3 points in general position in the plane
contains a 3-hole. It is also easy to see that every set of at least 5 points
in general position in the plane contains a 4-hole and that there are
sets of 4 points without a 4-hole. Harborth [Har78] proved that there
is a 5-hole in every planar set of 10 points in general position and gave
a construction of 9 points in general position with no 5-hole.

After unsuccessful attempts to answer Erdős’ question affirmatively
for any fixed integer k ≥ 6, the problem was settled by Horton [Hor83]
who constructed, for every positive integer n, a set of n points in
general position in the plane with no 7-hole. This result gave a negative
answer to the question of Erdős and showed that a strengthening of
the Erdős–Szekeres theorem for holes is impossible. The question
about the existence of 6-holes remained a longstanding open problem
until 2007, when Gerken [Ger08] and Nicolas [Nic07] independently
showed that every sufficiently large set of points in general position in
the plane contains a 6-hole. Thus, the existence of k-holes in sufficiently
large point sets was settled for every positive integer k.
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1.4.1 Counting 5-holes

Since the existence of k-holes was settled, many researchers started
to study the growth rate of the minimum number of k-holes a set
of n points in general position in the plane can have. By the result of
Horton [Hor83], this problem is nontrivial only for k ≤ 6, as otherwise
the answer is 0.

For positive integers n and k ≥ 3, let hk(n) be the minimum number
of k-holes in a set of n points in general position in the plane. The
growth rate of the functions h3(n) and h4(n) is known to be quadratic
in n. The best known upper bounds on the minimum numbers of
3-holes and 4-holes were proved by Bárány and Valtr [BV04] who
showed

h3(n) ≤ 1.6196n2 + o(n2) and h4(n) ≤ 1.9397n2 + o(n2).

Using a result of García [Gar11] and their new estimate on h5(n),
Aichholzer et al. [Aic+20] obtained the following currently strongest
lower bounds on h3(n) and h4(n), improving earlier estimates by
Aichholzer et al. [Aic+14] with linear smaller order terms.

Theorem 1.4.1 ([Aic+20]). The following two bounds are satisfied for every
positive integer n:

h3(n) ≥ n2 +Ω(n log2/3 n) and h4(n) ≥
n2

2
+Ω(n log3/4 n).

No asymptotically matching bounds are known or h5(n) and h6(n).
The best known upper bounds were again obtained by Bárány and
Valtr [BV04] who proved the following quadratic estimates

h5(n) ≤ 1.0207n2 + o(n2) and h6(n) ≤ 0.2006n2 + o(n2).

It is widely conjectured that the minimum numbers of 5-holes and
6-holes are both quadratic, however, despite many attempts in the
past decades, the best known lower bounds on h5(n) and h6(n) were
only linear in n. Even the following weaker problem, mentioned for
example in the book by Brass, Moser, and Pach [BMP05], was open
since the 1980s.

Problem 1.4.2 ([BMP05]). Is it true that

lim
n→∞

h5(n)
n

= ∞?

For the minimum number of 5-holes, Bárány and Füredi [BF87]
noted that Harborth’s result [Har78] implies h5(n) ≥ bn/10c. This es-
timate was improved by Bárány and Károlyi [BK01] to h5(n) ≥ n/6−
O(1). In 1987, Dehnhardt [Deh87] proved h5(n) ≥ 3bn/12c. Further
improved lower bounds included h5(n) ≥ 3b n−4

8 c by García [Gar11],
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h5(n) ≥ d 3(n−11)
7 e by Aichholzer, Hackl, and Vogtenhuber [AHV11],

h5(n) ≥ n/2−O(1) by Valtr [Val12], and h5(n) ≥ 3n/4− o(n) by
Aichholzer et al. [Aic+14].

All these estimates improved only the leading constant in the lower
bounds on h5(n). However, Aichholzer et al. [Aic+20] recently proved
the following superlinear lower bound on h5(n) and thus solved
Problem 1.4.2 affirmatively.

Theorem 1.4.3 ([Aic+20]). There is a constant c > 0 such that, for every
integer n ≥ 10, we have

h5(n) ≥ cn log4/5 n.

Let P be a finite set of points in the plane in general position and let
` be a line containing no point of P. We say that P is `-divided if there
is at least one point of P in each of the two halfplanes determined by `;
see Figure 1.9. For an `-divided set P, we use P = A ∪ B to denote the
fact that ` partitions P into the subsets A and B.

BA

`

Figure 1.9: An example of an `-divided point set P = A∪ B with an `-divided
5-hole in P.

The following result is a crucial step in the proof of Theorem 1.4.3. It
was obtained by Aichholzer et al. [Aic+20] using a computer-assisted
proof and it might be of independent interest.

Theorem 1.4.4 ([Aic+20]). Let P = A ∪ B be an `-divided set with
|A|, |B| ≥ 5 and with neither A nor B in convex position. Then there
is an `-divided 5-hole in P.

We note that the assumption |A|, |B| ≥ 5 in Theorem 1.4.4 is nec-
essary, as Aichholzer et al. [Aic+20] constructed arbitrarily large `-
divided sets P = A ∪ B with |A| = 4 and with no `-divided 5-holes.

The best known lower bound on the minimum number of 6-holes
remains only linear. The strongest lower bound h6(n) ≥ n/229− 4 was
proved by Valtr [Val12]. The techniques used to prove the superlinear
lower bound on h5(n) do not seem to be applicable here, since there are
too large point sets with no 6-holes [Ove03], which is too demanding
for current computers.
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1.4.2 Random point sets

The quadratic upper bound h3(n) ≤ O(n2) can be also obtained using
random points sets. This was proved by Bárány and Füredi [BF87]
who actually extended this upper bound to higher dimensions. Before
stating their result, we extend the notion of holes to higher dimensions
and we introduce random point sets.

For an integer d ≥ 2, a set S of points from Rd is in general position
if, for every k = 1, . . . , d− 1, no k + 2 points of S lie in an affine k-
dimensional subspace of Rd. We say that S is in convex position if the
points of S are vertices of a convex polytope. For an integer k ≥ d + 1,
a set H of k points from S is a k-hole in S if H is in convex position and
the interior of the convex hull of H does not contain any point from S.

A convex body in Rd is a compact convex set in Rd with a nonempty
interior. We use Kd to denote the set of all convex bodies in Rd of
volume λd(K) = 1. Let k ≥ d+ 1 be an integer and K be a convex body
from Kd. We let EHK

d,k(n) be the expected number of k-holes in sets of
n points chosen independently and uniformly at random from K.

Bárány and Füredi [BF87] proved the following upper bound on
the expected number EHK

d,d+1(n) of (d + 1)-holes (also called empty
simplices). They showed

EHK
d,d+1(n) ≤ (2d)2d2 ·

(
n
d

)
for every K ∈ Kd. Valtr [Val95] improved this bound in the plane by
showing EHK

2,3(n) ≤ 4(n
2) for any K ∈ K2. Very recently, Reitzner and

Temesvari [RT19] showed that Valtr’s bound on EHK
2,3(n) is tight for

every K ∈ K2 up to smaller order terms. This follows from their more
general bounds

lim
n→∞

n−2EHK
2,3(n) = 2

and

2
d!
≤ lim

n→∞
n−dEHK

d,d+1(n) ≤
d

(d + 1)
κd+1

d−1κd2

κd−1
d κ(d−1)(d+1)

(1.12)

for d ≥ 2 and K ∈ Kd, where κd = π
d
2 Γ( d

2 + 1)−1 is the volume of the d-
dimensional Euclidean unit ball. Moreover, the upper bound in (1.12)
holds with equality in the case d = 2 and if K is a d-dimensional
ellipsoid with d ≥ 3.

For larger holes, that is, for k-holes with k > d + 1, the question
about the growth rate of the expected value EHK

d,k(n) was settled by
Balko, Scheucher, and Valtr [BSV21a, BSV21b]. First, they proved the
estimate O(nd) on the expected number of k-holes in a random set of
n points in Rd for any fixed d and k.
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Theorem 1.4.5 ([BSV21a]). Let d ≥ 2 and k ≥ d + 1 be integers and let K
be a convex body from Kd. If n ≥ k, then

EHK
d,k(n) ≤

2d−1 ·
(

2d2d−1( k
bd/2c)

)k−d−1
· n(n− 1) · · · (n− k + 2)

(k− d− 1)! · (n− k + 1)k−d−1 .

In particular, EHK
d,k(n) ≤ O(nd) for any fixed d and k.

Later, Balko, Scheucher, and Valtr [BSV21b] found an asymptotically
matching lower bond on EHK

d,k(n).

Theorem 1.4.6 ([BSV21b]). For all integers d ≥ 2 and k ≥ d + 1, there are
constants C = C(d, k) > 0 and n0 = n0(d, k) such that, for every integer
n ≥ n0 and every convex body K ∈ Kd, we have

EHK
d,k(n) ≥ C · nd.

Theorems 1.4.5 and 1.4.6 show that EHK
d,k(n) = Θ(nd) for all fixed

integers d and k and every K ∈ Kd, which determines the asymptotic
growth rate of EHK

d,k(n). Thus, it remains to determine the leading
constants limn→∞ n−dEHK

d,k(n).
For a convex body K ⊆ Rd (of a not necessarily unit volume), we

use pK
d to denote the probability that the convex hull of d + 2 points

chosen uniformly and independently at random from K is a d-simplex.
That is, the probability that one of the d + 2 points falls in the convex
hull of the remaining d + 1 points. The problem of computing pK

d is
known as the d-dimensional Sylvester’s convex hull problem for K and it
has been studied extensively. Let pd = maxK pK

d , where the maximum
is taken over all convex bodies K ⊆ Rd.

Balko, Scheucher, and Valtr [BSV21b] improved the lower bound on
the expected number EHK

d,d+1(n) of empty simplices in random sets
of n points in K from (1.12) by Reitzner and Temesvari [RT19] by a
factor of d/pd−1.

Theorem 1.4.7 ([BSV21b]). For every integer d ≥ 2 and every convex body
K ∈ Kd, we have

lim
n→∞

n−dEHK
d,d+1(n) ≥

2
(d− 1)!pd−1

.

The leading constant in the estimate from Theorem 1.4.7 is asymptot-
ically tight in the planar case [BSV21b]. We also note that by combining
Theorem 1.4.7 with some known results about the expected volume of
a random simplex in K, the lower bound on EHK

d,d+1(n) by Reitzner
and Temesvari [RT19] can be improved by a factor of dΩ(d).

Besides empty simplices, the leading constants in the expectation
for larger k-holes were also considered in the literature. The expected
number EHK

2,4(n) of 4-holes in random planar sets of n points was
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estimated by Fabila-Monroy, Huemer, and Mitsche [FHM15], who
showed

EHK
2,4(n) ≤ 18πD2n2 + o(n2)

for any K ∈ K2, where D = D(K) is the diameter of K. It can be
shown that the leading constant in their bound is at least 72 for any
K ∈ K2 [BSV21b]. This estimate was strengthened by Balko, Scheucher,
and Valtr [BSV21a] to EHK

2,4(n) ≤ 12n2 + o(n2) for every K ∈ K2. Later,
Balko, Scheucher, and Valtr [BSV21b] determined the leading constant
in EHK

2,4(n) exactly.

Theorem 1.4.8 ([BSV21b]). For every convex body K ∈ K2, we have

lim
n→∞

n−2EHK
2,4(n) = 10− 2π2

3
≈ 3.420.

For larger k-holes in the plane, the values limn→∞ n−2EHK
2,k(n) are

not determined exactly, but Balko, Scheucher, and Valtr [BSV21b]
showed that they exist and do not depend on the convex body K.
We recall that this is not true in larger dimensions already for empty
simplices.

Finally, we note that Theorem 1.4.5 can be significantly strengthened
by considering more general k-tuples of points than k-holes. A set I of
k points from a point set S ⊆ Rd is a k-island in S if every point of S
in the convex hull of I lies in I; see part (c) of Figure 1.8. Note that
k-holes in S are exactly those k-islands in S that are in convex position.

The following result by Balko, Scheucher, and Valtr [BSV21a] shows
that the O(nd) upper bound holds also for the expected number
of k-islands, although the leading constant is a bit worse than in
Theorem 1.4.5.

Theorem 1.4.9 ([BSV21a]). Let d ≥ 2 and k ≥ d + 1 be integers and let K
be a convex body from Kd. If S is a set of n ≥ k points chosen uniformly and
independently at random from K, then the expected number of k-islands in S
is at most

2d−1 ·

(
2d2d−1( k

bd/2c)
)k−d−1

· (k− d) · n(n− 1) · · · (n− k + 2)

(n− k + 1)k−d−1 ,

which is in O(nd) for any fixed d and k.

1.4.3 Open problems

It still remains an open problem to decide whether the minimum
numbers of 5-holes and 6-holes grow quadratically in n. For 6-holes,
it is not even known whether the number h6(n) grows superlinearly
in n. We note that Pinchasi, Radoičić and Sharir [PRS06] showed that
if h3(n) ≥ (1 + ε)n2 − o(n2) for some ε > 0, then h5(n) = Ω(n2).
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The leading constants limn→∞ n−dEHK
d,k(n) are determined exactly

for small holes. In particular, we know that these limits exist in such
cases. However, it remains an interesting open problem to determine
whether the limits limn→∞ n−dEHK

d,k(n) exist for all positive integers
d and k with k ≥ d + 1. It follows from results by Reitzner and
Temesvari [RT19] and by Balko, Scheucher, and Valtr [BSV21b] that
these limits exist if k = d + 1 or if k ≥ 3 and d = 2.

Balko, Scheucher, and Valtr [BSV21b] also posed the following
problem asking for the value of the expected umber of empty simplices
in tetrahedron.

Problem 1.4.10 ([BSV21b]). Let K be a 3-dimensional simplex of unit
volume. Determine the leading constant limn→∞ n−dEHK

3,4(n).





1.5 visibility problems 41

1.5 visibility problems

The notion of visibility is one of the classical topics in discrete geome-
try, involving several interesting results and difficult open problems.
We call two points u and v in Rd visible with respect to some set
X ⊆ Rd if there is no point from X on the line segment between u
and v. Some form of visibility appears, for example, in the famous Art-
gallery problem [Mat02], visibility problems for lattice points [BMP05],
or in the beautiful Big-Line-or-Big-Clique conjecture by Kára, Pór, and
Wood [KPW05].

In this section, we focus on two visibility problems. First, we men-
tion some results about so-called obstacle representations of graphs.
Here, graphs are represented as straight-line drawings surrounded
by polygonal obstacles so that edges are only between points that are
mutually visible with respect to these obstacles. Second, we discuss
results about so-called index of convexity, which measures a convexity
of a given subset S of Rd based on the probability that two random
points from S are mutually visible.

1.5.1 Obstacle numbers

In a geometric drawing of a graph G, the vertices of G are represented
by distinct points in the plane and each edge of G is represented by
the line segment between two points that represent the corresponding
end-vertices. As usual, we identify vertices and their images, as well
as edges and the line segments representing them.

An obstacle is a polygon in the plane. An obstacle representation of
a graph G is a geometric drawing D of G together with a set O of
obstacles such that two vertices of G are connected by an edge e
if and only if the line segment representing e in D is disjoint from
all obstacles in O; see Figure 1.10. The obstacle number obs(G) of G
is the minimum number of obstacles in an obstacle representation
of G. The convex obstacle number obsc(G) of a graph G is the minimum
number of obstacles in an obstacle representation of G in which all
the obstacles are required to be convex. Clearly, obs(G) ≤ obsc(G) for
every graph G. For a positive integer n, let obs(n) = maxG obs(G),
where the maximum is taken over all graphs G on n vertices.

The obstacle numbers were introduced by Alpert, Koch, and Lai-
son [AKL10], who proved that they can be arbitrarily large. Later,
Pach and Sarıöz [PS11] proved that there are bipartite graphs with
arbitrarily large obstacle number.

Mukkamala, Pach, and Sarıöz [MPS10] showed that the number of
labeled n-vertex graphs with obstacle number at most h is at most
2O(hn log2 n) for every fixed positive integer h. It follows that obs(n) ≥
Ω(n/ log2 n). Later, Mukkamala, Pach, and Pálvölgyi [MPP12] im-
proved the lower bound to obs(n) ≥ Ω(n/ log n). Currently, the
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obs(P4 × P5) = 1

Figure 1.10: An example of an obstacle representation of the grid graph
G = P4 × P5 showing that obs(G) = 1.

strongest lower bound is due to Dujmović and Morin [DM15] who
showed obs(n) ≥ Ω(n/(log log n)2).

Clearly, we have the trivial upper bound obs(G) ≤ (n
2) for every

graph G on n vertices, as we can place a single-point obstacle on
each non-edge of G. Alpert, Koch, and Laison [AKL10] asked whether
obs(n) can be bounded from above by a linear function in n. This
problem is still open, but Balko, Cibulka, and Valtr [BCV18] proved
that this is true for graphs with bounded chromatic number. On
the other hand, a modification of the proof of the lower bound by
Mukkamala, Pach, and Pálvölgyi [MPP12] gives bipartite graphs G on
n vertices with obs(G) ≥ Ω(n/ log n) for every positive integer n.

Theorem 1.5.1 ([BCV18]). For every positive integer n and every graph G
on n vertices, the convex obstacle number of G satisfies

obsc(G) ≤ (n− 1)(dlog χ(G)e+ 1),

where χ(G) denotes the chromatic number of G.

Note that Theorem 1.5.1 gives the linear upper even for the convex
obstacle number. In fact, Balko, Cibulka, and Valtr [BCV18] proved
the linear upper bound on obs(G) even for graphs G with bounded
subchromatic number in which each color class induces a disjoint union
of cliques. This strengthening then gives this upper bound for split
graphs.

In contrast to the question of Alpert, Koch, and Laison [AKL10],
Mukkamala, Pach, and Pálvölgyi [MPP12] conjectured that the maxi-
mum obstacle number of n-vertex graphs is around n2. Theorem 1.5.1
refutes this conjecture. Moreover, its proof can be modified to give the
following stronger bound.

Theorem 1.5.2 ([BCV18]). For every positive integer n and every graph G
on n vertices, the convex obstacle number of G satisfies

obsc(G) ≤ ndlog ne − n + 1.

For positive integers h and n, let g(h, n) be the number of la-
beled n-vertex graphs with obstacle number at most h. The lower
bounds on obs(n) by Mukkamala, Pach, and Pálvölgyi [MPP12] and
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by Dujmović and Morin [DM15] are both based on the upper bound
g(h, n) ≤ 2O(hn log2 n). In fact, any improvement on the upper bound
for g(h, n) will translate into an improved lower bound on the ob-
stacle number [DM15]. Dujmović and Morin [DM15] conjectured
g(h, n) ≤ 2 f (n)·o(h) where f (n) ≤ O(n log2 n). Balko, Cibulka, and
Valtr [BCV18] proved the following lower bound on g(h, n).

Theorem 1.5.3 ([BCV18]). For every pair of integers n and h satisfying
0 < h < n, we have

g(h, n) ≥ 2Ω(hn).

This lower bound on g(h, n) is not tight in general [BCV18]. We
also note that the constructions used in the proofs of the above re-
sults can be also applied to obtain new lower bounds on so-called
complexity of faces in arrangements of line segments [BCV18], which in
some cases match upper bounds by Aronov, Edelsbrunner, Guibas,
and Sharir [Aro+92].

1.5.2 Index of convexity

In this subsection, we discuss two measures of convexity of subsets
of Rd and we investigate the relationship between them.

The first such measure, called the convexity ratio, measures the con-
vexity of a Lebesgue measurable set S ⊆ Rd with respect to the largest
convex subset of S. Let smc(S) denote the supremum of the Lebesgue
measures of convex subsets of S. Since all convex subsets of Rd are
Lebesgue measurable [Lan86], the value of smc(S) is well defined.
Moreover, Goodman’s result [Goo81] implies that the supremum is
achieved on compact sets S, hence it can be replaced by maximum
in this case. If S has finite positive Lebesgue measure, we define the
convexity ratio c(S) as

c(S) = smc(S)/λd(S).

The second convexity measure, called the Beer index of convexity,
measures convexity of S ⊆ Rd using the notion of visibility. For a
point A ∈ S, let Vis(A, S) be the set of points that are visible from A
in S. More generally, for a subset T of S, we use Vis(T, S) to denote
the set of points that are visible in S from T. That is, Vis(T, S) is the
set of points A ∈ S for which there is a point B ∈ T such that the line
segment AB between A and B is contained in S. Let the segment set
of S be the set Seg(S) = {(A, B) ∈ S× S : AB ⊆ S} ⊆ (Rd)2. If S has a
finite positive Lebesgue measure and Seg(S) is Lebesgue measurable,
we define the Beer index of convexity b(S) ∈ [0, 1] (or just Beer index) as

b(S) =
λ2d(Seg(S))

λd(S)2 .
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We leave b(S) undefined for all other sets S ⊆ Rd. Thus, the Beer
index can be interpreted as the probability that two points of S chosen
uniformly independently at random see each other in S. Note that if
b(S) is defined, then c(S) is defined as well.

The Beer index was introduced by Beer [Bee73a, Bee73b, Bee74]
in the 1970s under the name ‘the index of convexity’. Beer was mo-
tivated by studying the continuity properties of λd(Vis(A, S)) as a
function of A. For polygonal regions, an equivalent parameter was
later independently defined by Stern [Ste89], who called it ‘the de-
gree of convexity’. Stern was motivated by the problem of finding a
computationally tractable way to quantify how close a given set is
to being convex and he approximated the Beer index of a polygon P
by a Monte Carlo estimation. Later, Rote [Rot13] showed that for a
polygonal region P with n edges the Beer index can be evaluated in
polynomial time as a sum of O(n9) closed-form expressions. Cabello
et al. [Cab+17] studied the relationship between the Beer index and the
convexity ratio, and applied their results in the analysis of their near-
linear-time approximation algorithm for finding the largest convex
subset of a polygon.

For general subsets S of R2 with Lebesgue measurable Seg(S), there
is a simple lower bound b(S) ≥ c(S)2 that is tight in the some cases.
To derive this bound, note that, for every ε > 0, the set S contains
a convex subset K of measure at least (c(S)− ε)λ2(S). Two random
points of S both belong to K with probability at least (c(S)− ε)2, hence
b(S) ≥ (c(S)− ε)2. The tightness of this bound is witnessed by a set S
which is a disjoint union of a single large convex component and a
large number of small components of a negligible size.

It is more challenging to find an upper bound on b(S) in terms
of c(S) under additional assumptions on S. As a motivating example,
observe that a set S consisting of n disjoint convex components of
the same size satisfies b(S) = c(S) = 1

n . It is easy to modify this
example to obtain, for any ε > 0, a simple star-shaped polygon P with
b(P) ≥ 1

n − ε and c(P) ≤ 1
n ; see Figure 1.11. Here, a subset S of Rd is

star-shaped if it contains a point that sees every other point of S. Thus,
there are simple polygons P with b(P) ≥ Ω(c(P)).

Cabello et al. [Cab+17] showed that the above example is essentially
optimal for weakly star-shaped polygons, as they proved the following
linear upper bound on b(S). A set S is weakly star-shaped if there is a
line segment ` ⊆ S with Vis(`, S) = S.

Theorem 1.5.4 ([Cab+17]). Every weakly star-shaped simple polygon P
satisfies

b(P) ≤ 18c(P).

For polygons that are not weakly star-shaped, Cabello et al. [Cab+17]
gave the following slightly weaker bound.
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P

(0, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (2n− 2, 1) (2n− 1, 1)
. . .

Figure 1.11: A star-shaped polygon P with b(P) ≥ 1
n − ε and c(P) ≤ 1

n .
The polygon P with 4n − 1 vertices is a union of n trian-
gles (0, 0)(2i, 1)(2i + 1, 1), i = 0, . . . , n − 1, and of a triangle
(0, 0)(0, δ)((2n− 1)δ, δ), where δ is very small.

Theorem 1.5.5 ([Cab+17]). Every simple polygon P satisfies

b(P) ≤ 12c(P)
(

1 + log2
1

c(P)

)
.

Cabello et al. [Cab+17] also conjectured that even for a general
simple polygon P, the parameter b(P) can be bounded from above by
a linear function of c(P). Balko, Jelínek, Valtr, and Walczak [Bal+17]
confirmed this conjecture. In fact, they proved more general state-
ment and to state it in the full generality, we need to introduce some
notation.

For a set X ⊆ R2, the equivalence classes on X of the equivalence
relation “A and B can be connected by a polygonal line in X” form
the p-components of X. A set S is p-componentwise simply connected if
every p-component of S is simply connected.

Theorem 1.5.6 ([Bal+17]). Every p-componentwise simply connected set
S ⊆ R2 whose b(S) is defined satisfies

b(S) ≤ 180 · c(S).

Since every simple polygon satisfies the assumptions of Theo-
rem 1.5.6, we obtain the linear bound b(P) ≤ 180 · c(P) also for simple
polygons P, which confirms the conjecture of Cabello et al. [Cab+17].

Theorem 1.5.6 fails in higher dimensions as there is a construction
of star-shaped sets Sd ⊆ Rd with c(Sd) = 0 and b(Sd) = 1 for every
d ≥ 3 [Bal+17]. Despite these examples, Balko, Jelínek, Valtr, and
Walczak [Bal+17] showed that there are meaningful higher-order gen-
eralizations of the Beer index for which analogues of Theorem 1.5.6
hold in higher dimensions.

For a set S ⊆ Rd, we define the k-simplex set of S as

Simpk(S) = {(A0, . . . , Ak) ∈ Sk+1 : conv({A0, . . . , Ak}) ⊆ S},

where conv(X) denotes the convex hull of a set X. Note that we
have Simp1(S) = Seg(S). For k ∈ [d] and S ⊆ Rd with finite positive
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Lebesgue measure and with Lebesgue measurable Simpk(S), we define
the k-index of convexity of S as

bk(S) =
λ(k+1)d(Simpk(S))

λd(S)k+1 .

We again leave bk(S) undefined otherwise. Thus, bk(S) is the proba-
bility that the convex hull of k + 1 points chosen from S uniformly
independently at random is contained in S. Note that b1(S) = b(S)
and b1(S) ≥ b2(S) ≥ · · · ≥ bd(S), provided all the numbers bk(S) are
defined.

We remark that the sets Sd satisfy c(Sd) = 0 and b1(Sd) = b2(Sd) =

· · · = bd−1(Sd) = 1. Thus, for a general set S ⊆ Rd, only the d-index
of convexity can conceivably admit a nontrivial upper bound in terms
of c(S). Balko, Jelínek, Valtr, and Walczak [Bal+17] showed that such
an upper bound indeed holds.

Theorem 1.5.7 ([Bal+17]). For every integer d ≥ 2, there is a constant
β = β(d) > 0 such that every set S ⊆ Rd with defined bd(S) satisfies

bd(S) ≤ βc(S).

Balko, Jelínek, Valtr, and Walczak [Bal+17] also constructed exam-
ples that show that the bound is optimal up to a logarithmic factor.

Theorem 1.5.8 ([Bal+17]). For every integer d ≥ 2, there is a constant
γ = γ(d) > 0 such that for every ε ∈ (0, 1), there is a set S ⊆ Rd satisfying

c(S) ≤ ε and bd(S) ≥ γ
ε

log 1/ε
.

In particular, we have bd(S) ≥ γ c(S)
log 1/c(S) .

1.5.3 Open problems

We start by mentioning open problems about the obstacle numbers.
First, we recall the open problem by Alpert, Koch, and Laison [AKL10]
who asked whether the obstacle numbers are bounded from above by
a linear function with respect to the number of vertices.

Problem 1.5.9 ([AKL10]). Is the obstacle number of a graph with n vertices
bounded from above by a linear function of n?

Alpert et al. [AKL10] also asked about the existence of a planar
graph with obstacle number greater than one. Berman et al. [Ber+17]
proved that the icosahedron has obstacle number 2. However, it is
still an open problem to decide whether obstacle numbers of planar
graphs can be bounded from above by a constant.

Problem 1.5.10 ([GOV18]). Are there planar graphs graphs with arbitrarily
large obstacle number?
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Balko, Cibulka, and Valtr [BCV18] also asked about the behavior of
the obstacle numbers when adding an edge.

Problem 1.5.11 ([BCV18]). If G is a graph and e is a non-edge of G, how
much larger can obs(G + e) be when compared to obs(G)?

The same question can be also asked for the convex obstacle number.
Note that obs(G + e) ≥ obs(G)− 1 and obsc(G + e) ≥ obsc(G)− 1 for
every graph G and every non-edge e of G.

We also mention several open problems about the Beer index of
convexity and its variants. First, we know that Theorem 1.5.6 does
not hold for general subsets of R2. However, Balko, Jelínek, Valtr, and
Walczak [Bal+17] conjectured that a large value of b(S) implies the
existence of a large convex set whose boundary belongs to S.

Conjecture 1.5.12 ([Bal+17]). For every ε > 0, there is a δ > 0 such that
if S ⊆ R2 is a set with b(S) ≥ ε, then there is a bounded convex set C ⊆ R2

with λ2(C) ≥ δλ2(S) and ∂C ⊆ S.

Theorem 1.5.6 shows that Conjecture 1.5.12 holds for p-component-
wise simply connected sets, with δ being a constant multiple of ε. It is
possible that even in the setting of Conjecture 1.5.12, δ can be taken as
a constant multiple of ε.

Balko, Jelínek, Valtr, and Walczak [Bal+17] proposed a stronger
version of Conjecture 1.5.12, where the convex set C is required to be
a triangle.

Conjecture 1.5.13 ([Bal+17]). For every ε > 0, there is a δ > 0 such that
if S ⊆ R2 is a set with b(S) ≥ ε, then there is a triangle T ⊆ R2 with
λ2(T) ≥ δλ2(S) and ∂T ⊆ S.

Balko, Jelínek, Valtr, and Walczak [Bal+17] also generalised Con-
jecture 1.5.13 to higher dimensions and to higher-order indices of
convexity. To state this general conjecture, we introduce the following
notation: for a set X ⊆ Rd, let the k-dimensional skeleton of T be defined
as

Skelk(X) =
⋃

Y∈( X
k+1)

conv(Y).

Roughly speaking, the following general conjecture states that sets
with large k-index of convexity should contain the k-dimensional
skeleton of a large simplex.

Conjecture 1.5.14 ([Bal+17]). For every k, d ∈ N such that 1 ≤ k ≤ d
and every ε > 0, there is a δ > 0 such that if S ⊆ Rd is a set with bk(S) ≥ ε,
then there is a simplex T with vertex set X such that λd(T) ≥ δλd(S) and
Skelk(X) ⊆ S.

For every d ≥ 2, there is a constant β = β(d) such that every convex
set K ⊆ Rd contains a simplex of measure at least βλd(K) [Las11].
Therefore, Theorem 1.5.7 gives the following result.
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Corollary 1.5.15 ([Bal+17]). For every d ≥ 2, there is a constant α =

α(d) > 0 such that every set S ⊆ Rd whose bd(S) is defined contains a
simplex of measure at least αbd(S)λd(S).

Corollary 1.5.15 thus asserts that Conjecture 1.5.14 holds if k = d ≥ 2,
since Skeld(X) = conv(X) = T.
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1.6 incidences and covering by subspaces

In this section, we focus on the minimum number of linear subspaces
needed to cover points that are contained in the intersection of a given
lattice with a given symmetric convex body. We also apply our results
to the problem of estimating the maximum number of incidences
between a set of points and an arrangement of hyperplanes. First, we
state some necessary definitions.

For linearly independent vectors b1, . . . , bd ∈ Rd, the d-dimensional
lattice Λ = Λ(b1, . . . , bd) with basis {b1, . . . , bd} is the set of all linear
combinations of the vectors b1, . . . , bd with integer coefficients. The
determinant of Λ is det(Λ) = |det(B)|, where B is the d× d matrix with
the vectors b1, . . . , bd as columns. For a positive integer d, we let Ld be
the set of d-dimensional lattices Λ, that is, lattices with det(Λ) 6= 0.

A convex body K is symmetric about the origin if K = −K. We let
Kd be the set of d-dimensional compact convex bodies in Rd that are
symmetric about the origin.

1.6.1 Covering lattice points by subspaces

For an integer d ≥ 2, a collection S of subsets in Rd covers a set P
of points from Rd if every point from P lies in some set from S . For
positive integers k, n, and r with 1 ≤ k ≤ d− 1, we let l(d, k, n, r) be the
maximum size of a set S ⊆ Zd ∩ Bd(n) such that every k-dimensional
linear subspace of Rd contains at most r− 1 points of S. We also let
g(d, k, n) be the minimum number of k-dimensional linear subspaces
of Rd necessary to cover Zd ∩ Bd(n).

It follows from the definitions that l(d, k, n, r) ≤ (r − 1)g(d, k, n).
For fixed d and k = d− 1, Bárány, Harcos, Pach, and Tardos [Bár+01]
obtained the following asymptotically tight estimates:

l(d, d− 1, n, d) = Θd(nd/(d−1)) and g(d, d− 1, n) = Θd(nd/(d−1)).

In fact, Bárány et al. [Bár+01] proved a stronger result about covering
Λ ∩ K for a given lattice Λ ∈ Ld and a body K ∈ Kd. To state this
result, we need to introduce some notation.

For a lattice Λ ∈ Ld, a body K ∈ Kd, and i ∈ [d], we let λi(Λ, K) be
the ith successive minimum of Λ and K. That is,

λi(Λ, K) = inf{λ ∈ R : dim(Λ ∩ (λ · K)) ≥ i},

where dim(X) is the dimension of the affine hull of a set X ⊆ Rd; see
Figure 1.12. Since K is compact, it is easy to see that the successive
minima are achieved. Note that we have λ1(Λ, K) ≤ · · · ≤ λd(Λ, K)
and λ1(Z

d, Bd(n)) = · · · = λd(Z
d, Bd(n)) = 1/n.
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K K ′

1
3
K 1

2
K ′

(a) (b)

Figure 1.12: Examples of convex bodies K and K′ from K2 such that (a)
λ1(Z

2, K) = λ2(Z
2, K) = 1/3 and (b) λ1(Z

2, K′) = 1/3 and
λ2(Z

2, K′) = 1/2.

Theorem 1.6.1 ([Bár+01]). For an integer d ≥ 2, a lattice Λ ∈ Ld, and a
body K ∈ Kd, we let λi = λi(Λ, K) for every i ∈ [d]. If λd ≤ 1, then the set
Λ ∩ K can be covered with at most

c2dd2 log d min
1≤j≤d−1

(λj · · · λd)
−1/(d−j)

(d− 1)-dimensional linear subspaces of Rd, where c is some constant.
On the other hand, if λd ≤ 1, then there is a subset S of Λ ∩ K of size

1− λd

16d2 min
1≤j≤d−1

(λj · · · λd)
−1/(d−j)

such that no (d− 1)-dimensional linear subspace of Rd contains d points
from S.

For linear subspaces of lower dimension, Brass and Knauer [BK03]
conjectured that l(d, k, n, k + 1) = Θd,k(nd(d−k)/(d−1)) for d fixed. This
conjecture was refuted by Lefmann [Lef12] who showed that, for
all d and k with 1 ≤ k ≤ d − 1, there is a constant c such that
l(d, k, n, k + 1) ≤ c · nd/dk/2e for every positive integer n. This bound is
asymptotically smaller in n than the growth rate conjectured by Brass
and Knauer for sufficiently large d and almost all values of k with
1 ≤ k ≤ d− 1.

The following problem about covering lattice points by linear sub-
spaces is also posed in the book by Brass, Moser, and Pach [BMP05].

Problem 1.6.2 ([BMP05]). What is the minimum number of k-dimensional
linear subspaces necessary to cover the d-dimensional n × · · · × n lattice
cube?

Balko, Cibulka, and Valtr [BCV19] nearly settled Problem 1.6.2 by
proving new bounds on the minimum number of k-dimensional linear
subspaces that are necessary to cover points in the intersection of a
given lattice with a body from Kd. First, we state their upper bound.
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Theorem 1.6.3 ([BCV19]). For integers d and k with 1 ≤ k ≤ d− 1, a
lattice Λ ∈ Ld, and a body K ∈ Kd, we let λi = λi(Λ, K) for i = 1, . . . , d.
If λd ≤ 1, then we can cover Λ ∩ K with Od,k(α

d−k) k-dimensional linear
subspaces of Rd, where

α = min
1≤j≤k

(λj · · · λd)
−1/(d−j).

Balko, Cibulka, and Valtr [BCV19] also showed the following lower
bound.

Theorem 1.6.4 ([BCV19]). For integers d and k with 1 ≤ k ≤ d− 1, a
lattice Λ ∈ Ld, and a body K ∈ Kd, we let λi = λi(Λ, K) for i = 1, . . . , d.
If λd ≤ 1, then, for every ε ∈ (0, 1), there is a positive integer r = r(d, ε, k)
and a set S ⊆ Λ ∩ K of size at least Ωd,ε,k(((1− λd)β)d−k−ε), where

β = min
1≤j≤d−1

(λj · · · λd)
−1/(d−j),

such that every k-dimensional linear subspace of Rd contains at most r− 1
points from S.

Since λi(Z
d, Bd(n)) = 1/n for every i ∈ [d], Theorem 1.6.4 with

Λ = Zd and K = Bd(n) gives the following lower bound on l(d, k, n, r).

Corollary 1.6.5 ([BCV19]). Let d and k be integers with 1 ≤ k ≤ d− 1.
Then, for every ε ∈ (0, 1), there is an r = r(d, ε, k) ∈N such that for every
n ∈N we have

l(d, k, n, r) ≥ Ωd,ε,k(nd(d−k)/(d−1)−ε).

This bound is very close to the bound conjectured by Brass and
Knauer [BK03]. Thus it seems that the conjectured growth rate of
l(d, k, n, r) is true if we allow r to be (significantly) larger than k + 1.

Since l(d, k, n, r) ≤ (r− 1)g(d, k, n) for every r ∈ N, Theorem 1.6.3
and Corollary 1.6.5 give the following almost tight estimates on
g(d, k, n), nearly settling Problem 1.6.2.

Corollary 1.6.6 ([BCV19]). Let d, k, and n be integers with 1 ≤ k ≤ d− 1.
Then, for every ε ∈ (0, 1), we have

Ωd,ε,k(nd(d−k)/(d−1)−ε) ≤ g(d, k, n) ≤ Od,k(nd(d−k)/(d−1)).

1.6.2 Point-hyperplane incidences

The problem of determining l(d, n, k, r) is related to bounding the
maximum number of point-hyperplane incidences, a classical problem
in discrete geometry. For an integer d ≥ 2, let P be a set of n points
in Rd and let H be an arrangement of m hyperplanes in Rd. An
incidence between P and H is a pair (p, H) such that p ∈ P, H ∈ H, and
p ∈ H. The number of incidences between P and H is denoted by
inc(P,H).
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In the plane, the famous Szemerédi–Trotter theorem [ST83] says that
the maximum number of incidences between a set of n points in R2

and an arrangement of m lines in R2 is at most O((mn)2/3 + m + n).
This is known to be asymptotically tight, as a matching lower bound
was found earlier by Erdős [Erd46].

For d ≥ 3, it suffices to consider all points from P lying in an
affine subspace that is contained in every hyperplane from an arrange-
ment H. Then the number of incidences is maximum possible, that
is inc(P,H) = mn. In order to avoid this degenerate case, we forbid
large complete bipartite graphs in the incidence graph G(P,H) of P
and H, which is the bipartite graph on the vertex set P∪H with edges
{p, H} where (p, H) is an incidence between P and H.

With this restriction, bounding inc(P,H) becomes more difficult. It
follows from the works of Chazelle [Cha93], Brass and Knauer [BK03],
and Apfelbaum and Sharir [AS07] that the number of incidences
between any set P of n points in Rd and any arrangement H of m
hyperplanes in Rd with Kr,r 6⊆ G(P,H) satisfies

inc(P,H) ≤ Od,r

(
(mn)1−1/(d+1) + m + n

)
. (1.13)

The following estimate proved by Balko, Cibulka, and Valtr [BCV19]
using Corollary 1.6.5 is the best general lower bound on inc(P,H). It
improves an earlier lower bound by Brass and Knauer [BK03].

Theorem 1.6.7 ([BCV19]). For every integer d ≥ 2 and ε ∈ (0, 1), there is
an r = r(d, ε) ∈N such that for all positive integers n and m the following
statement is true. There is a set P of n points in Rd and an arrangement H
of m hyperplanes in Rd such that Kr,r 6⊆ G(P,H) and

inc(P,H) ≥

Ωd,ε

(
(mn)1−(2d+3)/((d+2)(d+3))−ε

)
if d is odd,

Ωd,ε

(
(mn)1−(2d2+d−2)/((d+2)(d2+2d−2))−ε

)
if d is even.

The parameter ε in the exponent can be removed for d ≤ 3 [BK03,
BCV19]. That is, we have the bounds Ω((mn)2/3) for d = 2 and
Ω((mn)7/10) for d = 3. However, the bounds do not match the upper
bounds from (1.13) for d ≥ 3.
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the Erdős–Szekeres convex polygon theorem.” In: Discrete
and computational geometry (Tokyo, 2000). Vol. 2098. Lecture
Notes in Comput. Sci. Springer, Berlin, 2001, pp. 91–105.
doi: 10.1007/3-540-47738-1\_7.

https://doi.org/10.1007/s00454-018-9970-7
https://doi.org/10.1016/j.jctb.2018.06.002
https://doi.org/10.1016/j.jctb.2018.06.002
https://doi.org/10.1007/s00454-016-9821-3
https://doi.org/10.1007/s00454-016-9821-3
https://doi.org/10.1016/j.ejc.2017.06.010
https://doi.org/10.1016/j.ejc.2020.103100
https://doi.org/10.1016/j.ejc.2020.103100
https://doi.org/10.4153/CMB-1987-064-1
https://doi.org/10.1023/A:1015233631926
https://doi.org/10.1007/3-540-47738-1\_7


bibliography 55

[BV04] I. Bárány and P. Valtr. “Planar point sets with a small
number of empty convex polygons.” In: Studia Sci. Math.
Hungar. 41.2 (2004), pp. 243–266. doi: 10.1556/SScMath.
41.2004.2.4.

[Bee73a] G. Beer. “Continuity properties of the visibility function.”
In: Michigan Math. J. 20 (1973), 297–302 (1974).

[Bee73b] G. Beer. “The index of convexity and the visibility func-
tion.” In: Pacific J. Math. 44 (1973), pp. 59–67.

[Bee74] G. A. Beer. “The index of convexity and parallel bodies.”
In: Pacific J. Math. 53 (1974), pp. 337–345.

[Ber+17] L. W. Berman, G. G. Chappell, J. R. Faudree, J. Gimbel,
C. Hartman, and G. I. Williams. “Graphs with obstacle
number greater than one.” In: J. Graph Algorithms Appl.
21.6 (2017), pp. 1107–1118. doi: 10.7155/jgaa.00452.
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rem.” In: Adv. Math. 262 (2014), pp. 1107–1129. doi: 10.
1016/j.aim.2014.06.008.

[Mub17] D. Mubayi. “Variants of the Erdős–Szekeres and Erdős-
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