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Preface

This habilitation thesis gives an overview of some recent results obtained by the author together
with various collaborators in the area of parameterized approximation algorithms. This research
area in the intersection of fixed-parameter tractability and approximation algorithms has
gained growing attention in recent years. While a large variety of algorithmic topics have seen
advancements using the paradigm of parameterized approximations (for an overview see the
recent survey in [9]), the author’s contributions are mostly concentrated on the topics of network
design and clustering. Accordingly, this thesis presents the author’s results on these two topics
in separate sections. Each of these two sections gives a brief overview of the obtained results,
after which the used techniques are presented in more detail.

The results appear in several papers listed below, which were published between 2015 and
2020. The papers are also attached to the appendix of this thesis. Some of the attached papers
are extended abstracts of conference proceedings, and thus do not contain the full details due to
strict page limitations. Therefore a link to a full version of each paper is provided in the list
below.

Please note that several passages of this thesis are taken verbatim (with some modifications)
from the author’s publications. In particular, Section 1 uses parts of [9], Sections 2.1 and 2.2
contain excerpts from [3; 9], Section 2.3 includes some of [10], Section 3.1 contains parts of [5; 8;
9; 11], Section 3.2 lends from [4; 12], and Section 3.3 uses content from [7; 11].
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Parameterized Approximation
Algorithms in Network Design and
Clustering

1 Parameterized approximation

In their seminal papers of the mid 1960s, Cobham [Cob64] and Edmonds [Edm65] independently
phrased what is now known as the Cobham-Edmonds thesis. It states that an optimization
problem is feasibly solvable if it admits an algorithm with the following two properties:

1. Accuracy: the algorithm should always compute the best possible (optimum) solution.

2. Efficiency: the runtime of the algorithm should be polynomial in the input size n.

Shortly after the Cobham-Edmonds thesis was formulated, the development of the theory
of NP-hardness and reducibility identified a whole plethora of problems that are seemingly
intractable, i.e., for which algorithms with the above two properties do not seem to exist. Even
though the reasons for this phenomenon remain elusive up to this day, this has not hindered the
development of algorithms for such problems. To obtain an algorithm for an NP-hard problem,
at least one of the two properties demanded by the Cobham-Edmonds thesis needs to be relaxed.
Ideally, the properties are relaxed as little as possible, in order to stay close to the notion of
feasible solvability suggested by the thesis.

A very common approach is to relax the accuracy condition, which means aiming for
approximation algorithms [Vaz01; WS11]. The idea here is to use only polynomial time to
compute an α-approximation, i.e., a solution that is at most a factor α times worse than the
optimum solution obtainable for the given input instance. Such an algorithm may also be
randomized, i.e., there is either a high probability that the output is an α-approximation, or the
runtime is polynomial in expectation.

In a different direction, several relaxations of the efficiency condition have also been proposed.
Popular among these is the notion of parameterized algorithms [Cyg+15; DF13]. Here the input
comes together with some parameter k ∈ N, which describes some property of the input and can
be expected to be small in typical applications. The idea is to isolate the seemingly necessary
exponential runtime of NP-hard problems to the parameter, while the runtime dependence on
the input size n remains polynomial. In particular, the algorithm should compute the optimum
solution in f(k)nO(1) time, for some computable function f : N → N independent of the input
size n. If such an algorithm exists for a problem it is fixed-parameter tractable (FPT), and the
algorithm is correspondingly referred to as an FPT algorithm. Again, such an algorithm may be
randomized.

Approximation and FPT algorithms have been studied extensively for the past few decades,
and this has lead to a rich literature on algorithmic techniques and deep links to other research
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fields within mathematics. In this process the limitations of these approaches have also become
apparent. Some NP-hard problems can fairly be considered to be feasibly solvable in the
respective regimes, as they admit polynomial-time algorithms with small approximation factors,
or can be shown to be solvable optimally with only a limited exponential runtime overhead due
to the parameter. But many problems can also be shown not to admit any reasonable algorithms
in either of these regimes, assuming some standard complexity assumptions. Thus considering
only approximation and FPT algorithms, as has been mostly done in the past, we are seemingly
stuck in a swamp of problems for which we have mathematical evidence that they cannot be
feasibly solved.

To find a way out of this dilemma, an obvious possibility is to lift both the accuracy and the
efficiency requirements of the Cobham-Edmonds thesis. In this way we obtain a parameterized
α-approximation algorithm, which computes an α-approximation in f(k)nO(1) time for some
computable function f , given an input of size n with parameter k. The study of such algorithms
had been suggested dating back to the early days of parameterized complexity (cf. [CC97; DF13;
FG06]), and we refer the readers to a survey of Marx [Mar08] for discussions on earlier results
in the area, and our survey in [9] for an overview of more recent developments.

The aim of this thesis is to present the contributions of the author to the field of parameterized
approximation algorithms. The main focus of the author’s work has been on problems arising
in network design and clustering. These are well-studied areas for both parameterized and
approximation algorithms and therefore constitute natural starting points to develop a theory
of parameterized approximation algorithms. In Section 2 we present the results in network
design, while Section 3 gives an overview of those for clustering. Each section begins with a brief
overview of the obtained results by the author and several collaborators, after which a more
detailed account of the used techniques to obtain these results is given. Before this however, in
Section 1.1 we give a more formal introduction of several concepts used in the field.

1.1 Preliminaries

In this section, we review several notions relevant to the study of parameterized approximations,
and how they relate to previously studied concepts in the more classic fields of parameterized
and approximation algorithms. We will not review common graph theoretic notions such as
planarity or treewidth in this introduction, and instead refer to the literature [Cyg+15; Die12]
and also later chapters in the appendix of this thesis, which contain some such definitions.

Parameterized approximation algorithms. As already defined above, an FPT algorithm
computes the optimum solution in f(k)nO(1) time for some parameter k and computable function
f : N → N on inputs of size n. An algorithm that computes the optimum solution in f(k)ng(k)

time for some parameter k and computable functions f, g : N → N, is called a slice-wise polynomial
(XP) algorithm. If the parameter is the approximation factor, i.e., the algorithm computes
a (1 + ε)-approximation in f(ε)ng(ε) time, then it is called a polynomial-time approximation
scheme (PTAS). The latter type of algorithm has been studied avant la lettre for quite some
time, where it is assumed that ε is a constant and thus the runtime is polynomial. Also the
corresponding FPT algorithm has been studied before, which computes a (1+ε)-approximation in
f(ε)nO(1) time, and is referred to as an efficient polynomial-time approximation scheme (EPTAS).
While it may be unusual to view these algorithms from the perspective of parametrizations, we
will specifically do so in this thesis in order to obtain a more nuanced view of the complexity of
the studied problems (especially in Section 3.2).

As also mentioned above, a parameterized α-approximation algorithm computes an α-approx-
imation in f(k)nO(1) time for some parameter k on inputs of size n. If α can be set to 1 + ε
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for any ε > 0 and the runtime is f(k, ε)ng(ε), then we obtain a parameterized approximation
scheme (PAS) for parameter k. Note that this runtime is only truly FPT if we assume that ε is
constant, and a PAS is thus the corresponding notion to a PTAS. If we forbid this and consider ε
as a parameter as well, i.e., the runtime should be of the form f(k, ε)nO(1), then we obtain an
efficient parameterized approximation scheme (EPAS), which is the corresponding notion to
an EPTAS.

Kernelization. A topic closely related to FPT algorithms is kernelization. Here the idea
is that an instance is efficiently pre-processed by removing the “easy parts” so that only the
(NP-)hard core of the instance remains. More concretely, a kernelization algorithm takes an
instance I and a parameter k of some problem and computes a new instance I ′ with parameter
k′ of the same problem. The runtime of this algorithm is polynomial in the size of the input
instance I and k, while the size of the output I ′ and k′ is bounded as a function of the input
parameter k. For optimization problems it should also be the case that any optimum solution
to I ′ can be converted to an optimum solution of I in polynomial time. The new instance I ′ is
called the kernel of I (for parameter k). A fundamental result in fixed-parameter tractability is
that an (optimization) problem parameterized by k is FPT if and only if it admits a kernelization
algorithm for the same parameter [Cyg+15]. However the size of the guaranteed kernel will in
general be exponential (or worse) in the input parameter. Therefore an interesting question is
whether an NP-hard problem admits small kernels of polynomial size. This can be interpreted
as meaning that the problem has a very efficient pre-processing algorithm, which can be used to
compress the instance prior to solving the kernel. This also provides an additional dimension to
the parameterized complexity landscape, and kernelization has therefore been developed into a
research area in its own right.

Kernelization has played a fundamental role in the development of FPT algorithms, where of-
ten a pre-processing step is used to simplify the structure of the input instance. It is therefore only
natural to consider such pre-processing algorithms for parameterized approximation algorithms as
well. The notion we will be concerned with here was introduced by Lokshtanov et al. [Lok+17].
They define an α-approximate kernelization algorithm, which computes a kernel I ′ such that
any β-approximation for I ′ can be converted into an αβ-approximation to the input instance I
in polynomial time. Again the size of I ′ and k′ need to be bounded as a function of the input
parameter k, and the algorithm needs to run in polynomial time. The instance I ′ is now
called an α-approximate kernel. Analogous to exact kernels, any problem has a parameter-
ized α-approximation algorithm if and only if it admits an α-approximate kernel for the same
parameter [Lok+17], which however might be of exponential size in the parameter. As before,
studying the existence of polynomial-sized approximate kernels adds an additional dimension to
the complexity landscape of parameterized approximation algorithms, and approximate kernels
are hence interesting to study in their own right.

An α-approximate kernelization algorithm that computes a polynomial-sized kernel, and for
which we may set α to 1 + ε for any ε > 0, is called a polynomial-sized approximate kernelization
scheme (PSAKS). In this case ε is necessarily considered to be a constant, since any kernelization
algorithms needs to run in polynomial time.

Kernelization (and FPT) algorithms often come with a set of reduction rules, which roughly
speaking constitute steps to simplify the input and are applied repeatedly until some core
instance (typically a kernel) is left. Formally, a reduction rule is a polynomial time algorithm,
which takes an instance I and a parameter k as input, and outputs a new instance I ′ and
parameter k′ (but in contrast to a kernelization algorithm, the size of the new instance is not
necessarily bounded after only one application of a reduction rule). Furthermore, in the context
of approximate kernels, a reduction rule is said to be strictly α-safe if there exists a polynomial
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time algorithm to convert a β-approximation to I ′ into a max{α, β}-approximation to I.1 A
set of reduction rules is then applied repeatedly until some desired property of the resulting
instance is met (for kernelizations this property typically is that the size of the final instance is
bounded as a function of the input parameter k).

Complexity-theoretic assumptions. We assume that the reader is familiar with common
complexity classes used to prove algorithmic lower bounds for parameterizations, approximations,
and kernelizations, such as P, NP, W[t], APX, and coNP/poly. For sake of brevity we will not
define these classes here and instead refer to the literature [Cyg+15; FG06; WS11].

The Exponential Time Hypothesis (ETH) is often used to obtain concrete runtime lower
bounds for parameterized problems. It assumes that 3SAT cannot be solved in 2o(n) time,
where n is the number of variables. A less known assumption is the Gap Exponential Time
Hypothesis (Gap-ETH), which is stronger than ETH and useful to obtain lower bounds for
parameterized approximations. It assumes that there exists some constant δ > 0 such that there
is no 2o(n) time algorithm to decide whether all or at most a (1− δ)-fraction of the clauses of
a given 3SAT formula are satisfiable. Here the assumed algorithms may be deterministic or
randomized (the latter being the stronger assumption).

2 Network design

In network design the task is to connect some set of vertices in an edge-weighted graph in the
cheapest possible way. To give an example, a prominent problem of this type is the Steiner
Tree problem. Here a subset of the vertices (called terminals) is given as part of the input,
and the objective is to connect all terminals by a tree of minimum weight in the graph. This
fundamental problem and its variants have been widely studied in the past, both on undirected
and directed input graphs.

In Section 2.1 we focus on undirected input graphs. Our main results here are a PAS and a
PSAKS for Steiner Tree parameterized by the number of non-terminals (Steiner vertices)
contained in the optimum solution. In Section 2.2 we turn to directed graphs, where we first
discuss the Directed Steiner Tree problem for the same parameter. In summary, we show
that a PAS only exists in the unweighted case, but a PSAKS does not exist even then. Next we
consider the more standard parameter given by the number of terminals, for which a different
directed variant of Steiner Tree called Strongly Connected Steiner Subgraph is known
to have a parameterized 2-approximation. We give a lower bound showing that this is best
possible. For the more general Directed Steiner Network problem we prove that a PAS
and a PSAKS exist on planar directed graphs that are also bidirected, which means that for
every edge the reverse edge exists as well and has the same weight. We then present several
hardness results showing that our PAS and PSAKS for this problem on planar bidirected graphs
are in a sense best possible.

Finally, in Section 2.3 we present a dichotomy result on computing exact solutions for
Directed Steiner Network parameterized by the number of terminals. We summarize
several interesting consequences of the algorithm due to this result, including its application to
derive the above-mentioned PAS for planar bidirected graphs.

1The strictness refers to the fact that the approximation factor is bounded by max{α, β} instead of αβ.
This is needed in order to apply reduction rules repeatedly without losing the guaranteed approximation factor.
See [Lok+17] for more details.
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2.1 Undirected graphs

A well-studied parameter for Steiner Tree is the number of terminals, for which the problem
has been known to be FPT since the early 1970s due to the work of Dreyfus and Wagner [DW71].
Their algorithm is based on dynamic programming and runs in 3knO(1) time if k is the number
of terminals. Faster algorithms based on the same ideas with runtime (2 + δ)knO(1) for any
constant δ > 0 exist [Fuc+07] (here the degree of the polynomial depends on δ). The unweighted
Steiner Tree problem also admits a 2knO(1) time algorithm [Ned09] using a different technique
based on subset convolution. On the other hand, no exact polynomial-sized kernel exists [DLS14]
for the Steiner Tree problem, unless NP⊆coNP/poly. Interestingly though, a PSAKS can be
obtained [Lok+17].

This approximate kernel is based on a well-known fact proved by Borchers and Du [BD97],
which is very useful to obtain approximation algorithms for the Steiner Tree problem, and on
which several of our results are based as well. On a high level, it states that any Steiner tree can
be covered by smaller trees containing few terminals, such that these trees do not overlap much.
More formally, a full-component is a subtree of a Steiner tree, for which the leaves coincide
with its terminals. For the optimum Steiner tree T and any ε > 0, there exist full-components
C1, . . . , Cℓ of T such that

1. each full-component Ci contains at most 2⌈1/ε⌉ terminals (leaves),

2. the sum of the weights of the full-components is at most 1 + ε times the cost of T , and

3. taking any collection of Steiner trees T1, . . . , Tℓ, such that each tree Ti connects the subset
of terminals that forms the leaves of full-component Ci, the union

⋃︁ℓ
i=1 Ti is a feasible

solution to the input instance.

Not knowing the optimum Steiner tree, it is not possible to know the subsets of terminals
of the full-components corresponding to the optimum. However, it is possible to compute the
optimum Steiner tree for every subset of terminals of size at most 2⌈1/ε⌉ using an FPT algorithm
for Steiner Tree. The time to compute all these solutions is kO(21/ε)nO(1), using for instance
the Dreyfus and Wagner [DW71] algorithm. Now the above three properties guarantee that the
graph given by the union of all the computed Steiner trees, contains a (1 + ε)-approximation
for the input instance. In fact, the best polynomial time approximation algorithm known
to date [Byr+13] uses an iterative rounding procedure to find a ln(4)-approximation of the
optimum solution in the union of these Steiner trees. To obtain a kernel, the union needs to be
sparsified, since it may contain many Steiner vertices and also the edge weights might be very
large. Lokshtanov et al. [Lok+17] show that the number of Steiner vertices can be reduced using
standard techniques, while the edge weights can be encoded so that their space requirement is
bounded in the parameter and the cost of any solution is distorted by at most a 1 + ε factor.
The resulting graph is thus a PSAKS parameterized by the number k of terminals.

A natural alternative parameter to the number of terminals is to consider the vertices
remaining in the optimum tree after removing the terminals: a folklore result states that
Steiner Tree is W[2]-hard parameterized by the number of non-terminals (called Steiner
vertices) in the optimum solution. At the same time, unless P=NP there is no PTAS for the
problem, as it is APX-hard [CC08]. However, we were able to show that both an EPAS and a
PSAKS are obtainable when parametrizing by the number of Steiner vertices p in the optimum.

To obtain both of these results, in [6] we devise a reduction rule that is based on the following
observation: if the optimum tree contains few Steiner vertices but many terminals, then the
tree must contain (1) a large component containing only terminals, or (2) a Steiner vertex that
has many terminal neighbours. Intuitively, in case (2) we would like to add a large star to the
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solution, such that the star has terminal leaves and small cost in the current graph. In case (1)
we would like to add a cheap edge between two terminals. Note that such a single edge also
is a star with terminal leaves. The reduction rule will therefore find the star with minimum
weight per contained terminal and contract it, which can be done in polynomial time. This rule
is applied until the number of terminals, which decreases after each use, falls below a threshold
depending on the input parameter p and the desired approximation ratio 1+ ε. Once the number
of terminals is bounded by a function of p and ε, the Dreyfus and Wagner [DW71] algorithm
can be applied on the remaining instance, or a kernel can be computed using the PSAKS of
Lokshtanov et al. [Lok+17]. We prove that our reduction rule does not distort solutions by
much as long as the threshold is large enough, which results in the following theorem.

Theorem 2.1 ([6]). For the Steiner Tree problem a (1 + ε)-approximation can be computed
in 2O(p2/ε4)nO(1) time for any ε > 0, where p is the number of non-terminals in the optimum
solution. Moreover, a (1+ε)-approximate kernel of size (p/ε)2

O(1/ε)
can be computed in polynomial

time.

A natural question is whether this theorem is generalizable to other variants of Steiner
Tree in undirected graphs, for instance the Steiner Forest problem, where a list of terminal
pairs is given and the task is to find a minimum weight forest in the input graph connecting each
pair. Parameterized by the number of terminals k it is not hard to show that Steiner Forest
is FPT, since we may guess a partition of the terminals such that each set of the partition is
contained in the same connected component of the optimum Steiner Forest solution. Since
each connected component forms a tree, an FPT algorithm for Steiner Tree can then be used
to compute a solution for each terminal set separately, which leads to a runtime of kO(k)nO(1).
Also a PSAKS can be obtained for this parameter, using the same techniques as in [Lok+17] for
Steiner Tree (cf. [6]).

If however the parameter is the number p of Steiner vertices in the optimum solution, then
neither a PAS nor a PSAKS exists unless P=NP. This can be easily seen, since any Steiner
vertex v of a Steiner Forest instance can be promoted to a trivial terminal pair that both
equal v. Now any solution to the new instance corresponds to a solution in the original instance
of the same weight, and vice versa. As the new instance contains no Steiner vertices, a PAS or
PSAKS for parameter p would imply a PTAS for Steiner Forest. However, the problem is
APX-hard [CC08], and thus a PTAS would imply P=NP.

Nonetheless, we showed in [6] that using the same techniques as for Steiner Tree, it is
possible to generalize Theorem 2.1 to the Steiner Forest problem, if the parameter p is
combined with the number c of connected components of the optimum solution. This yields a
PAS with runtime 2O((p+c)2/ε4)nO(1) and a PSAKS of size ((p+ c)/ε)2

O(1/ε)
.

It is also natural to ask whether Theorem 2.1 is generalizable to variants of Steiner Tree
in directed graphs, which we turn to next.

2.2 Directed Graphs

The Directed Steiner Tree problem takes as input a terminal set with a special terminal
called the root in a directed edge-weighted graph. The task is to compute a directed tree of
minimum weight that contains a path from each terminal to the root. For the parameterization
by the number k of terminals, the Directed Steiner Tree problem is FPT, using the same
algorithms as for the undirected version [DW71; Fuc+07; Ned09]. In contrast to the undirected
case however, this problem is much harder to approximate. It was shown [HK03] that no
O(log2−ε k)-approximation can be computed in polynomial time, unless NP-hard problems can
be solved in expected quasi-polynomial time. Moreover, for the parameterization by the number p
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of Steiner vertices in the optimum solution we proved in [6] that no reasonable approximation can
be computed in FPT time. This can be shown using a simple reduction from the Dominating
Set problem via a hardness result in [CL16], resulting in the following formal statement.

Theorem 2.2 ([6]). The Directed Steiner Tree problem has no g(p)-approximation al-
gorithm with runtime f(p)nO(1), for any computable functions f and g, where p is the number
of Steiner vertices in the optimum solution, unless W[1]=FPT.

A notable special case is the unweighted Directed Steiner Tree problem. Here we
showed [6] that a PAS is again obtainable using the number p of Steiner vertices in the optimum
as a parameter. Similar as for the undirected case, the algorithm uses a reduction rule that
contracts components containing many terminals (depending on p and ε), and then uses an FPT
algorithm parameterized by the number of terminal to solve the remaining instance. One caveat
however is that contractions in directed graphs are tricky, as they may introduce new paths
that were non-existent before. For Directed Steiner Tree this issue can be circumvented by
making sure that the contracted component always contains the root. For this however, a path
from the root to the contracted terminals needs to be included in the contracted component,
which may contain many Steiner vertices. However in the unweighted case, the number of
vertices of a path directly translates to the weight of the path. This effectively implies that the
reduction rule does not distort solutions by much, and thus we obtain a PAS, as stated formally
below.

A natural question then becomes whether, as in the undirected case, a PSAKS exists for the
unweighted Directed Steiner Tree problem. Recall that the PSAKS for Steiner Tree
relies on the result by Borchers and Du [BD97], which decomposes an undirected solution into
full-components with a small number of terminals each, such that the full-components overlap
very little. It is not hard to see however, that this cannot work in directed graphs. More generally,
we prove [6] that in contrast to the undirected case, no polynomial-sized (2− ε)-approximate
kernelization exists for unweighted Directed Steiner Tree, unless NP⊆coNP/poly. It remains
an intriguing question whether a polynomial-sized 2-approximate kernel exists.

Theorem 2.3 ([6]). For the unweighted Directed Steiner Tree problem a (1+ε)-approximation
can be computed in 2p

2/εnO(1) time for any ε > 0, where p is the number of non-terminals in the
optimum solution. However, no polynomial-sized (2− ε)-approximate kernelization exists, unless
NP⊆coNP/poly.

We now turn back to the well-studied parameterization by the number k of terminals, and
consider other directed variants of Steiner Tree. One example is the Strongly Connected
Steiner Subgraph problem, where a terminal set needs to be strongly connected in the
cheapest possible way. In contrast to Directed Steiner Tree this problem is W[1]-hard
parameterized by the number of terminals [GNS11], and again no O(log2−ε n)-approximation
can be computed in polynomial time [HK03], unless NP ⊆ ZTIME(npolylog(n)). However, a
2-approximation can be computed in FPT time [CHK13] using the parameter k.

Interestingly, in [3] we showed that no improvement over this 2-approximation is pos-
sible when parameterizing by k. To obtain this hardness result we modified the reduction
of Guo et al. [GNS11], who showed W[1]-hardness of the problem. In particular, this reduction
was from the W[1]-hard Clique problem. As a starting point we instead use the approximation
variant of Clique, namely the Densest k-Subgraph problem, and a recent inapproximability
result for the latter [DM18]. Additionally, we introduce appropriate edge weights in the reduction
of Guo et al. [GNS11]. Together with the positive result of Chitnis et al. [CHK13] we obtain
the following theorem, which to date is the only known tight parameterized approximation result
for a problem that can be approximated better in FPT time than in polynomial time, but where
the parameterized algorithm is not an approximation scheme.
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Theorem 2.4 ([3; CHK13]). For the Strongly Connected Steiner Subgraph problem a
2-approximation can be computed in (2 + δ)knO(1) time for any constant δ > 0, where k is the
number of terminals. Moreover, under Gap-ETH no (2− ε)-approximation can be computed in
f(k)nO(1) time for any ε > 0 and computable function f .

A generalization of both Directed Steiner Tree and Strongly Connected Steiner
Subgraph is the Directed Steiner Network2 problem, for which an edge-weighted directed
graph is given together with a list of ordered terminal pairs. The aim is to compute the cheapest
subgraph that contains a path from s to t for every terminal pair (s, t). If k is the number
of terminals, then for this problem no k1/4−o(1)-approximation can be computed in f(k)nO(1)

time [DM18] for any computable function f , under Gap-ETH. But we showed in [3] that both a
PAS and a PSAKS exist for the special case when the input graph is planar3 and bidirected, i.e.,
for every directed edge uv the reverse edge vu exists and has the same cost.

To obtain these two algorithms, in [3] we generalize the theorem of Borchers and Du [BD97]
for Steiner Tree to the Directed Steiner Network problem on planar bidirected graphs.
That is, we show that a planar optimum solution in a bidirected graph can be covered by planar
graphs with at most 2O(1/ε) terminals each, such that the sum of their costs is at most 1 + ε
times the cost of the solution. Similar to how Borchers and Du [BD97] exploit the tree structure
of a solution to Steiner Tree, in our case the planarity is exploited to make sure that the
covering graphs contain few terminals while at the same time do not cost much more than the
optimum. However, to make sure that the union of these covering graphs constitutes a feasible
solution, we may need to add edges that are reverse to those in the solution, but are themselves
not part of the solution. For this the underlying graph needs to be bidirected.

To formally state our contribution, we encode the demands of a Directed Steiner
Network instance using a pattern graph H: the vertex set of H is the terminal set of the
input graph G, and H contains the directed edge st if and only if (s, t) is a demand. Hence
the Directed Steiner Network problem asks for a minimum cost network N ⊆ G having
an s → t path for each edge st of H. In the following, cost(N) denotes the cost of a graph
(solution) N , i.e., the sum of its edge weights.

Theorem 2.5 ([3]). Let G be a bidirected graph, and H a pattern graph on the terminal set R
of G. Let N ⊆ G be the cheapest planar solution to pattern H. For any ε > 0, there exists a set
of patterns H such that

1. V (H ′) ⊆ R with |V (H ′)| ≤ 21+⌈1/ε⌉ for each H ′ ∈ H,

2. given any feasible solutions NH′ ⊆ G for all H ′ ∈ H, the union
⋃︁

H′∈HNH′ of the these
solutions forms a feasible solution to H, and

3. there exist feasible planar solutions N∗
H′ ⊆ G for all H ′ ∈ H such that

∑︁
H′∈H cost(N∗

H′) ≤
(1 + ε) · cost(N).

Analogous to Steiner Tree, we now compute solutions for every possible list of ordered pairs
(i.e., pattern graphs) of at most 21+⌈1/ε⌉ terminals. In contrast to Steiner Tree however, it is
unlikely that Directed Steiner Network on planar bidirected graphs is FPT parameterized
by the number of terminals (see below). Instead we use an XP algorithm with runtime

2O(k3/2 log k)nO(
√
k), which can be obtained by exploiting our insights on computing optimum

solutions to the Directed Steiner Network problem presented in [10] (cf. Section 2.3).

2sometimes also called Directed Steiner Forest; note however that the optimum is not necessarily a forest.
3a directed graph is planar if its underlying undirected graph is.

12



Since each considered pattern graph has at most 21+⌈1/ε⌉ terminals, the time needed to compute
solutions for all of them can be bounded by n2O(1/ε)

, which is polynomial if ε is constant.
To obtain a PSAKS, after taking the union of all computed solutions, the number of Steiner

vertices and the encoding length of the edge weights can be reduced in a similar way as for
the Steiner Tree problem. To obtain a PAS, a dynamic program can be used to search for
a solution set that is a (1 + ε)-approximation among the precomputed solutions. This step

takes 2O(k2)k2
O(1/ε)

nO(1) time, and so the overall runtime of the algorithm can be upper bounded
by 2O(k2)n2O(1/ε)

. This results in the following theorem.

Theorem 2.6 ([3]). For the Directed Steiner Network problem on planar bidirected graphs

a (1 + ε)-approximation can be computed in 2O(k2)n2O(1/ε)
time for any ε > 0, where k is the

number of terminals. Moreover, a (1+ ε)-approximate kernel of size (k/ε)2
O(1/ε)

can be computed
in polynomial time.

Given that the planar bidirected instances considered for Theorem 2.6 are rather restricted, a
natural question becomes (a) whether the runtime can be improved (possibly even to polynomial
time, and maybe even an optimum solution can be computed in FPT time), and (b) whether
similar algorithms exist for any of the two natural generalizations, i.e., either planar graphs
or bidirected graphs. We give partial answers to this question. In particular, the algorithms
of Theorem 2.6 are in fact slightly more general than stated: they work even for non-planar
bidirected graphs if we want to approximate the optimum planar solution. That is, even if the
input graph is bidirected but otherwise unrestricted, the solutions are at most a (1 + ε)-factor
more expensive than the cheapest among all planar solutions. Note though that the computed
solutions may be non-planar (and could thus even turn out to be cheaper than the optimum
planar solution). Considering this more general setting might at first seem rather exotic. However,
it turns out that several algorithms found in the literature for Directed Steiner Network
on special graph classes have this quality. That is, even if they are stated as algorithms for some
input graph class K, they can be used to compute solutions in otherwise unrestricted graphs,
while the solution quality is compared to the optimum solution from K. We give some more
examples of this in Section 2.3.

We give negative answers to the above questions in the more general setting just described.
This can be interpreted as saying that if these questions can be answered positively in the original
setting of planar bidirected graphs, then new algorithmic techniques need to be developed, which
are different from those typically found in the literature to date. For the first question on
improving the runtime, first off in [3] we prove that it is APX-hard to compute the planar
optimum in a bidirected graph. Then, note that the algorithm of Theorem 2.6 is not an EPAS,
i.e., the degree of the polynomial factor depends on the approximation factor ε. As we prove
in [3], unless FPT=W[1], this dependence is necessary for bidirected inputs where we want
to approximate the planar optimum. This also rules out an FPT algorithm to compute the
optimum planar solution in bidirected graphs (and hence we used an XP algorithm to obtain
Theorem 2.6). For the second question on generalizing the algorithms, we prove in [3] that under
Gap-ETH no PAS exists for bidirected input graphs without any further restriction (i.e., when
approximating the overall optimum). In [1] we also show that the other obvious generalization,
where the input consists of any directed graph and we approximate the planar optimum, has no
(2− ε)-approximation for any ε > 0, under Gap-ETH. As summarized in the following, these
results contrast Theorem 2.6.

Theorem 2.7 ([1; 3]). For the Directed Steiner Network problem the following hardness
results hold for any computable function f :

1. computing the planar optimum in bidirected input graphs is APX-hard,
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2. there is no f(k, ε)nO(1) time algorithm that computes a (1+ ε)-approximation of the planar
optimum in bidirected input graphs where ε > 0 is part of the input, unless FPT=W[1],

3. there exists a constant α > 1 such that there is no f(k)nO(1) time algorithm that computes
an α-approximation to the (overall) optimum in bidirected input graphs, under Gap-ETH,

4. there is no f(k)nO(1) time algorithm that computes a (2− ε)-approximation of the planar
optimum in general input graphs, for any ε > 0, under Gap-ETH.

2.3 Computing exact solutions in directed graphs

In this section we digress slightly from our main topic of parameterized approximation algorithms,
and present some results on computing optimum solutions for special cases of the Directed
Steiner Network problem. These results are related to the parameterized approximation
algorithms presented in Section 2.2, and are partially also used as subroutines for the latter.

In [10] we analysed the dependence of the parameterized complexity of Directed Steiner
Network on the structure of the pattern graphs, as introduced for Theorem 2.5. We proved
that the problem is FPT whenever the pattern graphs are restricted to “almost-caterpillars” and
W[1]-hard otherwise, i.e., we show a dichotomy on the complexity w.r.t. the patterns. Formally
these almost-caterpillars are defined as follows, where an out-star or in-star is a directed star
for which all edges point away from the center vertex or towards the center vertex, respectively.

Definition 2.8. A λ0-caterpillar graph is constructed as follows. Take a directed path
(v1, . . . , vλ0) from v1 to vλ0 , and let W1, . . . ,Wλ0 be pairwise disjoint vertex sets such that
vi ∈ Wi for each i ∈ {1, . . . , λ0}. Now add edges such that either every Wi forms an out-star
with root vi, or every Wi forms an in-star with root vi. A 0-caterpillar is the empty graph. The
class Cλ,δ contains all directed graphs H such that there is a set of edges F ⊆ E(H) of size at
most δ for which the remaining edges E(H) \ F span a λ0-caterpillar for some λ0 ≤ λ. We say
that two pattern graphs are transitively equivalent if their transitive closures are isomorphic,
and denote by C∗

λ,δ the class of patterns that are transitively equivalent to some pattern of Cλ,δ.

For example, for the Directed Steiner Tree problem all pattern graphs are in-stars and
thus belong to the class C∗

1,0. For the Strongly Connected Steiner Subgraph problem
the patterns can be seen as complete graphs. In this case it turns out that no constants λ
and δ exist for which the patterns to this problem would belong to some class C∗

λ,δ. Therefore
the following theorem in particular recovers the known [DW71; GNS11] complexity results for
these two problems. It is much more general though, as it gives a complete dichotomy of the
tractability of Directed Steiner Network depending on the structure of the pattern graphs.

Theorem 2.9 ([10]). Let H be a recursively enumerable class of patterns and let k be the number
of terminals of a given instance.

1. If there are constants λ and δ such that H ⊆ C∗
λ,δ, then Directed Steiner Network

restricted to patterns from H is FPT for parameter k, and can be solved in 2O(k+τω logω)nO(ω)

time, where ω = (1 + λ)(λ + δ) and τ is the vertex cover number of the given input
pattern H ∈ H.

2. Otherwise, if there are no such constants λ and δ, then the problem is W[1]-hard for
parameter k.

To obtain the algorithm of the first part of this theorem, in [10] we show that any optimal
solution to a pattern in C∗

λ,δ has treewidth4 at most 7(1 + λ)(λ + δ). The algorithm is then

4a directed graph has treewidth ω if its underlying undirected graph does.
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implied by the following useful theorem, which we obtained in [10] via a dynamic programming
approach.

Theorem 2.10 ([10]). Let an instance of Directed Steiner Network be given by a graph
with n vertices, and a pattern H on k terminals with vertex cover number τ . The cheapest among
all solution to H with treewidth ω can be computed in 2O(k+τω logω)nO(ω) time.

This theorem has several consequences, which we now elaborate on. An arbitrary pattern
graph H with d edges belongs to the class C∗

0,d. Consequently, the optimum solution has treewidth
at most 7d by our results in [10], and the algorithm of Theorem 2.10 can be used to compute the
optimum to H in 2O(kd log d)nO(d) time, i.e., we obtain an XP algorithm parameterized by the
number of terminals k, since d < k2. It was actually first shown by Feldman and Ruhl [FR06]
that Directed Steiner Network is in XP, and thus our results in [10] recover this fact.
Feldman and Ruhl [FR06] however obtain a faster nO(d) time XP algorithm. Measured in the
stronger parameter k, this is an nO(k2) time algorithm. As shown by Eiben et al. [Eib+19], this
is essentially best possible as no f(k)no(k2/ log k) time algorithm exists for this problem for any
computable function f , under ETH. However, as summarized below, in special cases it is possible
to beat this lower bound, using Theorem 2.10.

In [3] we show that the treewidth of an optimum planar solution in a bidirected graph

is O(
√
k), which then implies a faster XP algorithm with runtime 2O(k3/2 log k)nO(

√
k), as also

mentioned in Section 2.2. We also prove [3] that there is no f(k)no(
√
k) time algorithm to

compute the planar optimum in bidirected graphs, under ETH. For directed planar input graphs,
we show in [2] that under ETH no f(k)no(k) time algorithm can compute the optimum Directed
Steiner Network solution (note that this is a stronger hardness result as the previous one,
since here the input graph is planar). Eiben et al. [Eib+19] show that an optimum solution of
genus g has treewidth 2O(g)k and thus Theorem 2.10 implies an XP algorithm with runtime
2O(k2 log k)nO(k) for solutions of constant genus, matching the previous runtime lower bound.
However, for the special case of the Strongly Connected Steiner Subgraph problem, we
prove in [2] that the optimum planar solution again has treewidth O(

√
k), leading to an XP

algorithm with runtime 2O(k)nO(
√
k). We also obtain [2] a runtime lower bound of f(k)no(

√
k)

for this problem on planar graphs (which again is a stronger hardness result than previously).
Note that the two algorithms for planar solutions, the one for bounded genus solutions, but also
the algorithm of Theorem 2.10, have the quality mentioned in Section 2.2 that they compute
optimum planar, bounded-genus, or bounded-treewidth solutions in graphs that have unbounded
genus and treewidth.

Another interesting application of Theorem 2.10 is the Strongly Connected Steiner
Subgraph problem on bidirected input graphs. While this problem remains NP-hard, in [3] we
show that it is FPT parameterized by k, which is in contrast to general input graphs where the
problem is W[1]-hard [GNS11] (as also implied by Theorem 2.9). To show this result, it is not
enough to bound the treewidth of a solution and then apply Theorem 2.10 directly, as above for
planar optima. In fact, in [3] we give examples in which the optimum solution to Strongly
Connected Steiner Subgraph on bidirected graphs has treewidth Θ(k). Instead we provide
a decomposition of optimum solutions, similar to the theorem of Borchers and Du [BD97] for
Steiner Tree or our generalization in Theorem 2.5 for Directed Steiner Network. While
the latter two results find sub-graphs that cover a solution (i.e., the sub-graphs may not be
edge-disjoint), for Strongly Connected Steiner Subgraph on bidirected graphs we obtain
a stronger result, in the sense that a solution can be decomposed into non-overlapping (i.e.,
edge-disjoint) sub-graphs. Each of these sub-graphs is a solution to some pattern graph H on
the terminals of the input instance, and is a poly-tree, i.e., a directed graph whose underlying
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undirected graph is a tree. However, in contrast to Theorem 2.5 the number of terminals in each
poly-tree is not bounded by any constant.

The algorithm now proceeds similar to the PAS of Theorem 2.6: it first computes all optimum
poly-tree solutions for every possible pattern graph, and then finds the best solution strongly
connecting the terminal set by combining the poly-trees using a dynamic program. Since a
poly-tree has treewidth 1, Theorem 2.10 can be used to compute an optimum solution to any
pattern graph in 2O(k)nO(1) time. Furthermore, as the poly-trees of the decomposition are
non-overlapping, the algorithm computes an optimum solution to Strongly Connected
Steiner Subgraph on bidirected graphs. Note that in contrast to the algorithm of Theorem 2.6
however, computing the solutions to the patterns takes FPT time, as there is no constant bound
on the number of terminals in each poly-tree. This also means that no polynomial-sized kernel
is implied by this decomposition.

Theorem 2.11 ([3]). The Strongly Connected Steiner Subgraph problem on bidirected
graphs is NP-hard, but can be solved in 2k

2+O(k)nO(1) time where k is the number of terminals.

3 Clustering

For clustering problems the task is to group the vertices of a metric (V,dist) into sets such that
vertices that are close are in the same group, where the closeness is given by some measure
depending on the distance function dist : V × V → R+. Some prominent examples include the
k-Median, k-Center, and Facility Location problems. For each of these, we need to select a
subset F ⊆ V of the vertices, called centers or facilities, which act as representatives for the groups.
For k-Median and k-Center the set F can only contain k vertices and we need to minimize∑︁

v∈V dist(v, F ) and maxv∈V dist(v, F ), respectively, where dist(v, F ) = minf∈F dist(v, f). The
Facility Location problem essentially is the Lagrangian relaxation of k-Median, i.e., there is
no bound on the number of facilities but instead each vertex v ∈ V comes with an opening cost
c(v) ∈ R+, and we need to minimize

∑︁
f∈F c(f) +

∑︁
v∈V dist(v, F ).

For this thesis we focus on metrics that model transportation networks, given that clustering
problems arise in many applications of logistics where, for instance, we would like to place a
limited number warehouses or hospitals on a map such that every point is close to one of them.
In Section 3.1 we introduce several parameters modelling transportation networks, including the
doubling and highway dimensions.

Algorithmically, the k-Median and Facility Location problems behave quite differently
from the k-Center problem. Therefore, we present our results for these problems separately in
Sections 3.2 and 3.3, respectively. Our main results in Section 3.2 include a near-linear time
approximation scheme for k-Median and Facility Location parameterized by the doubling
dimension, a PTAS for these problems parameterized by the highway dimension, and also some
complementing hardness results for the latter parameter. Additionally, we present some results
on metric embeddings of low highway dimension graphs into bounded treewidth graphs. These
embeddings imply slower approximation schemes running in quasi-polynomial time for k-Median
and Facility Location, but in return are applicable to a wider range of problems, including
for instance Steiner Tree.

In Section 3.3 we begin with some hardness results for the k-Center problem, which show
that using either k, the doubling dimension, or the highway dimension as a parameter is unlikely
to yield better approximation factors than those obtainable in polynomial time. We then consider
the combination of the parameter k with either the doubling dimension or the highway dimension,
and show that in both cases it is possible to beat the previous lower bounds. Finally, we also
show that even when combining all models of transportation networks presented in Section 3.1,
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no exact solution for k-Center can be computed in FPT time, under standard complexity
assumptions.

3.1 Metrics modelling transportation networks

In this section we present the metrics and parameters used for our results of the following
sections, which are mainly based on the structure of transportation networks. For instance, a
natural model for road networks is to assume that the given metric is the shortest-path metric
of a planar graph, since overpasses and tunnels are relatively rare.

Another reasonable model is to assume that the metric is given by the Euclidean plane,
since a road network is embedded on a large sphere (namely the Earth). In cities, where blocks
of buildings form a grid of streets, it is reasonable to assume that the distances are given
by the Manhattan plane. More generally, one might assume that a transportation network
is given by some ℓq-norm in D-dimensional space for some small value of D. That is, the
vertices of the given metric (V,dist) are points in RD and the distance function is given by
dist(u, v) = (

∑︁D
i=1 |ui − vi|q)1/q.

The dimension D of such a metric space has been studied as a parameter from the para-
meterized approximation point-of-view avant la lettre for quite some time. While it may be
unusual to see these results in the light of parameterized algorithms, we specifically do so here
in order to obtain a more nuanced view of the complexity of the problems. For instance, it was
shown [GGJ77; GI03] that in Euclidean metrics both the k-Median and Steiner Tree prob-
lems are paraNP-hard for this parameter (since they are NP-hard even if D = 2), and they are
APX-hard in general metrics [CC08; JMS02]. However, EPASs for both the Steiner Tree and
the k-Median problems in Euclidean metrics were shown to exist in the works of Arora [Aro98]
and Kolliopoulos and Rao [KR07], respectively, who showed that a (1 + ε)-approximation can

be computed in DO(
√
D/ε)D−1

n2 time for Steiner Tree and 2O((log(1/ε)/ε)D−1)DO(D)n2 time for
k-Median.5

A related setting is the parameterization by the doubling dimension of the underlying metric,
which is the smallest integer d such that any ball Bv(r) = {u ∈ V | dist(u, v) ≤ r} of radius r
in the metric can be covered by at most 2d balls of half the radius r/2. Any point set in a
D-dimensional ℓq-metric has doubling dimension O(D), and thus the latter parameter generalizes
the former. By a result of Talwar [Tal04], there are quasi-polynomial time approximation schemes
(QPTASs) for Steiner Tree, k-Median, and Facility Location in metrics of constant

doubling dimension d ∈ O(1), i.e., they compute a (1 + ε)-approximation in 2(logn)
f(d,ε)

time for
some function f . In the jargon of parameterized algorithms one could classify such an algorithm
as a slice-wise quasi-polynomial time approximation scheme. The techniques used to obtain this
algorithm for doubling metrics generalize those used for low dimensional ℓq-metrics. Since our
algorithms presented in Section 3.2 build on these techniques as well, we will introduce them later.
Using an entirely different local search technique it is possible to compute a (1+ε)-approximation

in n(d/ε)O(d)
time [FRS19]. This is a PTAS assuming constant doubling dimension d ∈ O(1),

or in the jargon of parameterized algorithms, it is a slice-wise polynomial time approximation
scheme.

A number of our results presented in Sections 3.2 and 3.3 are focussed on the highway dimen-
sion, which is a graph parameter specifically formalizing structural properties of transportation
networks. We say that a metric has highway dimension h if it is the shortest-path metric of a
graph of highway dimension h. The following definition is taken from [8].

5In [Aro98; KR07] the runtimes of these algorithms are stated as O(n(logn)O((
√
D/ε)D−1)) and

2O((log(1/ε)/ε)D−1)n logD+6 n, respectively, which can be shown to be upper bounded by DO((
√
D/ε)D−1)n2

and 2O((log(1/ε)/ε)D−1)DO(D)n2 (see e.g. [KLP19, Lemma 1]).
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Definition 3.1. The highway dimension of a graph G is the smallest integer h such that, for
some universal constant c ≥ 4, for every r ∈ R+, and every ball Bv(cr) of radius cr, there are at
most h vertices in Bv(cr) hitting all shortest paths of length more than r that lie in Bv(cr).

The highway dimension was originally defined by Abraham et al. [Abr+10], who specifically
restricted the balls to have radius 4r in Definition 3.1. They also point out though that the
choice of the constant c is somewhat arbitrary. In [8] we prove that when choosing any constant
c strictly larger than 4 in Definition 3.1 we obtain additional properties for these graphs, which
can be exploited algorithmically (see Section 3.2). Note though that increasing the constant c in
Definition 3.1 restricts the class of graphs further. Moreover, as we shown in [8], the highway
dimension of a graph according to Definition 3.1 can grow arbitrarily large by just a small change
in the constant c. Indeed, for any c there is a graph of highway dimension 1 when using c in
Definition 3.1, which however has highway dimension Ω(n) for any constant larger than c.

Since the original definition of the highway dimension in [Abr+10], several other definitions
(including the above one for larger values of c) have been proposed, which we present next. We
refer to [Blu19; 8] for detailed discussions.

In a follow-up paper to [Abr+10], Abraham et al. [Abr+16] define a much stronger definition
of the highway dimension, which implies that the graphs also have bounded doubling dimension.
Hence for this definition, any algorithm that uses the doubling dimension as a parameter
can also be used as an algorithm for the highway dimension. Definition 3.1 on the other
hand implies metrics of large doubling dimension as noted by Abraham et al. [Abr+10]: a
star with unit edge lengths has highway dimension 1 (by using the center vertex to hit all
paths), but its doubling dimension is unbounded. While it may be reasonable to assume
that road networks have low doubling dimension (which are the main concern in the works
of Abraham et al. [Abr+16; Abr+11; Abr+10]), there are metrics modelling transportation
networks, for which it can be argued that the doubling dimension is large, while the highway
dimension should be small, and thus rather adhere to Definition 3.1: in networks arising from
public transportation, longer connections are serviced by larger and sparser stations (such as
train stations and airports). More concretely, the so-called hub-and-spoke networks that can
typically be seen in air traffic networks is much closer to a star-like network and is unlikely to
have bounded doubling dimension, while still having small highway dimension. Thus in these
examples it is reasonable to assume that the doubling dimension is a lot larger than the highway
dimension.

All definitions of the highway dimension mentioned above imply the existence of sparse shortest
path covers, as also introduced by Abraham et al. [Abr+10]. As done in following definition,
these can thus be used to define an even more general notion of the highway dimension, which we
also use for some of the results presented in Section 3.3. We also show in [8] that this is a strictly
more general class, since there are graphs of highway dimension 1 according to Definition 3.2
below, which have unbounded highway dimension according to Definition 3.1 (using the same
universal constant c). We also note that, as Definition 3.1, the following definition becomes more
restrictive the larger the constant c is.

Definition 3.2. Let c ≥ 4 be a universal constant. For a graph G, and r ∈ R+, a shortest path
cover is a set spc(r) ⊆ V of so-called hubs that hit all shortest paths of length in (r, cr/2] of G.
Such a cover is called locally s-sparse for scale r, if no ball Bv(cr/2) of radius cr/2 contains more
than s vertices from spc(r). The highway dimension of G is the smallest integer h such that G
has a locally h-sparse shortest path cover spc(r) for every r ∈ R+.

Most of our results for low highway dimension metrics presented in the following sections
exploit the structure obtained for graphs adhering to the stronger Definition 3.1 using a universal
constant c > 4. It remains an interesting open question to determine whether there is any
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difference in the algorithmic complexity for the studied problems between graphs of highway
dimension according to Definition 3.1 and the larger class of graphs adhering to Definition 3.2.
Especially on the algorithmic side it is often unclear how to obtain comparable results to those
using Definition 3.1 when instead using Definition 3.2.

It should be further noted that (unless otherwise stated above) all the classes of metrics
presented in this section are in general incomparable, i.e., they are not contained in one another.
In fact, this is even true when comparing to other structural parameters such as shortest-path
metrics of graphs with low tree- or pathwidth (cf. [Blu19; 8]).

3.2 The k-Median problem and its variants

Before turning to our results for the parameters introduced in Section 3.1, we mention some
interesting known results for general metrics. Here we also consider the k-Means problem,
which is similar to k-Median but the objective function squares the distances to the centers, i.e.,
we need to minimize

∑︁
v∈V (dist(v, F ))2. The best approximation ratios achieved by polynomial

time algorithms are 2.611 + ε for k-Median [Byr+14], and 9 + ε for k-Means [Kan+04].
From the hardness side, it is NP-hard to approximate k-Median [JMS02] within a factor
1 + 2/e− ε ≈ 1.73− ε, and k-Means [Awa+15] within a factor 1 + 8/e− ε ≈ 3.94− ε. While
there are some gaps between these results for k-Median and k-Means, it is an interesting
question to ask how the natural parameterization by k changes the approximation ratios for both
problems. Cohen-Addad et al. [Coh+19] studied this question and gave exact answers. They
show that if we parameterize by k, 1 + 2/e (for k-Median) and 1 + 8/e (for k-Means) are the
exact limits of approximation for parameterized algorithms, giving corresponding upper and
lower bounds for this parameter.

In the remainder of this section, we will first present our results for the parametrization by
the doubling dimension, where we also give an overview of previous techniques on which ours
build. These techniques are then refined for the parametrization by the highway dimension,
to which we turn thereafter. Finally, we will also present some alternative techniques to solve
problems on low doubling and low highway dimension metrics, which yield slower algorithms
but can in return be applied to a wider range of problems.

3.2.1 Low doubling metrics

The starting point of many approximation algorithms for doubling metrics (including Euclidean
spaces) is a decomposition of the metric, as presented in the following lemma. Here, a hierarchical
decomposition D of a metric (V,dist) is a set of partitions A0,A1, . . . ,Aλ of V , where Ai

refines Ai+1, i.e., every part A ∈ Ai is contained in some part of Ai+1. Moreover, in A0 every
part contains a singleton vertex, while Aλ contains only one part, namely V . For a point v ∈ V
and a radius r > 0, we say that the ball Bv(r) is cut by D at level i if i is the largest integer for
which the ball Bv(r) is not contained in a single part of Ai. The aspect ratio of a metric (V,dist)
is the largest distance divided by the shortest distance of any points in V .

Lemma 3.3 (Reformulation of [BG13; Tal04]). For any metric (V,dist) of doubling dimension d
and aspect ratio α, and for any ρ > 0, there exists a polynomial-time computable randomized
hierarchical decomposition D = {A0, . . . ,A⌈log2 α⌉} such that:

1. Scaling probability: for any v ∈ V , radius r, and level i, we have

Pr[D cuts Bv(r) at level i] ≤ 2O(d) · r/2i.

2. Portal set: every part A ∈ Ai where Ai ∈ D comes with a set of portals PA ⊆ A that is
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(a) concise: the size of the portal set is bounded by |PA| ≤ 1/ρd, and

(b) precise: for every node u ∈ A there is a portal p ∈ PA with dist(u, p) ≤ ρ2i+1.

We briefly sketch the standard use of this decomposition (see [Aro98; Mit99; Tal04]). For
clustering problems, one can show that there exists a portal-respecting solution with near-optimal
cost. In this structured solution, each client connects to a facility via a portal-respecting path
that enters and leaves any part A of D only through a node of the portal set PA. These portals
therefore act as separators of the metric. A standard dynamic program approach can then
compute the best portal respecting solution.

To ensure that there is a portal-respecting solution with near-optimal cost, one uses the
preciseness property of the portal set: the additional distance (referred to as distortion) of
connecting a client c with a facility f through portals instead of directly is bounded as follows.
Let i be the level at which D cuts c and f , meaning that i is the maximum integer for which c
and f lie in different parts of Ai. At every level j ≤ i, the distortion incurred by making a detour
to the closest portal is O(ρ2j), due to the triangle inequality and the preciseness of the portal set.
Hence the total distortion is

∑︁
j≤iO(ρ2j) = O(ρ2i). Now, the bound on the scaling probability of

the decomposition ensures that c and f are cut at level i with probability 2O(d)dist(c, f)/2i. Hence
combining these two bounds over all ⌈log2 α⌉+1 levels ensures that, in expectation, the distortion
between c and f is bounded by 2O(d)dist(c, f)·ρ⌈log2 α⌉. Using standard preprocessing techniques
one can ensure that the aspect ratio is α = O(n/ε) when aiming for a (1 + ε)-approximation.
Hence choosing ρ = ε

2O(d) log(n/ε)
gives a distortion of ε · dist(c, f). Summing over all clients

proves that there exists a near-optimal portal-respecting solution.
The issue with this approach is that to obtain this level of preciseness, according to the

conciseness property the number of needed portals for each part A of the decomposition D
is ( log(n/ε)ε )O(d), and the dynamic program has a runtime that is exponential in this number. As

Talwar [Tal04] showed, the resulting algorithm runs in 2(
d logn

ε
)O(d)

time, i.e., for any constant
d ∈ O(1) we obtain a QPTAS. However, in some cases one can lower the number of portals
per part needed and thus obtain a PTAS. In Euclidean space for example, the celebrated
“patching lemma” [Aro98] shows that only a constant number (depending on ε) of portals are
needed for Steiner Tree. Similarly, Kolliopoulos and Rao [KR07] showed that for k-Median
in Euclidean space only a constant number of portal are needed, if one uses a slightly different
decomposition of the metric. Surprisingly, obtaining such a result for doubling metrics is much
more challenging.

A second challenge occurs when trying to solve problems such as k-Means, where the
objective function squares the distances to the centers. In this case, the analysis of Arora [Aro98],
Mitchell [Mit99], and Talwar [Tal04] does not apply: if two points are separated at a high level
of the decomposition, then making a detour to the closest portal may incur an expected cost
much higher than the cost of the optimal solution.

In [4] we show how to circumvent these issues for clustering problems in low doubling
metrics. Our contribution can be viewed as a “patching lemma” for problems such as k-Median,
k-Means, and Facility Location. Namely, we present an approach which (1) reduces the
number of portals to a constant, (2) works for any clustering objective which is defined as the
sum of distances to some constant q (with k-Median, Facility Location, and k-Means as
prominent special cases), and (3) works not only for Euclidean but also for doubling metrics.

To achieve this, in [4] we show how to reduce the number of levels on which a client can be cut
from its facility. For this, we present a processing step of the instance that helps deal with clients
cut from their facility at a high level. Roughly speaking, our algorithm first computes a constant
factor approximation L, and a client c is called badly-cut if the decomposition D cuts it from its
closest facility of L at a level larger than log(dist(c, L)/ε). Every badly-cut client is moved to its
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closest facility of L. Moreover, every client at distance less than ε · dist(c, L) of its closest facility
of L can be moved to it as well. It is then shown that this new instance ID has small distortion,
which essentially means that any solution to ID can be converted to a solution of the original
instance I while only losing a (1+ε)-factor in quality. In this instance ID, all clients are cut from
their closest facility of L at some level between log(ε ·dist(c, L)) and log(dist(c, L)/ε). Using this
property, we show that c and its closest center in the optimal solution are also cut at a level in
that range. As there are only O(log(1/ε)) levels in this range, by the previous arguments it now
suffices to set ρ = ε

2O(d) log(1/ε)
for the hierarchical decomposition in order to get a near-optimal

portal-respecting solution. As this implies a number of portals that only depends on the doubling
dimension d and the approximation factor ε, according to the conciseness property we obtain
the following randomized approximation schemes parameterized by d and ε. In particular, we
get a significant improvement from the previously fastest known slice-wise polynomial time
approximation schemes as given by [FRS19], to randomized EPASs with near-linear running time.

Theorem 3.4 ([4]). For the k-Median, k-Means, and Facility Location problems on

metrics of doubling dimension d a (1+ ε)-approximation can be computed in ˜︁O(2(1/ε)
O(d2)

n) time
with success probability 1−O(ε) for any ε > 0.

It is interesting to note that the double-exponential dependence on d in the runtime cannot
be improved to single-exponential, since any metric has doubling dimension O(log n) but the
problems are APX-hard [Awa+15; GK99; JMS02] in general metrics. As mentioned before,
Theorem 3.4 also holds for the corresponding problems where the distances in the objective
functions are raised to the power of any integer q, so that k-Median and k-Means for instance
are the special cases where q = 1 and q = 2, respectively. Furthermore, the techniques
can be generalized to obtain bicriteria approximation schemes with similar running times for
prize-collecting and outlier versions of the problems (cf. [4]).

3.2.2 Low highway dimension graphs

We now turn to the parametrization by the highway dimension, for which in [12] we obtain
slower approximation schemes for clustering problems than those given by Theorem 3.4 for
the doubling dimension. Nevertheless, our algorithms for the highway dimension utilize the
techniques described above for the doubling dimension, in addition to some structural insights
we obtained for low highway dimension graphs in [8].

More concretely, the above arguments for doubling metrics hold thanks to the hierarchical
decomposition given by Lemma 3.3. It is therefore tempting to try to devise a similar decom-
position for metrics of low highway dimension. However, it turns out that while these metrics
have some similarities to low doubling metrics, they behave very differently, so that we were
not able to obtain a decomposition with the properties given by Lemma 3.3. Instead, in [8] we
introduce the following town decomposition of low highway dimension metrics, which gives a
formal connection to doubling metrics. We obtain its properties specifically for Definition 3.1 of
the highway dimension using any universal constant c strictly larger than 4. In the following,
a child part of a part A ∈ Ai of some hierarchical decomposition D = {A0, . . . ,Aλ} is a part
A′ ∈ Ai−1 on the level below i for which A′ ⊆ A.

Theorem 3.5 ([8]). Given ρ > 0 and a shortest-path metric (V,dist) of highway dimension h
according to Definition 3.1 for any universal constant c > 4, there exists a polynomial-time
computable deterministic hierarchical decomposition T , called the town decomposition, such that
every part T ∈ T , called a town, has a set of hubs6 XT ⊆ T with the following properties:

6called approximate core hubs in [8].
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a. doubling: the doubling dimension of XT is d = O(log(h log(1/ρ))), and

b. precise: for any two vertices u and v in different child parts of T , there is a hub x ∈ XT

such that dist(u, x) + dist(x, v) ≤ (1 + 2ρ) · dist(u, v).

The hub set XT is similar to the portal set of Lemma 3.3, but has some fundamental
differences. First note that the preciseness property of Theorem 3.5 is different from the
preciseness of Lemma 3.3: in the former, some hub x is guaranteed to be close to a shortest path
between u and v (and could thus be far from each of u and v), while in Lemma 3.3 the portals
lie close to all vertices. Secondly, the town decomposition is deterministic, and so it may happen
that a client and its facility are cut at a very high level relative to their distance — something
that happens only with small probability in the doubling setting thanks to the scaling probability.
Another main difference is that the size of XT might be unbounded. As a consequence, it cannot
be directly used as a portal set in a dynamic program with sub-exponential runtime. To deal
with this, in [12] we combine the town decomposition with a hierarchical decomposition of each
set XT according to Lemma 3.3, to build a decomposition of low highway dimension graphs
more akin to Lemma 3.3, as stated in the following lemma.

Lemma 3.6 ([12]). Given ρ > 0 and a metric (V,dist) with aspect ratio α where (V,dist) is a
shortest-path metric of a graph with highway dimension h according to Definition 3.1 for any
universal constant c > 4, there exists a polynomial-time computable randomized hierarchical
decomposition D = {A0, . . . ,A⌈log2 α⌉} of V such that:

1. Scaling probability: for any v ∈ V , radius r, and level i, we have

Pr[D cuts Bv(r) at level i] ≤ (h log(1/ρ))O(1) · r/2i.

2. Interface: for any A ∈ Ai on level i ≥ 1 there exists an interface IA ⊆ V , which is

(a) concise: |IA| ≤ (h/ρ)O(1), and

(b) precise: for any u, v ∈ A such that u and v are cut by D at level i− 1, there exists
p ∈ IA with dist(u, p) + dist(p, v) ≤ dist(u, v) + 34 · ρ2i.

As a consequence of using the town decomposition of Theorem 3.5 to construct the hierarchical
decomposition of Lemma 3.6, a notable difference to the portals of Lemma 3.3 is that the
preciseness property of the interface in Lemma 3.6 is weaker: as for Theorem 3.5, the hubs can
be far from some vertices as long as they lie close to the shortest path. As a consequence, no
analogue of near-optimal portal-respecting paths exist as was the case for portals. Instead, when
connecting a client c with a facility f we need to use the interface point p ∈ IA of a part A
containing both c and f , such that p lies close to the shortest path between c and f . This shifts
the perspective from externally connecting vertices of a part to vertices outside a part, as done
for portals, to internally connecting vertices of parts, as needs to be done for interfaces.

As a consequence, in [12] we develop a dynamic program, which follows more or less standard
techniques as for instance given in [ARR98; KR07], but needs to handle the weaker preciseness
property of the interface. The main idea is to guess the distances from interface points to
facilities while recursing on the decomposition D of Lemma 3.6. The runtime of this algorithm is
thus exponential in the number of interface points. Thanks to our techniques developed in [4] as
described above, we can assume that this number is constant for clustering problems. However,
due to the shifted perspective towards internally connecting vertices of parts, the runtime of the
dynamic program also is exponential in the total number of levels. As for doubling metrics the
aspect ratio can be reduced [8] to α = O(n/ε) when aiming for a (1 + ε)-approximation, and so
the number of levels of the decomposition is logarithmic in the input size. This implies that the
runtime is polynomial, and we obtain the following theorem.
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Theorem 3.7 ([12]). For the k-Median, k-Means, and Facility Location problems on
metrics of highway dimension h according to Definition 3.1 for any universal constant c > 4,
a (1 + ε)-approximation can be computed in n(h/ε)O(1)

time with success probability 1−O(ε) for
any ε > 0.

Since the techniques for Theorem 3.4 are also used for Theorem 3.7, similar to the former the
algorithm of Theorem 3.7 generalizes to the corresponding problems where the distances in the
objective function are raised to the power of any integer q, and bicriteria approximation schemes
with similar runtimes can be obtained for prize-collecting and outlier versions. Note though
that in contrast to Theorem 3.4 the algorithm of Theorem 3.7 is not an EPAS, but rather a
slice-wise polynomial time approximation scheme. Whether an EPAS or even a PAS exists for
the parameterization by the highway dimension as well, remains an intriguing open question.

In [12] we show that, unless P=NP, no polynomial time algorithm exists to compute optimum
solutions, even in the most restrictive case when the highway dimension is 1. In fact, we obtained
similar results in [5] for the Steiner Tree and Travelling Salesman problems, where for the
latter we are given a metric and we need to find the shortest tour that visits all vertices. These
hardness results are valid regardless of which definition of the highway dimension is used (in
particular Definition 3.1 can be made arbitrarily strong by using any universal constant c ≥ 4.).

Theorem 3.8 ([5; 12]). The k-Median, k-Means, Facility Location, Steiner Tree, and
Travelling Salesman problems are NP-hard on metrics of highway dimension 1 according to
Definition 3.1 for any universal constant c ≥ 4.

3.2.3 Metric embeddings

We now slightly digress from the topic of this section by considering not just clustering problems
but other problems as well. We present an alternative view on hierarchical decompositions leading
to so-called embeddings. This tool is rather general and can be used to obtain approximation
schemes for clustering problems, but also others such as Steiner Tree and Travelling
Salesman, albeit with in larger running times compared to the algorithms presented so far.
The idea is to map a given metric into another metric on the same vertex set, which on one hand
slightly distorts the distances, but on the other hand introduces some structural properties that
can be exploited algorithmically. If the problem at hand can then be solved on the latter metric,
then the approximation factor is determined by the distortion when mapping the solution back
to the input metric. We will specifically be focussing on mappings into shortest-path metrics
of graphs with small treewidth, since plenty of algorithms are known for such graphs. Such a
mapping can be probabilistic and is defined as follows.

Definition 3.9. Let (V,dist) be a metric and let E be a distribution over metrics (V,dist′)
on the same vertex set V . If for all u, v ∈ V , dist(u, v) ≤ dist′(u, v) for each dist′ ∈ E , and
Edist′∈E [dist

′(u, v)] ≤ a ·dist(u, v), then E is an embedding with (expected) stretch or distortion a.
If every dist′ ∈ E is the shortest-path metric of some graph class G, then E is a (probabilistic)
embedding into G.

It was noted by Talwar [Tal04] that Lemma 3.3 implies a polynomial-time computable
probabilistic embedding of any metric of doubling dimension d and aspect ratio α into graphs of
treewidth (d log(α)/ε)O(d) with expected distortion 1 + ε. More concretely, to compute a graph
of low treewidth from a given metric, first the hierarchical decomposition D = {A0, . . . ,A⌈log2 α⌉}
of Lemma 3.3 is computed. The graph then contains all edges between portals PA for each
part A, and also all edges connecting the portals PA with the portals PA′ of each child part A′

of A. The weight of such an edge uv is simply the distance between u and v given by the metric.
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In particular, any portal-respecting path of the metric exists in the graph, and so the distortion
is 1 + ε if ρ is set to an appropriate value for Lemma 3.3, as previously argued in Section 3.2.1.
At the same time, a tree decomposition of the graph can be obtained by using the tree structure
of D (i.e., every part corresponds to a node connected to the nodes of its child parts) and
introducing a bag for each part A that contains its portal set PA and the portal sets PA′ of all
its child parts A′. For doubling metrics it can be ensured [4; Tal04] that the portal sets are
nested, which means that every portal of A which happens to be in one of its child parts A′ is
also a portal of A′, i.e., PA ∩ A′ ⊆ PA′ . Due to this, we can prove that we obtain a valid tree
decomposition. Furthermore, it can be shown that each part has at most 2O(d) child parts, and
thus the treewidth is bounded by the conciseness property of Lemma 3.3, which bounds the size
of the portal sets.

In [8] we build on this construction to show that also low highway dimension metrics can be
embedded into graphs of bounded treewidth. A key ingredient for this is again our structural
insight into low highway dimension graphs given by Theorem 3.5. On a high level, a graph of
bounded treewidth is constructed by computing an embedding of each hub set XT for every
town T of a town decomposition of the given metric. Since Theorem 3.5 guarantees that each
set XT has bounded doubling dimension, each individual embedding has bounded treewidth, as
argued above. The challenge now is to combine all of these embeddings into one, while making
sure that both the distortion and the treewidth are still small. One problem for instance is that
hub sets XT of different towns are not nested, i.e., it may happen that a hub of a town T is
not a hub of the child town, but then is again a hub of some lower-level descendent town of T .
Furthermore, there is no bound on the number of child towns of a given town. For this and
other reasons that distinguish low highway from low doubling dimension metrics, compared to
low doubling metrics a lot more work goes into proving the following theorem.

Theorem 3.10 ([8]). Let (V,dist) be a metric with aspect ratio α where (V,dist) is a shortest-
path metric of a graph with highway dimension h according to Definition 3.1 for any universal
constant c > 4. For any ε > 0, there is a polynomial-time computable probabilistic embedding of
(V,dist) with expected distortion 1 + ε into graphs of treewidth (logα)O(log2(h/ε)).

Using known algorithms for bounded treewidth graphs on the embedding given by The-
orem 3.10, we obtain randomized approximation schemes for metrics of low highway dimension for
problems such as k-Median and Facility Location, but also Steiner Tree and Travelling
Salesman. The expected approximation guarantee is given by the distortion of the distances.
To bound the runtime, as previously we may preprocess the metric (cf. [8]) so that its aspect ratio
is O(n/ε), which means that the treewidth bound of Theorem 3.10 is poly-logarithmic for metrics
of constant highway dimension h ∈ O(1) and for constant approximation factors ε ∈ Θ(1). Since
algorithms for bounded treewidth graphs have running times exponential in the treewidth, this
gives slice-wise quasi-polynomial runtimes, i.e., we obtain QPTASs for the given problems via
the embedding of Theorem 3.10. It remains open whether QPTASs also exist for these problems
when using the more general Definition 3.2 for the highway dimension.

Since the embedding for low doubling metrics by Talwar [Tal04] was constructed using the
hierarchical decomposition of Lemma 3.3, a natural question is whether the above embedding
for low highway dimension metrics can be simplified by using the corresponding decomposition
of Lemma 3.6. This seems plausible, and might even yield improved bounds on the treewidth
compared to Theorem 3.10. However this still needs to be explored and, as of writing this thesis,
is left for future work. Similar to obtaining the PTAS of Theorem 3.7 based on Lemma 3.6, one
main challenge for such an embedding using Lemma 3.6 is the non-existence of portal-respecting
paths, which are used in the construction for Theorem 3.10 to bound the distortion.

The algorithms that are used on the metric embedding resulting from Theorem 3.10 to obtain
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QPTASs for low highway dimension graphs can be any FPT or XP algorithms parameterized
by the treewidth t, of which the literature provides plenty. Specifically for Steiner Tree
and Travelling Salesman, there are rather efficient single-exponential 2O(t)nO(1) time FPT
algorithms for this parameter [Bod+15]. We show in [5] that this implies the curious fact
that these problems are weakly NP-hard on graphs of the smallest possible highway dimension,
i.e., on graphs of highway dimension 1 the problems are NP-hard due to Theorem 3.8, but
they also admit fully polynomial time approximation schemes (FPTASs), which compute a
(1 + ε)-approximation with a runtime that is polynomial in both the input size and ε.

We prove this in [5] as follows. First we show that graphs of highway dimension 1 have
treewidth bounded in their aspect ratio α (which can be seen as a trivial embedding with
distortion 1), even when using the more general Definition 3.2. As before, we may reduce the
aspect ratio to O(n/ε), and thereby lose a (1+ε)-factor in the solution quality for Steiner Tree
and Travelling Salesman. Thus according to the following theorem, the single-exponential
time FPT algorithms for parameter treewidth [Bod+15] run in 2O(log(n/ε))nO(1) = (n/ε)O(1) time
on the reduced instances.

Theorem 3.11 ([5]). Let G be a graph with aspect ratio α and highway dimension 1 according
to Definition 3.2 for any universal constant c ≥ 4. The treewidth of G is O(logα).

In general, one might hope to prove similar bounds on the treewidth of graphs with of highway
dimension larger than 1, i.e., one might conjecture that any graph of highway dimension h has
treewidth, say, (h logα)O(1) or O(logh α). Such a bound would make it possible to circumvent
the rather involved construction of the embedding given by Theorem 3.10. Also, depending on
the quality of the bound this might imply faster approximation schemes for Steiner Tree and
Travelling Salesman due to the single-exponential FPT algorithms for parameter treewidth.
However, we can exclude at least some such general treewidth bounds for graphs of low highway
dimension using a result we obtained in [7], which consists of an embedding of low doubling
metrics into graphs of bounded highway dimension. Since this embedding is used to obtain lower
bounds, it is interesting to note that it can be applied with the more restrictive Definition 3.1 of
the highway dimension, and moreover the embedding is deterministic.

Theorem 3.12 ([7]). Let (V,dist) be a metric with aspect ratio α and doubling dimension d.
For any ε > 0, there is a polynomial-time computable deterministic embedding of (V,dist) with
distortion 1 + ε into a graph of highway dimension O((log(α)/ε)d) according to Definition 3.1
for any universal constant c ≥ 4.

This embedding implies a lower bound excluding a treewidth of (h logα)O(1) for graphs of
highway dimension h and aspect ratio α, as follows. We start from a metric given by a regular
k × k grid in the plane endowed with the ℓ1-norm, which has doubling dimension 2 and aspect
ratio k. Using Theorem 3.12, from this we obtain a graph G of highway dimension O((log(k)/ε)2).
Now, consider two neighbouring nodes (at distance 1) in the input grid, and note that connecting
them using any additional nodes gives a path of length at least 3 due to the ℓ1-norm. Thus if two
neighbouring nodes end up not being connected by an edge in G, then any path between these
vertices in G has length at least 3. Setting ε < 2 to obtain a distortion of less than 3 ensures
that G contains a k×k grid as a subgraph, since the embedding of Theorem 3.12 is deterministic
so that every pair of neighbouring nodes of the grid must end up being connected by an edge
in G. Hence for instance setting ε = 1 we obtain a graph with treewidth Ω(k), aspect ratio O(k),
and highway dimension O(log2 k). This excludes a treewidth bound of the form (h logα)O(1).

Note that a treewidth of O(logh α) is not excluded by the above argument. However it still
seems unlikely due to the following. In [7] we use Theorem 3.12 to prove that, unless P=NP,
the k-Center problem has no polynomial time (2 − ε)-approximation algorithm on graphs
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with highway dimension O(log2 n) (cf. Section 3.3). However, we conjecture that the same
inapproximability should hold for graphs of highway dimension O(1). If this is true, then we could
again use standard preprocessing to reduce the aspect ratio to O(n/ε), from which we would
obtain a treewidth bound of O(logh α) = O(polylog(n/ε)) for such graphs while distorting the
distances by a factor of 1 + ε. Now, for k-Center Katsikarelis et al. [KLP19] obtain an EPAS
with runtime tO(t/ε)nO(1) parameterized by the treewidth t, which would run in quasi-polynomial
time on graphs with treewidth O(polylog(n/ε)). Consequently, a treewidth bound of O(logh α)
for graphs of highway dimension h in combination with a reduction to show APX-hardness
for graphs of highway dimension O(1), would imply quasi-polynomial time algorithms to solve
NP-hard problems. However under standard complexity assumptions this is not possible.

3.3 The k-Center problem

The k-Center problem is harder to approximate than k-Median and its variants. In particular,
by a result of Hochbaum and Shmoys [HS86], the k-Center problem on general input graphs
has a polynomial time 2-approximation algorithm, but this approximation factor is also best
possible, unless P=NP. The lower bound of 2 on the approximation factor is rather notorious as
it remains valid for many special cases and parameterizations of the problem, including those
introduced in Section 3.1 as models for transportation networks. We summarize this in the
following theorem.

Theorem 3.13. The k-Center problem has no (2− ε)-approximation algorithms for any ε > 0
in the following cases and runtimes:

• on general graphs in f(k)nO(1) time [7] (i.e., parameterized by the number of centers k)
for any computable function f , unless W[2]=FPT,

• on planar graphs in polynomial time [Ple80], unless P=NP,
• on two-dimensional Manhattan metrics (which have doubling dimension 2) in polynomial
time [FG88], unless P=NP,

• on graphs of highway dimension O(log2 n) according to Definition 3.1 for any universal
constant c ≥ 4 in polynomial time [7], unless P=NP,

• on graphs of highway dimension h according to Definition 3.1 for any universal constant

c ≥ 4 in 22
o(

√
h) · nO(1) time [7], under ETH.

The last two lower bounds of Theorem 3.13 for the highway dimension are based on the
embedding of Theorem 3.12, which we use in [7] to reduce the problem on metrics of doubling
dimension 2 to graphs of highway dimension O(log2 n). The hardness of approximation for the
former (as also stated in Theorem 3.13) thus carries over to the latter. Note that the hardness
for graph of highway dimension O(log2 n) does not rule out (2− ε)-approximation algorithms
parameterized by the highway dimension, and this is left as an open problem. However, under
ETH, the same reduction implies that if such an algorithm exists, then its running time must be
enormous, as it must be at least doubly exponential, as stated in Theorem 3.13.

In conclusion of Theorem 3.13 it seems that considering any model of Section 3.1 for
transportation networks or even the parametrization by the number of centers k, does not help to
overcome the polynomial-time (2− ε)-inapproximability that the k-Center problem exhibits for
general inputs. However, combining k as a parameter with any of the models it is possible to beat
this lower bound. For instance, by a result of Fox-Epstein et al. [FKS19] the k-Center problem
on edge-weighted planar graphs admits an efficient polynomial-time bicriteria approximation
scheme, which for any ε > 0 and some function f computes a solution in f(ε)nO(1) time that
uses at most (1 + ε)k centers and approximates the optimum with at most k centers within
a factor of 1 + ε. This algorithm implies an EPAS for parameter k on planar graphs, since
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Figure 1: Clusters (dashed circles) are far from hubs (crosses). They have small diameter and are far
from each other.

for instance setting ε = min{ε′, 1
2k} forces the algorithm to compute a (1 + ε′)-approximation

in f(k, ε′)nO(1) time using at most (1 + ε)k ≤ k + 1
2 centers, i.e., at most k centers as k is an

integer.
Another example is given by Agarwal and Procopiuc [AP02] who showed that for any ℓq

metric in D dimensions, the k-Center problem has an EPAS when combining k and D as
parameters. In [11] we generalize the latter to any metric of doubling dimension d. Our algorithm
first guesses the optimum cost C. It then greedily computes a so-called δ-net, which is a subset
of the vertices of the given metric such that every vertex is at distance at most δ from some net
point, while all net points are at distance more than δ from each other. Any δ-net of a metric
with doubling dimension d can be shown to have size at most k/εO(d) when setting δ = Θ(εC).
Thus we may compute an optimum k-Center solution of the vertices of the δ-net by brute-force
in FPT time. The distance properties of the δ-net for δ = Θ(εC) imply that this solution is a
(1 + ε)-approximation in the input metric, and thus we obtain the following theorem.

Theorem 3.14 ([11]). Given ε > 0 and a metric of doubling dimension d, a (1+ε)-approximation
for k-Center can be computed in (kk/εO(kd))nO(1) time.

For low highway dimension graphs, Becker et al. [BKS18] used the structural results found
in Theorem 3.5 to show that when using Definition 3.1 for any universal constant c > 4 there
is an EPAS for k-Center parameterized by k and the highway dimension h. For the more
general Definition 3.2 of the highway dimension it is not known whether a PAS exists for
this parameterization. However, in [7] we present a 3/2-approximation for k-Center, which
combines k and this notion of highway dimension as parameters. Hence also for the more general
class of graphs given by Definition 3.2 the notorious (2− ε)-inapproximability of the k-Center
problem can be beaten.

Theorem 3.15 ([7]). Given ε > 0 and a metric of highway dimension dimension h according
to Definition 3.2 for any universal constant c ≥ 4, a 3/2-approximation for k-Center can be
computed in 2O(kh log h)nO(1) time.

As we show in [8] some fundamental properties needed to prove the structure given by
Theorem 3.5 break down when using the more general Definition 3.2 for the highway dimension.
Thus, in contrast to the EPAS of Becker et al. [BKS18], we cannot rely on Theorem 3.5 to prove
Theorem 3.15. Using the weaker Definition 3.2 for the highway dimension still implies some
interesting structure though: fixing any value r and a shortest path cover spc(r), we show in [7]
that the vertices of the metric are either at distance at most r from some hub of spc(r), or
they lie in clusters7 of diameter at most r that are at distance more than 2r from each other

7in fact these clusters are similar to (but not quite the same as) the towns in the town decomposition of
Theorem 3.5 (cf. [8]).

27



(see Figure 1). Hence, given the cost C of the optimum k-Center solution, for r = C/2 a center
that resides in a cluster cannot cover any vertices of some other cluster. In this sense the clusters
are “independent” of each other. At the same time we are able to bound the number of hubs in
spc(C/2) in terms of k and the highway dimension. Roughly, this is comparable to graphs with
small vertex cover, since the vertices that are not part of a vertex cover form an independent set.
In this sense the highway dimension is a generalization of the vertex cover number, and this is
in fact the reason why computing the highway dimension is NP-hard, as we show in [8].

At the same time the k-Center problem is a generalization of the Dominating Set problem,
where we need to select the smallest number of vertices in a graph such that every vertex is
at hop-distance at most 1 from a selected vertex. This problem is W[2]-hard [DF13], but it is
FPT using the vertex cover number as the parameter [Alb+02]. This is one of the reasons why
combining the two parameters k and h yields a parameterized 3/2-approximation algorithm for
k-Center. In fact the similarity seems so striking at first that one is tempted to reduce the
problem of finding a 3/2-approximation for k-Center on low highway dimension graphs to
solving Dominating Set on a graph of low vertex cover number. However, it is unclear how
this can be made to work. Instead, in [7] we devise an involved algorithm that is driven by the
intuition that the two problems are similar to obtain Theorem 3.15.

Given the above parameterized approximation algorithms for models of transportation
networks when combining with the parameter k, a natural question is whether it is actually
necessary to approximate in these cases. That is, can we hope to compute the optimum k-
Center solution in comparable running times? In [11] we study this question and conclude that
under standard complexity assumptions this is not possible, even if we combine all the models
found in Section 3.1, as formalized by the following theorem. It is interesting to note that all
the mentioned graph classes and parameters are incomparable to each other, as we show in [8]
and discussed in more detail by Blum [Blu19].

Theorem 3.16 ([11]). Even on edge-weighted planar graphs of doubling dimension O(1), the
k-Center problem is W[1]-hard for the combined parameter (k, p, h), where p is the pathwidth
and h the highway dimension according to Definition 3.1 for any universal constant c ≥ 4.
Moreover, there is no f(k, p, h) ·no(p+

√
k+h) time algorithm8 for the same restriction on the input

graphs, for any computable function f , under ETH.

Note that in this theorem we also add the pathwidth as a parameter, which arguably is
not very useful to model transportation networks, since road networks of large cities (especially
on the American continent) can contain large grids, which implies that the pathwidth will
be rather large. We include this well-studied parameter here nonetheless, since by a result
of Katsikarelis et al. [KLP19] it is known that an EPAS exists when parameterizing by the
pathwidth (or even the tree- or cliquewidth). Thus Theorem 3.16 complements not only this
result, but also the above ones for planar, low doubling, and low highway dimension graphs, by
showing that approximations are necessary in each case. But furthermore, even if one were to
combine all the models presented in Section 3.1 and assume that a transportation network is
planar, is embeddable into some metric of constant doubling dimension, has bounded highway
dimension, and even has bounded pathwidth, the k-Center problem cannot be solved efficiently,
unless FPT=W[1]. Thus it seems unavoidable to approximate the problem in transportation
networks when developing fast algorithms. A recent result by Blum [Blu20] also shows that the
skeleton dimension, which is yet another graph parameter for transportation networks, can be
added to the list of parameters in Theorem 3.16 while still obtaining W[1]-hardness.

To obtain Theorem 3.16, in [11] we give a reduction from the Grid Tiling with Inequality
problem, which was introduced by Marx and Sidiropoulos [MS14] and is defined as follows. Given

8here o(p+
√
k + h) means g(p+

√
k + h) for any function g such that g(x) ∈ o(x).
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κ2 non-empty sets Si,j ⊆ [n]2 of pairs of integers, where i, j ∈ [κ], the task is to select one pair
si,j ∈ Si,j for each set such that

• if si,j = (a, b) and si+1,j = (a′, b′) for i ≤ κ− 1 then a ≤ a′, and

• if si,j = (a, b) and si,j+1 = (a′, b′) for j ≤ κ− 1 then b ≤ b′.

The Grid Tiling with Inequality problem is W[1]-hard for parameter κ, and moreover,
under ETH has no f(κ) · no(κ) time algorithm for any computable function f .

This problem is typically used to show hardness of various problems on planar graphs or
ℓq-metrics in the plane. On a high level, we can think of each set Si,j of an instance of Grid
Tiling with Inequality as the contents of a cell with coordinates (i, j) in a κ× κ grid. For
a reduction, we may introduce a gadget for each cell, which encodes the integer pairs of the
corresponding set Si,j , and the gadgets are then arranged in a grid-like fashion. If each gadget
is a planar graph then so is the overall constructed graph. For ℓq-metrics in the plane, each
gadget is given by a point set contained in a square corresponding to a cell of the grid. In our
reduction for Theorem 3.16, ideally we would like to combine both these approaches in order
to obtain a planar graph of constant doubling dimension. Thus our gadgets are edge-weighted
planar graphs, but it is not clear whether the vertices can be mapped to points in the plane so
that for some q the ℓq-distances are the same as distances in the resulting planar graph. Instead
of mapping the constructed graph into the plane, we exploit the grid-like structure of the graph
and use the intuition that the distances of a regular grid in the plane abide to the ℓ1-norm. In
particular, we show that every ball in the graph can be covered by at most 324 balls of half the
radius, and thus the doubling dimension is constant.

We then go on to bound all parameters in our reduction for Theorem 3.16 in terms of κ.
For k we show that an instance of Grid Tiling with Inequality has a solution if and only if
the constructed graph has a k-Center solution of a certain bounded cost, in which each gadget
needs exactly 5 centers, i.e., k = 5κ2. To bound the pathwidth p and the highway dimension h in
our reduction we again use the grid structure of the constructed graph. In particular, it is well-
known that a κ× κ grid graph has pathwidth Θ(κ), and we are able to modify a corresponding
path decomposition so that each bag only contains a constant number of additional vertices to
incorporate the gadgets. For the highway dimension, Abraham et al. [Abr+10] note that in a
regular κ × κ grid graph a ball of radius Θ(κ) contains Θ(κ) vertical (and horizontal) vertex
disjoint paths of length Ω(κ), each of which will need to be hit by a hub. Thus the highway
dimension of a κ× κ grid graph is Ω(κ). In our constructed graph for the reduction, two gadgets
of neighbouring cells of the κ× κ grid are connected by only one path. Therefore we can bound
the highway dimension from above by placing a hub on each of these connecting paths (i.e.,
between grid cells), in order to hit long vertical and horizontal paths. Additionally, we are able
to place hubs in each gadget such that any ball of a given radius contains only a constant number
of them. As there are Θ(κ2) points where gadgets connect, this implies a highway dimension
of O(κ2) for the constructed graph.
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