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Synopsis of the thesis

The thesis is compiled as a collection of 12 selected publications on various combinatorial
structures in hypercubes accompanied with a commentary in the introduction. In these
publications from years between 2012 and 2018 we solve, in some cases at least partially,
several open problems or we significantly improve previously known results. The list of
publications follows after the synopsis.

The thesis is organized into 8 chapters. Chapter 1 is an umbrella introduction that
contains background, motivation, and summary of the most interesting results.

Chapter 2 studies queue layouts of hypercubes. A queue layout is a linear ordering of
vertices together with a partition of edges into sets, called queues, such that in each set no
two edges are nested with respect to the ordering. The results in this chapter significantly
improve previously known upper and lower bounds on the queue-number of hypercubes
associated with these layouts. The improvements are achieved by a novel construction for
the upper bound and a new technique of out-in representations and contractions for the
lower bound.

Chapter 3 studies simultaneous broadcasting of multiple messages in synchronous net-
works under certain communication model. First we consider the case when each node may
receive and send at most one message in each step, which leads to the concept of mutually
independent Hamiltonian paths and cycles. For hypercubes we improve previously known
results on the possible number of mutually independent Hamiltonian paths and cycles in
(faulty) hypercubes. Then we introduce a concept of level-disjoint partitions for the gen-
eral communication model and we present a structural characterization of all graphs that
admit two level-disjoint partitions with a given root. Finally we show that hypercubes,
as well as many other graph classes, have optimal number of level-disjoint partitions of
optimal height, which affirmatively answers a conjecture from [77].

Chapter 4 studies incidence colorings of graphs. In this type of coloring, colors are
assigned to incidences between vertices and edges so that every two adjacent incidences
receive distinct colors. For a precise definition of adjacent incidences see Section 1.5 in
the introduction. We provide a sufficient condition for a Cartesian product of two graphs
to have incidence chromatic number at most the maximal degree plus 2. Applying this
result we confirm a conjecture of Pai et al. [141] on the exact value of incidence chromatic
number of hypercubes. Furthermore, we show that every graph of degree at most 4 has
an incidence coloring with at most 7 colors, which improves the previous upper bound of
8 colors.

Chapter 5 studies distance magic labelings of hypercubes. In this type of labeling,
vertices of a k-vertex graph are bijectively labeled by integers from 1 to k so that the sum
of labels on neighbors of each vertex is always the same. We show that the hypercube
Qn has a distance magic labeling for every n ≡ 2 (mod 4), which completely resolves a
conjecture of Acharya et al. [1].

Chapter 6 studies parity vertex colorings of trees, in particularly of binomial trees,
which are spanning trees of hypercubes. In this type of coloring, colors are assigned to
vertices so that each path contains some color with odd number of occurrences on this
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path. We show that the binomial tree Bn has a parity vertex coloring with at most
⌈
2n+3

3

⌉

colors, which disproves a conjecture of Borowiecki et al. [14] on relation between parity
vertex colorings and vertex rankings of trees.

Chapter 7 studies several Gray code type problems. A Gray code for some class of
combinatorial objects is an enumeration of its elements such that consecutive elements
differ only in a constant “amount”. These codes ultimately lead to loopless generating
algorithms which allow to generate each new object from the previous object in constant
time. A prime example is the binary reflected Gray code for cyclic enumeration of all
subsets of an n-element set by adding or removing a single element, which corresponds to
a Hamiltonian cycle in Qn.

First we consider the problem of generating all subsets of an n-element set with size
in some fixed interval [k, l] where 0 ≤ k ≤ l ≤ n by adding or removing a single element,
or by exchanging a single element if necessary. This is a common generalization of the
binary reflected Gray code, the well-known middle levels problem, and a Gray code for all
k-element subsets of an n-set.

For this problem we show that the subgraph of the hypercube Qn induced by levels
between k and l has a saturating cycle, as well as a tight enumeration, up to the cases
covered by the generalized middle level conjecture which are still open. Both a saturating
cycle and a tight enumeration are in a sense optimal Gray codes for this problem.

Then we consider a generalized middle level conjecture [148, 81] asserting that the
subgraph of Qn induced by middle 2l levels is Hamiltonian for any l ≤ n+ 1. We confirm
this conjecture for middle 4 levels and for the remaining open cases we find at least a cycle
factor built from two edge-disjoint symmetric chain decompositions of Qn. Furthermore,
we show that Qn has four pairwise edge-disjoint symmetric chain decompositions for any
n large enough.

Finally, we consider the problem of finding an almost Hamiltonian cycle in hypercubes
with faulty vertices. We prove a conjecture of Castañeda and Gotchev [23] asserting that
for any set F of at most

(
n
2

)
− 2 vertices in Qn there is a cycle of length at least 2n − 2|F |

in Qn − F . This quadratic number of tolerable vertices is tight for such a cycle. Previous
results were only linear in the number of tolerable vertices. Similar results are obtained
also for long paths between prescribed endvertices.

Chapter 8 studies linear extension diameter of certain subposets of the Boolean lattice.
A linear extension diameter of a given poset is the diameter of the graph on all linear
extensions of the poset as vertices, with edges between any two extensions that differ in a
single adjacent transposition. We determine the linear extension diameter of the subposets
of the Boolean lattice Bn induced by the 1st and kth levels for any 1 < k ≤ n. This
partially answers a question of Felsner and Massow [56]. We also describe all diametral
pairs of extensions.
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Chapter 1

Introduction

The possibility to encode all finitary objects (and discretely approximate the continuous
ones) into finite sequences of 0’s and 1’s allows us to describe and model our world by
computers and lies in the heart of computer science. No matter what information or a
high level structure is encoded by binary strings, for study of low level complexity of our
algorithms as the cost of our operations performed on binary strings we measure some edit
distance between them.

The simplest metric to compare binary strings u and v of the same length is the number
of bits in which they differ, called a Hamming distance and denoted by dH(u, v). This
distance measures the write complexity in analysis of data structures in the bit probe
model, the error in transmission of messages via a noisy channel, distance in genomics,
and various other things depending on the context. Numerous problems across wide areas
of computer science include the task to minimize the Hamming distance between considered
strings.

1.1 Hypercubes

In a graph theory setting, these problems can often be formulated as graph problems on
hypercubes. This is motivated by a prolific research and development of graph theory over
the past decades.

Formally, the hypercube of dimension n, denoted by Qn, is an undirected graph on all
binary strings of length n as vertices, and edges joining vertices with Hamming distance
equal to 1. That is, the vertex set is V (Qn) = Zn

2 = {0, 1}n and the edge set is

E(Qn) = {uv | dH(u, v) = 1} = {uv | u⊕ v = ei for some i ∈ [n]}

where ei denotes the vector with 1 exactly in the ith coordinate. It is useful to define
also the hypercube of dimension 0 as an isolated vertex corresponding to the empty string.
Note that this is a graph theoretical rather than geometric notion and in different settings
the hypercube is called a discrete cube, a Boolean cube, or shortly an n-cube.

9



001

000 010

011

100 110

111101

Q3

00 01

10 11

Q2

0

1

Q1

0010

0000 0100

0110

1000 1100

1110

1010

Q4

0010

0000 0100

01101000

1100

11101010

Figure 1.1: Hypercubes of dimensions n = 1, 2, 3, 4.

Hypercubes can be equivalently defined in several alternative ways:

• Qn is the n-fold Cartesian product of the complete graph K2 on two vertices, i.e.

Qn = Kn
2 = K2 �K2 � · · ·�K2︸ ︷︷ ︸

n−times

.

The Cartesian product G � H of graphs G and H is the graph with the vertex set
V (G�H) = V (G)× V (H) and the edge set

E(G�H) = {(u, v)(u′, v) | uu′ ∈ E(G)} ∪ {(u, v)(u, v′) | vv′ ∈ E(H)}.

• Qn is the covering graph of the Boolean lattice Bn = (P(X),⊆) with |X| = n, i.e.
the poset of all subsets over an n-element set X ordered by inclusion. The covering
graph of a poset is the graph of its Hasse diagram.

• Qn is the Cayley graph of Zn
2 generated by the standard basis; that is

Qn = Cay(Zn
2 , {e1, . . . , en}).

A Cayley graph of a group Γ generated by a set S ⊆ Γ that is closed under inverses
and does not contain the neutral element of Γ is Cay(Γ, S) = (Γ, {uv | vu−1 ∈ S}).
Note that the condition of S being closed under inverses ensures that the graph is
undirected and the condition of not containing the neutral element of Γ ensures that
the graph has no loops.

• Qn is the 1-skeleton of the polytope [0, 1]n. The vertices (edges) of Qn are 0-faces
(1-faces, resp.) of [0, 1]n.
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Furthermore, there are about 20 equivalent characterizations of hypercubes, see a survey
[69], which illustrates their versatility.

Hypercubes posses many elegant properties. The hypercube of dimension n has a
(regular) degree n, diameter n, radius n, both vertex and edge connectivity n. Hypercubes
are bipartite with partite classes formed by vertices of even and odd weight, respectively,
where the weight of a vertex u is |u| = dH(u,0), i.e. the number of 1’s in u. They have a
so called (0, 2)-property ; that is, every two vertices have either 0 or 2 common neighbors,
which implies that they are K2,3-free.

Hypercubes are highly symmetrical, each automorphism of Qn is a composition of a
unique permutation of coordinates and a unique translation, and the automorphism group
of Qn is the octahedral group Aut(Qn) ' Sn n Zn

2 . They are not only vertex transitive,
but also edge transitive and moreover distance transitive; that is, every ordered pair of
vertices can be mapped by some automorphism to any ordered pair of vertices of the same
distance.

Hypercubes have a recursive structure in the sense that Qn is composed of two copies
of Qn−1 joined by a perfect matching. Moreover, this decomposition can be chosen in n
possible ways corresponding to each coordinate. Further properties of hypercubes can be
found in a survey [89].

1.1.1 Hypercubes in various areas of computer science

Hypercubes naturally occur in study of many problems from different areas of computer
science. Here we provide only three examples and their motivation: from coding theory,
extremal set theory, and study of Boolean functions.

In coding theory, one of the key questions is how many bits are needed to safely transfer
a message consisting of k bits over a noisy channel that can flip at most d arbitrary bits.
This includes also a question how to encode the messages. These are central questions in the
design of error-correcting codes, which allowed development of space flights, DVD’s, solid-
state drives, and many other real-world applications. In terms of hypercubes, this question
can be equivalently formulated as finding the smallest dimension n of the hypercube Qn

that admits packing of 2k disjoint balls of radius d. A ball of radius d centered at a vertex
u in Qn is B(u) = {v ∈ V (Qn) | dH(u, v) ≤ d}. The centers of the packed balls then
correspond to the desired error-correcting code. More on this question can be found in any
coding theory book, e.g. [124].

In extremal set theory, one of important problems is a design of so called covering arrays.
A covering array n× k of strength t is a binary matrix n× k such that its projection into
any t columns contains all 2t possible rows. Let can(k, t) be the minimal number of rows
in a covering array of strength t with k columns. This has the following application in
software testing. Assume that we have a software with k binary inputs and we would like
to verify that no combination of t inputs causes an error. Then can(k, t) is the minimal
number of test runs of the software that we need to perform, each row of the corresponding
covering array specifying the inputs for one test run.

11



This concept can be equivalently captured in terms of transversal sets, or Turán num-
bers of hypercubes. A set S ⊆ V (Qk) is an s-face transversal if any s-face (i.e. an
s-dimensional subcube) of Qk contains an element of S. Let tr(k, s) be the minimal size
of an s-face transversal in Qk. The vertex Turán number of a graph H in a graph G is
the maximal number exv(G,H) of vertices in an induced subgraph of G not containing H.
Observe that for any 0 ≤ s ≤ k, it holds

can(k, k − s) = tr(k, s) = 2k − exv(Qk, Qs).

Hence these problems are indeed equivalent. For a survey on covering arrays we refer to
[120].

In study of Boolean functions, restricting propositional formulas that represent Boolean
functions gives interesting classes of functions. One of the well-understood classes are the
functions represented by 2-CNF formulas, i.e. formulas in conjunctive normal form with
each clause containing at most 2 literals. This is a notorious example of class for which the
satisfiability problem is solvable in polynomial (even linear) time. It is less known that 2-
CNF formulas without equivalent variables correspond to median graphs and retractions of
hypercubes as explained below. Two variables of a 2-CNF formula are said to be equivalent
if they both are non-trivial and in each satisfying assignment of the formula, one variable
determines the other. A variable of a propositional formula is trivial if it has the same
value in all satisfying assignments.

A graph G is a median graph if for every three vertices x, y, z there is a unique vertex
m, called a median, such that m ∈ I(x, y) ∩ I(y, z) ∩ I(x, z) where I(u, v) is the set
of vertices on shortest paths between u and v, called the interval between u and v, i.e.
I(u, v) = {w ∈ V (G) | d(u, v) = d(u,w) + d(w, v)}. This interesting class of graphs can be
informally thought of as graphs between trees and hypercubes [128] and appears in study
of stable matchings in the roommate problem, configurations of non-expansive networks,
or chemical graph theory [29, 62, 86].

A retraction of a graph G is an edge-preserving map f : V (G)→ V (G) with f(f(u)) =
f(u) for every u ∈ V (G), i.e. it is an idempotent endomorphism of G. The image of a
retraction induces a so called retract. It can be shown that (the satisfying assignments
of) any 2-CNF formula without equivalent variables induces in the hypercube a median
subgraph, and vice versa, any median graph is an subgraph of hypercube induced by some
2-CNF formula [62]. Furthermore, any retract of the hypercube is a median graph, and
vice versa, any median graph except the isolated vertex, is a retract of a hypercube [6].

These connections illustrate the interplay of hypercubes between different areas.

1.1.2 Hypercube architecture of interconnection networks

The elegant properties of hypercubes attracted designers to use hypercubes as an under-
lying topology of early parallel computers. In this topology, processors are represented by
vertices and links between the processors are represented by edges. This made hypercubes
one of the most popular and well-studied architectures in the advent of parallel comput-
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ing [106, 121, 33]. Here is a brief excerpt from history of interconnection networks that
involved hypercubes:

1983-87 Cosmic Cube – Caltech (n = 2, 6, 7)

1983-87 Connection Machine CM-1, CM-2, CM-200 – MIT1 (n = 16, 9, 13)

1985-90 Intel iPSC/1, iPSC/2, iPSC/860 (n = 7)

1986-89 nCUBE-1, nCUBE-2 – nCUBE Corporation (n = 10, 13)

1980’s other manufacturers: Floating Point Corporation (T series), Ametek

1997 SGI Origin 2000 – partly involves hypercubes [33]

2002 HyperCuP – p2p networks [151]

2006 BlueCube – Bluetooth networks [25]

2011 HyperD – dynamic distributed databases [172]

One of the major concerns in the design of interconnection networks is their robustness,
i.e. tolerance to occurrence of faults. Failures can happen in hardware, software or even
because of lost transmitted messages. Furthermore, the part of the network that is currently
overloaded can be considered as faulty by other tasks. Hence the concept of fault tolerance
can be applied in a broader sense than for actual failures.

Processor failures and connection failures in interconnection network correspond to
faulty vertices and faulty edges, respectively, in the underlying graph. It is important that
network stays functional even if multiple failures appear. This motivates the study of
robustness of hypercubes with respect to the maximal number of arbitrarily chosen faulty
vertices and/or edges.

1.1.3 Preliminaries

Let us introduce some notation and definitions used throughout the thesis. By n we denote
a positive integer and by [n] we denote the set {1, 2, . . . , n}. A path in the graph G is a
sequence P = (v1, v2, . . . , vk) of distinct vertices such that every two consecutive vertices
are adjacent. For a path P = (v1, v2, . . . , vk) we say that v1 and vk are the endvertices of
P , and that P is a v1vk-path, which is denoted by P [v1, vk]. A path in G is Hamiltonian
if it contains all vertices of G. Let V (G) and E(G) denote the vertex set and the edge set
of a graph G, respectively.

An open neighborhood of a vertex u in a graph G is denoted by NG(u), the degree of u
by degG(u), the distance between vertices u and v by dG(u, v). The eccentricity of a vertex

1Richard Feynman, an American theoretical physicist was involved in its design [34].

13



u, i.e. the maximal distance from u to other vertices, is denoted by eccG(u). The subscript
G is omitted whenever the graph is clear from context.

A cycle is a sequence C = (v1, v2, . . . , vk) of k ≥ 3 distinct vertices such that every two
consecutive vertices, including the first and the last vertex of the sequence are adjacent.
We say that the cycle C = (v1, v2, . . . , vk) is v1-starting to emphasize the first vertex v1
and we denote it by C[v1]. A cycle C in a graph G is Hamiltonian if it contains all vertices
of G.

Let v be a vertex of a connected graph G. We denote by G− v the graph obtained by
removing v and all incident edges from G. If G− v is disconnected, the vertex v is called
a cut-vertex. A bridge of G is an edge whose removal disconnects G. A maximal subgraph
without a cut-vertex is called a block. Clearly, every block is 2-connected, formed by a
bridge, or an isolated vertex.

A subgraph H of a graph G is isometric if it preserves distances from G; that is,
dH(u, v) = dG(u, v) for all u, v ∈ V (H). For other standard graph theoretical terminology
we refer to [38].

A partially ordered set (a poset) P is a set P equipped with a binary relation on P that
is reflexive, antisymmetric, and transitive. An antichain is a poset with empty relation. A
subposet S of a poset P is the poset induced on the set S ⊆ P by the relation of P . Two
elements of a poset P are comparable if they are in the relation of P , otherwise they are
incomparable.

1.2 Queue layouts

There are many combinatorial optimization problems that can be formulated as graph
layout problems. They include problems on VLSI circuit layout, network reliability, graph
drawing, information retrieval, numerical analysis, parallel and distributed processing, em-
beddings. For detailed references and other applications we refer to a survey [37].

The first combinatorial structures that we consider in this thesis are queue layouts. A
queue layout of a graph is a particular example of a linear layout together with a partition
of its edges into sets such that in each set no two edges are nested. More formally, let σ
be a linear ordering of vertices in a graph G. Two edges uv, xy ∈ E(G) are nested (with
respect to σ) if σ(u) < σ(x) < σ(y) < σ(v), see Figure 1.2. A set S ⊆ E(G) is a queue if
no two of its edges are nested with respect to σ. A k-queue layout of the graph G is a pair
of a linear ordering σ of V (G) and a partition of E(G) into k queues. The queue-number
qn(G) of the graph G is the minimum k such that G has a k-queue layout. A graph G is
a k-queue graph if qn(G) ≤ k.

Queue layouts were first introduced by Heath et al. [95, 99]. This concept is analo-
gous to the concept of stack layouts, also known as book embeddings, in which no two
edges in the same set are allowed to cross. Applications of queue layouts include sort-
ing permutations, parallel process scheduling, matrix computations, graph drawings, and
queue-based computers. See [142, 22, 45] for a comprehensive list of references. If the
vertex ordering is fixed, the optimal queue layout can be efficiently determined [45, 99].
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(a) nested (b) separated (c) crossing

(d) incident

Figure 1.2: All possible relations between two edges in a fixed vertex ordering.

But in general, this problem is believed to be intractable. In particular, recognizing k-
queue graphs is NP-complete even for k = 1 [99]. The class of 1-queue graphs coin-
cides with the class of so called arched leveled-planar graphs [99] whereas the analogous
class of 1-stack layout graphs coincides with the class of outerplanar graphs. Another
characterization of 1-queue graphs based on track layouts is given in [43]. Queue lay-
outs of directed graphs [9, 142, 98, 97], posets [96, 142], and several special graph classes
[87, 88, 99, 95, 180, 179, 144, 44, 45, 46, 66, 139, 138, 137, 153] have also been investigated.

1.2.1 Previous results

For hypercubes, Heath and Rosenberg [99] showed that Qn has a layout into n− 1 queues,
that is qn(Qn) ≤ n− 1, for all n ≥ 2. Hasunuma and Hirota [88] improved it to qn(Qn) ≤
n − 2 for all n ≥ 5. Subsequently, Pai et al. [137] showed that the same upper bound
holds also for n = 4. Then Pai et al. [139] further decreased it to qn(Qn) ≤ n − 3 for
all n ≥ 8. On the other hand, Heath and Rosenberg [99] showed that the queue-number
of every graph is larger than half of its density. In particular, for hypercubes it follows
that qn(Qn) > n/4 [139, 140]. Interestingly, the analogously defined stack-number (better
known as the pagenumber) of the hypercube is known exactly to be pn(Qn) = n− 1 for all
n ≥ 2 [30, 113].

1.2.2 Improving the upper bound

Heath et al. [95] noticed that qn(G�K2) ≤ qn(G) + 1 for every graph G where � denotes
the Cartesian product. In [76] we show that a queue layout of G � Qk for k ≥ 2 can be
constructed (with the same additional cost of k queues) from a queue layout of G−A for
every set A of k − 1 independent vertices of G. This is the key idea in our improvements.
It then only suffices to find a feasible set A such that qn(G− A) < qn(G).

Lemma 1 ([76]). Let A be an independent set of vertices in a graph G and k = |A|+1 ≥ 2.
Then,

qn(G�Qk) ≤ qn(G− A) + k.

Our construction is based on a particular recursive interlaced ordering of the vertices
from A together with a careful distribution of incident edges into the previous known layout
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of (G−A) �Qk into qn(G−A) + k queues. It was inspired by the construction of Pai et
al. [139] where only the vertex 1 = (1, 1, . . . , 1) was removed from G = Qn−2 and it was
shown that qn(Qn) = qn(Q2 �Qn−2) ≤ qn(Qn−2 − {1}) + 2.

Applying Lemma 1 for certain dimensions and a composition result on strict queue
layouts by Wood [180] for the remaining dimensions we obtain the following result. This
is the first non-constant improvement.

Theorem 1 ([76]). For all n ≥ 3,

qn(Qn) ≤ n− dlog2(n− dlog2(n− 1)e)e .

It is remarkable that Theorem 1 attains all previously [139] known bounds for 3 ≤
n ≤ 12 except qn(Q4) = 2 [137]. For n ≥ 13 we obtain better layouts. Altogether, the
previously known and new results can be simplified as follows.

Corollary 1 ([76]). For all n ≥ 1,

qn(Qn) ≤ n− blog2 nc .

Moreover, similar improvements were obtained also for a 2k-ary hypercube Q2k
n [76];

that is, the nth Cartesian power of the 2k-cycle. It is also worth noting that Theorem 1
also provides a partition of Qn into n−dlog2(n− dlog2(n− 1)e)e leveled planar graphs with
the same induced ordering. A graph G is leveled planar [99] if it has a planar embedding
such that vertices are mapped on vertical lines and edges are mapped to straight segments
between two vertices on consecutive vertical lines. The induced ordering of a leveled planar
graph orders its vertices by consecutive vertical lines, and from top to bottom on each line.
An example for Q5 is depicted on Figure 1.3.

1.2.3 Improving the lower bound

For improving the lower bound we extend the concept of rainbows and midpoints from
[99, 45] with a new technique of out-in representations and contractions. A k-rainbow with
respect to a vertex ordering σ is a matching {uivi ∈ E(G); 1 ≤ i ≤ k} such that

σ(u1) < σ(u2) < · · · < σ(uk) < σ(vk) < σ(vk−1) < · · · < σ(v1).

Heath and Rosenberg [99] and then Dujmović and Wood [45] in a simpler argument showed
that the size of a largest rainbow determines the number of queues in a queue layout of G
with the ordering σ. Moreover, they noticed that if k edges share the same midpoint, they
form a k-rainbow. The midpoint of an edge uv is (σ(u) + σ(v))/2. This leads to the lower
bound qn(G) > |E(G)|/2|V (G)| for every graph G [99].

Our improvement is based on two tools. The first tool is the following representation
of a linear layout of the graph G which is equivalent regarding nesting of edges. Let G′

denote the graph obtained from G by replacing every vertex u with a pair of vertices uout,
uin, and every edge uv with the edge uoutvin if σ(u) < σ(v). Furthermore, let σ′ be the
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Figure 1.3: A partition of Q5 into three leveled planar graphs with the same induced
ordering.
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(a) an ordering

1 6

57
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(b) the linear layout

(c) the in-out representation

[1, 2]out 1in 2in 3in 4in 5in 6in 7in 8in[3, 4]out [5, 6]out [7, 8]out

(d) the contraction

1out 2out 3out 4out 5out 6out 7out 8out 1in 2in 3in 4in 5in 6in 7in 8in

Figure 1.4: (a) An example of an ordering σ of Q3, (b) the linear layout of Q3 with respect
to σ, (c) the out-in representation Q′3 and σ′, (d) the contraction Q∗3. The colors distinguish
edges from distinct out vertices.

vertex ordering of G′ taking all out-vertices and then all in-vertices, both according to σ.
We say that the pair (G′, σ′) is an out-in representation of (G, σ). See Figure 1.4(a)-(c)
for an illustration.

The out-in representation does not bring any improvement itself since the number of
midpoints is preserved. However, it can be beneficially combined with our second tool,
which is based on contractions. Let G∗ be a multigraph obtained by contractions of some
pairwise-disjoint sets of consecutive vertices of G′. Here consecutive means with respect to
the ordering σ′. See Figure 1.4(d) for an illustration. Clearly, if G∗ contains a k-rainbow,
then G contains a k-rainbow as well.

To improve the lower bound, the key idea is to contract large number of consecutive
vertices in order to decrease the number of midpoints, but at the same time, to have only
a small number of multiple edges. When pairs of consecutive out-vertices are contracted,
we obtain the following preliminary lower bound.

Proposition 1 ([76]). For every n ≥ 1, qn(Qn) > (n− 2)/3.

For a more general lower bound we employ contracting of a larger number of consecutive
out-vertices together. The following result shows that we can get arbitrarily close to the
factor 1/2 instead of 1/3 in Proposition 1.

Theorem 2 ([76]). For all ε > 0, for every sufficiently large n,

qn(Qn) >

(
1

2
− ε
)
n−O(1/ε).
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It should be noted that in the proof of the lower bound we actually only used K2,3-free
property of hypercubes. Therefore this new technique may be applied to larger graph
classes. Still, the gap between the lower and upper bound leaves the question: Is it true
that qn(Qn) = n−Θ(log2 n)?

1.3 Level-disjoint partitions

A massive amount of traffic in communication networks that flows from providers of large
data (such as video streaming services) to many clients at once leads to various optimiza-
tion problems for broadcasting of multiple messages. Similar types of problems arise in
master/workers parallel computations on interconnection networks when multiple tasks are
simultaneously distributed from one node (master) to all other nodes (workers). This has
been subject of research for many years. For surveys on broadcasting and other communi-
cation protocols in various kinds of networks see e.g. [82, 83, 100, 103, 104].

For simplicity we restrict ourselves to synchronous networks, where at each time unit
messages can be sent from nodes to their neighbors in one unit of time. Since networks have
limited capacity of links, any larger data to be broadcast needs to be split into multiple
messages and sent individually. This leads to a more general variant of broadcasting in
which several different messages need to be simultaneously transmitted from one source
node, called the originator. The problem of multiple broadcasting was first tackled in [55]
and previously studied under several different models in [8, 18, 94]. The minimal overall
time needed for simultaneous broadcasting and the maximal number of messages that can
be simultaneously broadcast were considered in [8, 77, 94].

We consider a scenario when each message (or task) needs to be handled (or processed)
at each node in a time unit before it is sent out further to other selected neighbors, possibly
to more than one. It is reasonable to demand that each node has to handle at each time
unit only a single message (task). Equivalently, each node receives at most one message in
each time unit. This restriction is called a 1-in-port model. Furthermore, every received
message is sent out only in the next time unit and no message is sent to already informed
vertex. In other words, nodes have no buffers to store messages for delayed transmission.
This is known as memoryless or queueless communication [111]. This simplification is
motivated by memory or security restrictions, or a need for uninterrupted data flow.

1.3.1 Mutually independent hamiltonian cycles

First we consider a simplified case of simultaneous broadcasting when not only the number
of received messages but also the number of outgoing messages are limited to at most one
in each time step (both 1-in and 1-out-port model). In this case each broadcasted message
traverses a Hamiltonian path, and the messages must never meet at the same time in the
same vertex.

This leads to the following definitions. Two Hamiltonian paths P1 = (u1, u2, . . . , um)
and P2 = (v1, v2, . . . , vm) of G are independent if ui 6= vi for all i ∈ [m]. A set S of
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Hamiltonian paths of G is mutually independent if every two paths from S are indepen-
dent. Two v-starting Hamiltonian cycles C1 = (v, u2, . . . , um) and C2 = (v, v2, . . . , vm) are
independent if vi 6= ui for all 2 ≤ i ≤ m. A set S of v-starting Hamiltonian cycles of G is
mutually independent if every two cycles from S are independent.

Previous results

Mutually independent Hamiltonian paths and cycles have been previously studied in par-
ticular for hypercubes and in the presence of faults. Sun et al. [168] proved that for any
vertex s, the n-dimensional hypercube Qn contains n− 1 mutually independent s-starting
Hamiltonian cycles if n = 2, 3; and n mutually independent s-starting Hamiltonian cycles
if n ≥ 4. They also proved that for any set of n − 1 distinct pairs of adjacent vertices,
Qn contains n − 1 mutually independent Hamiltonian paths with these pairs of vertices
as endvertices. Hsieh and Yu [107] claimed that the n-dimensional hypercube Qn with at
most f ≤ n− 2 faulty edges contains a set of n− 1− f mutually independent Hamiltonian
paths and a set of n − 1 − f mutually independent s-starting Hamiltonian cycles for any
vertex s. However, Kueng et al. and Hsu [117] noticed a flaw in their proof and published
the correction. Hsieh and Weng [105] proved that for n ≥ 3, Qn with at most f ≤ n − 2
faulty edges contains a set of n− 1− f mutually independent Hamiltonian paths between
any two vertices of different parity. Shih et al. [158] studied mutually independent paths of
different lengths in Qn. Mutually independent Hamiltonian cycles have been also studied
in alternating group graphs [166] and in toroidal graphs [181].

Our results

In [175] we improve previously known results by showing that Qn for every n ≥ 2 contains
n mutually independent Hamiltonian paths with prescribed endvertices if they form a
matching, see Theorem 3.

Theorem 3 ([175]). Let M = {w1b1, w2b2, . . . , wnbn} ⊆ E(Qn) be a matching of Qn

(n ≥ 2) where w1, w2, . . . , wn are vertices of the same parity. Then, Qn has n mutually
independent Hamiltonian paths P1[w1, b1], P2[w2, b2], . . . , Pn[wn, bn].

We also prove that Qn for every n ≥ 4 and for every set of at most f ≤ n − 2 faulty
edges contains n− f mutually independent s-starting Hamiltonian cycles for any vertex s,
see Theorem 4. This is an optimal result both in the number of faulty edges and in the
number of cycles since s may be incident with f faulty edges.

Theorem 4 ([175]). Let F ⊆ E(Qn), n ≥ 4, f = |F | ≤ n − 2, and s ∈ V (Qn). Then,
Qn − F has n− f mutually independent s-starting Hamiltonian cycles.

The same result as in Theorem 4 appeared independently in [119].
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Figure 1.5: Four level-disjoint partitions of the circulant graph C12(1, 3) rooted at v.

1.3.2 Level-disjoint partitions - the concept

In general simultaneous broadcasting, the restriction on the number of outgoing messages
is lifted, so each node may send its message in each time step to more (possibly all)
neighbors at once (thus we have a so called 1-in and all-out port model). For this scenario
we developed the concept of level-disjoint partitions in [77], which is explained below, as
a generalization of mutually independent Hamiltonian cycles. For a different scenario of
multiple message routing when different messages can arrive in the same vertex at the same
time but always via edge-disjoint paths there is a close concept of independent spanning
trees [26].

A level partition of a graph G is a partition S = (S0, . . . , Sh) of V (G) into a sequence
of sets, called levels, such that Si ⊆ N(Si−1) for every 1 ≤ i ≤ h; that is, every vertex
has some neighbor in the previous level. The number h = h(S) = |S| − 1 is called the
height of S. The broadcasting starts at all vertices from the level S0: at each time unit
the same message is sent from all vertices of the current level to all vertices in the next
level through edges of the graph, till the h-th time unit, when the message is spread to all
vertices of G. Note that we do not care which particular edges are used. In the case when
the starting level S0 is a singleton, say S0 = {v}, we say that the level partition is rooted
at v (or v-rooted) and the vertex v is called the root of S.

Two level partitions S = (S0, . . . , Sh(S)) and T = (T0, . . . , Th(T )) are said to be level-
disjoint if Si ∩ Ti = ∅ for every 1 ≤ i ≤ min(h(S), h(T )). Note that we allow S0 ∩ T0 6=
∅ since we consider the case when different messages have the same originator. Level
partitions S1, . . . ,Sk are said to be (mutually) level-disjoint if any two partitions are level-
disjoint. Then we say that S1, . . . ,Sk are level-disjoint partitions. If every partition is
rooted at the same vertex v and they are level-disjoint (up to the starting level {v}), we
say that S1, . . . ,Sk are level-disjoint partitions with the same root v. For an example of
four v-rooted level-disjoint partitions of a circulant graph, see Figure 1.5. Note that the
4-tuple at a vertex denotes its levels in each partition.
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The number of level-disjoint partitions determines how many messages can be broadcast
simultaneously while their maximal height determines the overall time of the broadcasting.
Hence a general aim is to construct for a given graph

• as many as possible (mutually) level-disjoint partitions; and

• with as small maximal height as possible.

Clearly these two criteria are in a sense complementary. The following necessary condi-
tions on the number of v-rooted level-disjoint partitions as well as on their maximal height
were observed in [78].

Proposition 2 ([78]). Let S1, . . . ,Sk be level-disjoint partitions of a graph G with the
same root v. Then,

k ≤ deg(v) (1.1)

max
1≤i≤k

h(S i) ≥
{

ecc(v) + k − 1 if G is not bipartite,

ecc(v) + 2k − 2 if G is bipartite.
(1.2)

In particular for the hypercube Qn, it follows from Proposition 2 that Qn can have at
most n level-disjoint partitions with the same root and their maximal height must be in
this case at least 3n − 2. In [77] we conjectured that this is indeed attainable for every
n ≥ 3 and we verified it for certain (infinitely many) values of n.

Conjecture 1 ([77]). For every n ≥ 3 there exist n level-disjoint partitions of Qn with the
same root and with the maximal height 3n− 2.

In simultaneous broadcasting one often needs to send out at the same time as many
messages as possible without limitations on the overall time for such a task. In our commu-
nication model this scenario leads to the following question. Given a graph G, v ∈ V (G),
and k ≥ 2, are there k level-disjoint partitions of G rooted in v?

First we showed that it suffices to find level-disjoint partitions locally “around” the
root v on some suitable subgraph H of G. Then they can be extended to level-disjoint
partitions with the same root to the entire graph G. Since v could be a cut-vertex of G,
we need that H meets each component of G− v.

Lemma 2 ([78]). Let v be a vertex of a graph G and H be a subgraph of G containing v and
some vertex from each component of G − v. Then any k v-rooted level-disjoint partitions
of H can be extended to k v-rooted level-disjoint partitions of G.

For k = 2, it is easy to see that, for example, odd cycles have two level-disjoint partitions
with the same root whereas even cycles do not. For a full structural characterization
of graphs G admitting two level-disjoint partitions rooted in v, we need the following
definitions. A cycle containing a vertex v is called a v-cycle. Let us denote by vC the
opposite vertex to v on an even cycle C. We say that a path P [u,w] is chordal to a cycle
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C if V (P ) ∩ V (C) = {u,w}. We say that a chordal path P [u,w] to a cycle C separates
x, y ∈ V (C) if x and y belong to different subpaths of C − {u,w}.

We characterized graphs admitting two level-disjoint partitions rooted in a given vertex
as follows.

Theorem 5 ([78]). Let v be a vertex in a graph G. Then G has two level-disjoint partitions
rooted in v if and only if for every block B of G containing v it holds that

(a) B is 2-connected, and

(b) B is non-bipartite, or B has a v-cycle C with a chordal path that separates v, vC.

It would be interesting to find a similar structural characterization for existence of k
level-disjoint partitions with the same root as in Theorem 5 also for k ≥ 3.

1.3.3 (Bi)perfect level-disjoint partitions

Let us now focus on finding level-disjoint partitions with as small maximal height as pos-
sible. This determines the overall time of the broadcasting. We say that v-rooted level-
disjoint partitions S1, . . . ,Sk of a graph G are

• perfect if every vertex u except v belongs in S1, . . . ,Sk to levels {d(u, v), d(u, v) +
1, . . . , d(u, v) + k − 1} (i.e. not necessarily in this order),

• biperfect if every vertex u except v belongs in S1, . . . ,Sk to levels {d(u, v), d(u, v) +
2, . . . , d(u, v) + 2k − 2} (i.e. not necessarily in this order).

Informally, this means that each vertex is in the smallest levels possible. The latter def-
inition is an adjustment for bipartite graphs. Clearly, the maximal height of perfect (or
biperfect for bipartite graphs) level-disjoint partitions attains the lower bound (1.2). Hence
broadcasting via perfect level-disjoint partitions of G attains optimal time (even locally
on each vertex). If G is bipartite, broadcasting via biperfect level-disjoint partitions of G
attains optimal time (even locally on each vertex).

First we have shown that the subgraph extension technique from Lemma 2 can be
adopted for finding (bi)perfect level-disjoint partitions as well if we include the following
isometric condition on the subgraph. We say that a subgraph H of a graph G containing
a vertex v preserves distances to v if dH(u, v) = dG(u, v) for every vertex u of H.

Theorem 6 ([79]). Let v be a vertex of a graph G and H be a subgraph of G containing
N(v)∪{v} and preserving distances to v. Then any k (bi)perfect v-rooted level-disjoint par-
titions of H can be extended to k (bi)perfect, respectively, v-rooted level-disjoint partitions
of G.

This raised a question for which simple graphs one can find (bi)perfect level-disjoint
partitions. It turned out that so called wheels and biwheels are very useful for this purpose.
A k-wheel Wk for k ≥ 0 centered at a vertex v is the graph on vertices v, w1, . . . , wk with
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Figure 1.6: k-wheels and k-biwheels centered at v for k = 0, 1, 2, 3.

edges joining v to all wi’s and edges joining wi and wi+1 for every 1 ≤ i ≤ k where wk+1 is

identified as w1. A k-biwheel Ŵk for k ≥ 0 centered at a vertex v is the subdivision of Wk

centered at v obtained by inserting a new vertex xi to the edge between wi and wi+1 for
every 1 ≤ i ≤ k. Note that we define wheels and biwheels also for k ≤ 2 only for technical
reasons. See Figure 1.6 for an illustration of small wheels and biwheels.

By applying Theorem 6 for wheels and biwheels we obtain the following sufficient con-
dition on finding (bi)perfect level-disjoint partitions. Note that the number k of partitions
is optimal.

Theorem 7 ([79]). Let v be a vertex of degree k ≥ 1 in a graph G. If G has a k-wheel
centered at v, then G has k perfect level-disjoint partitions rooted at v. If G is bipartite,
k ≥ 3, and G has a k-biwheel centered at v, then G has k biperfect level-disjoint partitions
rooted at v.

Biwheels naturally occur in Cartesian product graphs, but they can be also found in
other extensively studied networks such as circulant graphs or Knödel graphs. This gives
us tight constructions for large classes of graphs. In particular for hypercubes we obtain
the following result, affirmatively answering a Conjecture 1.

Corollary 2 ([79]). For every n ≥ 3 there exist n (biperfect) level-disjoint partitions of
Qn with the same root and with the optimal height 3n− 2.

Similar tight results were obtained for bipartite tori, meshes, Knödel graphs, and cir-
culant graphs [79].

1.4 Incidence colorings

An incidence coloring is one of many variants of graph colorings. An incidence in a graph
G is a pair (v, e) where v is a vertex of G and e is an edge of G incident to v. Two incidences
(v, e) and (u, f) are said to be adjacent if at least one of the following holds: (a) v = u,
(b) e = f , or (c) vu ∈ {e, f}. See Figure 1.7 for an illustration. An incidence coloring of
G is a coloring of its incidences such that adjacent incidences are assigned distinct colors.
The least k such that G admits an incidence coloring with k colors is called the incidence
chromatic number of G, and is denoted by χi(G).

24



v = u

e f

u

e = fv

u

e f
v

(a) (b) (c)

Figure 1.7: Three types of adjacent incidences.

This notion has an application for conflict-free communication in the following situ-
ation. Consider a synchronous communication network represented by a graph G. The
following restrictions seem to apply in many real cases and are reasonable also for human
communication. In each round,

• every node can either listen or talk (or do nothing),

• every node can listen to at most one neighbor,

• every node can talk to more neighbors.

Our aim is to design a scheme of communication with a minimal number of rounds during
which all pairs of neighbors can communicate between each other (i.e. in both directions)
according to the above restrictions. It is easy to see that an incidence coloring of G with
colors [n] corresponds to such communication scheme. Indeed, a color i at incidence (u, uv)
indicates that in round i, the vertex v should talk (possibly to more neighbors at once)
and the vertex u should listen to v. Thus, the incidence chromatic number χi(G) specifies
the minimal number of rounds needed for such communication. See Figure 1.8 for an
illustration.
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Figure 1.8: An incidence coloring of Q3 with 5 colors.

The incidence coloring of graphs was defined by Brualdi and Massey [17] and attracted
considerable attention as it is related to several other types of colorings. As already ob-
served in [17], it is directly connected to strong edge-coloring, i.e. a proper edge-coloring
such that the edges at distance at most two receive distinct colors. Indeed, an incidence
coloring of a graph G corresponds to a strong-edge coloring of the graph obtained by
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subdividing each edge of G with a single vertex. Furthemore, Guiduli [85] observed that
incidence coloring is a special case of directed star arboricity, introduced by Algor and
Alon [3]. For a survey on incidence colorings we refer to [162].

1.4.1 Incidence colorings of Cartesian products

It is easy to see that χi(G) ≥ ∆(G) + 1 for every (nontrivial) graph. It is known that
equality holds for Halin graphs with maximum degree at least 5 [177], outerplanar graphs
with maximum degree at least 7 [161], planar graphs with girth at least 14 [13], and square,
honeycomb and hexagonal meshes [108]. Sun [169] observed that for any n-regular graph
G, χi(G) = n + 1 if and only if G has a partition into n + 1 (perfect) dominating sets. A
prime example of a graph having this property is the hypercube of dimension n = 2p − 1
where p is an integer. In this case such partition of Qn exists by the well-known Hamming
code and its cosets.

As for the upper bound, Brualdi and Massey [17] proved that χi(G) ≤ 2∆(G) for every
graph G and they conjectured that χi(G) ≤ ∆(G) + 2 for every graph G. This conjecture
has been disproved by Guiduli [85] who showed that Paley graphs have incidence chromatic
number at least ∆ + Ω(∆). Furthermore, he proved that χi(G) ≤ ∆(G) + 20 log ∆(G) + 84
for every graph G, which is currently the best upper bound for general graphs.

Although the “∆ + 2 conjecture” of Brualdi and Massey has been disproved in general,
it has been confirmed for many graph classes, e.g. for cubic graphs [126], partial 2-trees
(and thus also outerplanar graphs) [102], and powers of cycles (with a finite number of
exceptions) [135]. In [71] we gave the following sufficient condition for a Cartesian product
graph to have the incidence chromatic number at most ∆ + 2.

Theorem 8 ([71]). Let G be a graph with χi(G) = ∆(G) + 1 and let H be a subgraph of a
regular graph H ′ such that χi(H

′) = ∆(H ′) + 1 and ∆(G) + 1 ≥ ∆(H ′)−∆(H). Then,

χi(G�H) ≤ ∆(G�H) + 2 .

In [71] we also introduce two classes of graphs such that the Cartesian product of factors
from each of them has the incidence chromatic number at most ∆ + 2.

For hypercubes, Pai et al. [141] showed that χi(Qn) = n + 2 if n = 2p − 2 and p ≥ 2,
or n = 2p + 2q − 1, or n = 2p + 2q − 3 and p, q ≥ 2 and they conjectured the following.

Conjecture 2. [141] χi(Qn) = n+ 2 if n = 2p − 1 for no integer p.

By applying Theorem 8 we confirmed Conjecture 2. Hence the incidence chromatic
number of hypercubes is as follows.

Corollary 3 ([71]). For every n ≥ 1,

χi(Qn) =

{
n+ 1 if n = 2p − 1 for some integer p ≥ 0,

n+ 2 otherwise.

Conjecture 2 has been independently confirmed also by Shiau et al. [157].

26



1.4.2 Incidence colorings of subquartic graphs

Many real-world applications lead to graphs of small degrees, for example a city road map.
For cubic graphs, it is known that the ∆ + 2 conjecture holds, i.e. they have an incidence
coloring with 5 colors [126]. On the other hand, the smallest graph G in terms of the
maximum degree and the number of vertices that does not admit an incidence coloring
with at most ∆(G) + 2 colors is, up to our knowledge, a 6-regular graph on 11 vertices
introduced in [32].

For graphs of maximum degree 5 the current best upper bound [17] is 10. For graphs
of maximum degree 4 the previous best upper bound [17] was 8. In [72] we improved the
upper bound for subquartic graphs, i.e. graphs with the maximum degree 4.

Theorem 9 ([72]). Let G be a graph with the maximum degree ∆(G) = 4. Then χi(G) ≤ 7.

In our proof we first decompose a subquartic graph G into a subcubic graph (which
admits an incidence coloring with at most 5 colors by [126]) and two disjoint matchings.
Then we show how to modify the incidence coloring of the subcubic graph so that, using
two additional colors, one can color all the incidences of G using 7 colors altogether.

It still remains an open problem whether the bound can be decreased to 6 colors.
In [54], the authors verified that some special classes of subquartic graphs have an incidence
coloring with at most 6 colors. Additionally, using computer analysis, we verified that it
holds also for all 4-regular graphs on at most 14 vertices.

1.5 Distance magic labelings

There are many problems that lead to study of various assignments of integers to vertices or
edges (or both) in a given graph under certain conditions. Such assignments are called graph
labelings. They include problems from coding theory, circuit design, frequency assignment
etc. For references see the (dynamic) survey on graph labelings by Galian [65].

Distance magic labelings are graph labelings defined as follows. Let G be an (undi-
rected) graph on k vertices. A bijection f : V (G) → [k] is a distance magic labeling of G
if there is (a so called magic constant) m such that

∑

v∈N(u)

f(v) = m

for every vertex u. For an example see Figure 1.9.
Distance magic labelings are also known as Σ-labelings [174], 1-vertex magic vertex

labelings [127], or neighborhood magic labelings [1]. Miller et al. [127] refer to Sedláček
[152] for a first introduction of the notion of magic labelings in 1963 (although it was
defined for edges at that time). The term distance magic labeling for this concept was
introduced by Sugeng et al. [167].

The concept of distance magic labelings of graphs is motivated by the well-known magic
rectangles. An m×n array containing entries {1, 2, . . . ,mn} is a magic rectangle if its row
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Figure 1.9: A distance magic labeling of a 4-wheel.

sums are equal and its column sums are equal. Given a magic rectangle m× n, we obtain
a distance magic labeling of the complete m partite graph with each partite set of size n
by labeling the vertices of each part by the rows of the rectangle.

Furthermore, distance magic labelings have applications in design of incomplete tour-
naments. Assume we have k players with assigned ranks from 1 to k that express their
strength, for instance in some long-term ranking. If they play a complete round robin
tournament, a player with rank r plays k− 1 matches against all k− 1 possible opponents
with their total rank t−r where t = (1+k)k/2 is the sum of all ranks. Instead, the players
may decide to play a (shorter) incomplete tournament such that each player plays against
the same number n of opponents and the sum of ranks of opponents is the same number
m for each player. This is called an equal strength incomplete tournament. Clearly, such
tournament exists if and only if there is an n-regular graph on k vertices that has a distance
magic labeling. Moreover, if we organize a tournament according to the complement of a
such labeled graph, then a player with rank r plays k − 1 − n matches against different
opponents with their total rank t −m − r, which mimics the complete tournament. This
is called a fair incomplete tournament. For results on existence of such graphs we refer to
the survey [5].

In their survey, Arumugam et al. [5] posed the following conjecture on distance magic
labelings of hypercubes that originally appeared in Acharya et al. [1]. It is easy to see that
an n-regular graph admits a distance magic labeling only if n is even.

Conjecture 3 ([1]). For any even integer n ≥ 4, the n-dimensional hypercube Qn does
not have a distance magic labeling.

Fronček et al. [7] proved that the statement holds for every n ≡ 0 (mod 4). Further-
more, he found an ad-hoc distance magic labeling of Q6, contradicting Conjecture 3. In
our work [73], we completely settle the remaining cases.

Theorem 10 ([73]). Qn has a distance magic labeling if and only if n ≡ 2 (mod 4).

Our construction of distance magic labelings of Qn for n ≡ 2 (mod 4) is based on
elementary linear algebra. We work with labels as with the vectors in Fn

2 , i.e. in their
binary representation. Then we consider bijective mappings f : Fn

2 → Fn
2 such that the set

of vectors
L(u) = {f(u⊕ ei) | i ∈ [n]}
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has the same number of 0’s as 1’s in each coordinate for every u ∈ Fn
2 , where e1, . . . , en

is the standard basis of Fn
2 . This kind of balance condition implies that f is a distance

magic labeling. The key idea relies in showing that such a mapping f can be obtained by
multiplication with a regular matrix that has a balanced set of columns. Then it suffices
to observe that such matrix exists if n ≡ 2 (mod 4).

Moreover, our construction gives a labeling of Qn that is in general d-distance magic
for every odd 1 ≤ d ≤ n. That is, for every odd 1 ≤ d ≤ n, if we sum the labels at all
vertices at distance d from a vertex u, we obtain the same value for each vertex u.

Applying Theorem 10, Cichacz and Nikodem [31] showed that tQn, G×Qn, and G◦Qn

have a distance magic labeling for any integer t ≥ 1 and any regular graph G if n ≡ 2
(mod 4), where tQn denotes the disjoint union of t copies of Qn and G×Qn, G◦Qn denote
the direct and lexicographic (respectively) products of G and Qn.

1.6 Parity vertex colorings

Many problems across different areas can be studied in terms of homomorphisms and in
particular embeddings. An embedding of a graph G into a graph H is an injective map
f : V (G)→ V (H) such that f(u)f(v) ∈ E(H) for every edge uv ∈ E(G), i.e. an injective
homomorphism of G to H. It is an NP-complete problem to decide whether a given graph
admits an embedding into Qn [116], even when restricted for trees [176].

Embeddings into hypercubes are motivated by parallel processing on hypercube archi-
tectures or by simulations of other architectures. Although this problem has been studied
since 1950 [154], there are still many open problems, for example, Havel’s conjecture [90]
asserting that every balanced ternary tree on 2n vertices is a spanning tree of Qn.

Havel and Morávek [92] came with a concept of so called B-valuations to characterize
all graphs embeddable into hypercubes. Bunde et al. [20] introduced a simplified notion of
parity edge colorings. A parity path in a colored graph is a path with every color occurring
even number of times. A parity edge coloring is an edge coloring without a parity path.
The minimum number of colors in a parity edge coloring of G is denoted by χ′p(G). Bunde
et al. [20] showed that a tree T embeds into Qn if and only if χ′p(T ) ≤ n.

Borowiecki et al. [14] considered a vertex version of parity colorings. A parity vertex
coloring of a graph G is a coloring of V (G) such that each path in G contains some color
odd number of times. The minimum number of colors in a parity vertex coloring of G is
denoted by χ(G). This type of coloring is closely related to vertex rankings, conflict free
colorings, or unique maximum colorings [28, 163].

In particular, a vertex ranking of a graph G is a proper vertex coloring by a linearly
ordered set of colors such that every path between vertices of the same color contains some
vertex of a higher color. The minimum numbers of colors in a vertex ranking of G is
denoted by χr(G). This parameter is also known as a tree-depth [136].

Clearly, every vertex ranking is also parity vertex coloring, so χp(G) ≤ χr(G) for every
graph G. Borowiecki et al. [14] conjectured that for trees these parameters behave almost
the same.
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Conjecture 4 ([14]). For every tree T it holds χr(T )− χp(T ) ≤ 1.

In [80] we show that the above conjecture is false for every binominal tree of order
n ≥ 5. A binomial tree Bn of order n ≥ 0 is a rooted tree defined recursively. B0 = K1

with the only vertex as its root. The binomial tree Bn for n ≥ 1 is obtained by taking
two disjoint copies of Bn−1 and joining their roots by an edge, then taking the root of the
second copy to be the root of Bn.

Binomial trees have been under consideration also in other areas. For example, Bn is a
spanning tree of the n-dimensional hypercube Qn that has the minimum average congestion
(also known as total distance or Wiener index) among all spanning trees of Qn [4].

In [14] it was shown that χr(Bn) = n+ 1 for all n ≥ 0. We show that χp(B3k) ≤ 2k+ 1
for every k ≥ 1, which hence disproves the above conjecture.

Theorem 11 ([80]). For every k ≥ 1 the binomial tree B3k has a parity vertex coloring
with 2k + 1 colors.

From Theorem 11 we obtain the following general upper bound.

Corollary 4 ([80]). χp(Bn) ≤
⌈
2n+3

3

⌉
for every n ≥ 0.

On the other hand, Borowiecki et al. [14] showed that χp(Pn) = dlog2(n+ 1)e for every
n-vertex path Pn. This gives a trivial lower bound χp(Bn) ≥ dlog2(2n+ 1)e as Bn contains
a 2n-vertex path. This gap between the lower bound and our upper bound remains open.

As for the hypercube, Borowiecki et al. [14] determined values χp(Q0) = 1, χp(Q1) = 2,
χp(Q2) = 3, χp(Q3) = 5, χp(Q4) = 8 and they strongly believe that χp(Qn) = Fn + 2,
where Fn is the nth Fibonacci number, which still remains an open question. Soukup [163]
checked that 13 ≤ χp(Q5) ≤ 15.

1.7 Gray codes

Generating all objects in a combinatorial class such as permutations, subsets, combina-
tions, partitions, trees, strings etc. is one of the oldest and most fundamental algorithmic
problems, and such generation algorithms appear as core building blocks in a wide range
of practical applications, see the survey [149]. In fact, half of the most recent volume [115]
of Knuth’s seminal series The Art of Computer Programming is devoted entirely to this
fundamental subject. The ultimate goal for algorithms that efficiently generate each object
of a particular combinatorial class exactly once is to generate each new object in constant
time. Such optimal algorithms are sometimes called loopless algorithms, a term coined by
Ehrlich in his influential paper [52]. Note that a constant-time algorithm requires in par-
ticular that consecutively generated objects differ only in a constant amount, for example
in a single transposition of a permutation, in adding or removing a single element from a
set, or in a single tree rotation operation. These types of orderings have become known as
combinatorial Gray codes.
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They are named after Frank Gray, a physicist and researcher at Bell Labs, who invented
a method [68] to generate all 2n many subsets of [n] by repeatedly adding or removing a
single element, now known as the binary reflected Gray code. In graph theory terms this
corresponds to a Hamiltonian cycle inQn. The binary reflected Gray code found widespread
use, for example in circuit design and testing, signal processing and error correction, data
compression etc.; many more applications are mentioned in the survey [149]. This code
is also implicit in the well-known Towers of Hanoi puzzle and the Chinese ring puzzle,
and it also appears in music theory [40]. It has many interesting properties, see [115,
Section 7.2.1.1], and there is a simple loopless algorithm to compute it [52, 10].

Since the discovery of the binary reflected Gray code, there has been continued in-
terest in developing Gray codes for bitstrings of length n that satisfy various additional
constraints. For instance, a Gray code with the property that each bit is flipped (almost)
the same number of times was first constructed by Bakos [2]. Goddyn and Gvozdjak con-
structed an n-bit Gray code in which any two flips of the same bit are almost n steps
apart [67], which is best possible. These are only two examples of an extensive work on
possible Gray code transition sequences; see also [21, 170, 39]. Savage and Winkler [150]
constructed a Gray code that generates all 2n bitstrings such that all bitstrings with Ham-
ming weight k appear before all bitstrings with weight k + 2, for each 0 ≤ k ≤ n− 2.

They used this construction to tackle the middle two levels problem, which asks for a
cyclic listing of all bitstrings of length 2n+1 with weights in the interval [n, n+1] by flipping
a single bit in each step; that is, a Hamiltonian cycle in the subgraph Q2n+1,[n,n+1] of Q2n+1

induced by the middle two levels. The existence of such Hamiltonian cycle for any n ≥ 1
was conjectured independently in the 80’s by Havel [91] and Buck and Wiedemann [19].
The conjecture has also been attributed to Dejter, Erdős, Trotter [112] and various others,
and also appears in the popular books [178, 115, 36]. The middle levels conjecture has
attracted considerable attention over the last 30 years [148, 58, 150, 110, 42, 112, 41, 101,
81, 133, 159, 160], and a positive solution, i.e. an existence proof for a Hamiltonian cycle
in Q2n+1,[n,n+1] for any n ≥ 1, has been found only recently by Mütze [132]. A shorter and
much accessible new proof that avoids almost all technical details was presented in [75],
and an algorithm for computing the cycle using O(1) amortized time and O(n) space was
presented in [130].

1.7.1 Trimming and gluing Gray codes

Another combinatorial generation problem of similar importance is to list all
(
n
k

)
many

k-element subsets of [n] by repeatedly exchanging a single element. Also for this problem,
loopless algorithms are well-known [171, 52, 10, 50, 51, 146, 27, 109] (see also [115, Section
7.2.1.3]).

A common generalizations of the binary reflected Gray code, the middle levels problem,
and the above problem is to generate all, or almost all, subsets of [n] whose size is in some
interval [k, l], where 0 ≤ k ≤ l ≤ n, by repeatedly adding or removing a single element, or
by exchanging a single element if necessary. The binary reflected Gray code corresponds to
the case k = 0 and l = n in Qn, the middle levels problem corresponds to the case k = n,
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l = n+ 1 in Qn, and the above problem corresponds to case l = k in Qn.
Since the graph Qn,[k,l] induced by all levels between k and l in Qn, 0 ≤ k ≤ l ≤ n,

is bipartite, it has a Hamiltonian cycle only if the two partition classes have the same
size, which happens only for odd dimension n and between two symmetric levels k and
l = n − k, or for even dimension n and [k, l] = [0, n]. However, we may at least ask for
a cycle that covers a smaller partition class, which is called a saturating cycle. Clearly, a
saturating cycle in a balanced bipartite graph is a Hamiltonian cycle. Hence saturating
cycles naturally generalize Hamiltonian cycles for unbalanced bipartite graphs.

In our work [74] we asked for which weight ranges [k, l] does the graph Qn,[k,l] have a
saturating cycle, and we positively resolved this question for all values of k and l except
the cases covered by the generalized middle level conjecture (Conjecture 5 below), which
is still open. The case l = k + 1 was already covered in [131].

Theorem 12 ([74]). For any n ≥ 3 the graph Qn,[k,l] has a saturating cycle in the following
cases:

(i) If 0 = k < l ≤ n or 0 ≤ k < l = n, and l − k ≥ 2.

(ii) If 1 ≤ k < l ≤ n− 1 and l − k ≥ 2 is even.

(iii) If 1 ≤ k < l ≤ dn/2e or bn/2c ≤ k < l ≤ n− 1, and l − k ≥ 3 is odd.

(iv) If 1 ≤ k < l ≤ n − 1 and l − k ≥ 3 is odd, under the additional assumption
that Q2m+1,[m−c,m+1+c], c := (l − k − 1)/2, has a Hamiltonian cycle for all m =
c, c+ 1, . . . , (min(k + l, 2n− k − l)− 1)/2.

If the graph Qn,[k,l] is unbalanced, i.e. is has δ > 0 more vertices in the larger than in
the smaller partite set, a saturating cycle in Qn,[k,l] necessarily omits δ vertices from the
larger partite set. However, if we insist on all vertices of Qn,[k,l] to be included in our listing,
then this can be achieved by allowing steps where instead of only a single bitflip, two bits
are flipped. This can be viewed as augmenting the underlying graph Qn,[k,l] by adding
distance-2 edges. In this case we may ask for a cyclic enumeration of all vertices of Qn,[k,l]

with only δ of these distance-2 steps. Such an enumeration is called a tight enumeration. A
tight enumeration can be seen as a travelling salesman tour through all vertices of Qn,[k,l] of
minimal total distance, where distances are measured by Hamming distance. An example
of such tight enumeration is the above mentioned listing of all k-element subsets of [n] by
repeatedly exchanging a single element [171].

In [74] we also asked for which weight ranges [k, l] does the graph Qn,[k,l] have a tight
enumeration. Similarly as in Theorem 12, we positively resolved this question for all values
of k and l except the cases covered by the generalized middle level conjecture (Conjecture 5
below), which is still open. The case l = k was already covered in [171].

Theorem 13 ([74]). For any n ≥ 3 there is a tight enumeration of the vertices of Qn,[k,l]

in the following cases:

(i) If 0 = k < l ≤ n or 0 ≤ k < l = n.
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(ii) If 1 ≤ k < l ≤ n and l − k ≥ 2 is even.

(iiia) If 1 ≤ k < l ≤ n− 1 and l − k = 1.

(iiib) If 1 ≤ k < l ≤ dn/2e or bn/2c ≤ k < l ≤ n− 1, and l − k ≥ 3 is odd.

(iv) If 1 ≤ k < l ≤ n − 1 and l − k ≥ 3 is odd, under the additional assumption
that Q2m+1,[m−c,m+1+c], c := (l − k − 1)/2, has a Hamilton cycle for all m = c, c +
1, . . . , (min(k + l, 2n− k − l)− 1)/2.

Proofs of Theorems 12 and 13 (cases (i) and (ii)) are based on ‘trimming’ the reflected
Gray code to consecutive levels in Qn, as well as ‘gluing’ saturating cycles or tight enu-
merations together (other cases). From an algorithmic point of view, this approach leads
to corresponding loopless algorithms that generate each bitstring of a saturating cycle or a
tight enumeration in time O(1) (cases (i) and (ii)) or in time O(1) on average (case (iii)).

1.7.2 Gray codes and symmetric chains

The middle levels problem can be generalized for middle 2l levels as follows, suggested inde-
pendently by Savage [148], by Gregor and Škrekovski [81], and by Shen and Williams [156].

Conjecture 5. For any n ≥ 1 and 1 ≤ l ≤ n + 1, the graph Q2n+1,[n+1−l,n+l] has a
Hamiltonian cycle.

The special case ` = 1 of Conjecture 5 is the middle two levels problem resolved by
Mütze [132], as mentioned before. The other boundary case ` = n + 1 is solved by the
binary reflected Gray code. Moreover, the cases ` = n and ` = n−1 were settled in [53, 123]
and [81], respectively.

In our work [70] we solve the case ` = 2 of Conjecture 5, i.e., we construct a cyclic
listing of all bitstrings of length 2n+ 1 with Hamming weights in the interval [n−1, n+ 2].

Theorem 14 ([70]). For any n ≥ 1, the subgraph of Q2n+1 induced by the middle four
levels has a Hamiltonian cycle.

The proof of Theorem 14 uses similarly involved techniques as the proof of the mid-
dle two levels problem [132, 75]. Combining Theorem 14 with Theorem 12 shows more
generally that the subgraph of the n-cube induced by any four consecutive levels has a
saturating cycle.

As another partial result towards Conjecture 5, we show that the subgraph of the
(2n + 1)-cube induced by the middle 2` levels has a cycle factor. A cycle factor is a
collection of disjoint cycles which together visit all vertices of the graph. In particular, a
Hamilton cycle is a cycle factor consisting only of a single cycle.

Theorem 15 ([70]). For any n ≥ 1 and 1 ≤ ` ≤ n + 1, the subgraph of Q2n+1 induced by
the middle 2` levels has a cycle factor.
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Our proof of Theorem 15 uses a result of Shearer and Kleitman [155] on existence of
two edge-disjoint symmetric chain decompositions in Qn for any n ≥ 2. A symmetric chain
in Qn is a path (xk, xk+1, . . . , xn−k) in Qn where xi is from level i for all k ≤ i ≤ n−k, and
a symmetric chain decomposition, or SCD for short, is a partition of the vertices of Qn into
symmetric chains. Two SCDs are edge-disjoint if the corresponding paths in the graph Qn

are edge-disjoint, i.e., if there are no two consecutive vertices in one chain of the first SCD
that are also contained in one chain of the second SCD.

Apart from building Gray codes, symmetric chain decompositions are used in construc-
tion of rotation-symmetric Venn diagrams for n sets when n is a prime number [84, 147],
and they also appear in the solution the Littlewood-Offord problem on sums of vectors [12].

This approach motivates the search for a large collection of pairwise edge-disjoint SCDs
in the n-cube. So far, we know that there Qn has four pairwise edge-disjoint SCDs except
in few cases for small dimension n. This extends the only previously known construction
of SCD that dates back to 50’s [15].

Theorem 16 ([70]). Qn contains four pairwise edge-disjoint SCDs for any even n ≥ 6,
for n = 7, and for any odd n ≥ 13.

Note that four edge-disjoint SCDs are best possible for Q6, as they use up all edges
incident with the middle level. The cases n = 9 and and n = 11 are excluded in the
statement as our proof technique does not cover these cases. However, we believe that the
statement holds in these cases as well. In fact, we conjecture that the Qn has bn/2c + 1
pairwise edge-disjoint SCDs, but so far we only know that this holds for n ≤ 7. Clearly,
finding this many edge-disjoint SCDs would be best possible, as they use up all middle
edges of the cube.

Recently, Däubel et al. [35] showed that Qn has five edge-disjoint SCDs for any n ≥ 90.
There is also a stronger concept of so called orthogonal symmetric chain decompositions
introduced by Shearer and Kleitman [155] and studied recently by Spink [164].

1.7.3 Long paths and cycles in hypercubes with faulty vertices

Applications of the hypercube in the theory of interconnection networks inspired many
questions related to its robustness. In particular, if some faulty (or busy) vertices F ⊆
V (Qn) and all incident edges are removed from Qn, is there a cycle in the remaining graph,
denoted by Qn − F , which covers ‘almost’ all vertices? And how many vertices in the
worst-case can be removed? This is another approach to Gray code type problems.

Clearly, if all vertices of F are from the same bipartite class of Qn, the length of any
cycle in Qn − F cannot exceed 2n − 2|F |. This leads to the following definition. A cycle
of length at least 2n − 2|F | in Qn − F is called a long F -free cycle in Qn. Let f(n) be the
maximum integer such that Qn−F has a long F -free cycle for every set F of at most f(n)
vertices in Qn.

The study of this parameter has a numerous literature. Firstly, Chan and Lee [24]
showed that f(n) ≥ (n − 1)/2. Then, Yang et al. [182] improved it to f(n) ≥ n − 2, and
Tseng [173] to f(n) ≥ n− 1. Next, Fu [63] significantly increased it to f(n) ≥ 2n− 4 for
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n ≥ 3, and Castañeda and Gotchev [23] strengthened it further to f(n) ≥ 3n−7 for n ≥ 5.
Fink and Gregor [59] obtained the first quadratic lower bound f(n) ≥ n2/10 + n/2 + 1 for
n ≥ 15.

On the other hand, Koubek [114] and independently Castañeda and Gotchev [23] no-
ticed that for every n ≥ 4 there is a set F of

(
n
2

)
− 1 vertices such that Qn−F contains no

cycle of length at least 2n − 2|F |, so f(n) ≤
(
n
2

)
− 2. An example of a such set F consists

of all but one vertex of weight 2. Indeed, since all vertices of F have even weight, any long
F -free cycle in Qn must visit all the remaining vertices of even weight. Namely, it has to
visit the vertex 0 = (0, . . . , 0) and some vertex of weight 4, which is clearly impossible as
they are in different 2-connected components of Qn − F .

From the previous results it follows that the above upper bound is sharp for n = 4 [63]
and for n = 5 [23]. Castañeda and Gotchev [23] conjectured that it is sharp for all n ≥ 4.

Conjecture 6 ([23]). For every n ≥ 4 it holds f(n) =
(
n
2

)
− 2.

In [60] we confirm Conjecture 6 by the following result.

Theorem 17 ([60]). For every set F of at most
(
n
2

)
− 2 vertices in Qn and n ≥ 4, the

graph Qn − F contains a cycle of length at least 2n − 2|F |.

To prove Theorem 17, we needed to consider a modification of this problem for long
paths with prescribed endvertices. Similarly as above, a path in Qn−F between vertices u
and v, and of length at least 2n− 2|F | − 2 is called a long F -free uv-path in Qn. Note that
in case u and v are from different bipartite classes, the length of any long F -free uv-path
is at least 2n−2|F |−1. Also note that in the case when F ∪{u, v} is in the same bipartite
class of Qn, the length of any uv-path in Qn − F cannot exceed 2n − 2|F | − 2, and hence
a long F -free uv-path has optimal length.

Fu [64] showed that Qn−F contains a long path between any two vertices if |F | ≤ n−2
and n ≥ 3. To improve this result for larger sets F , one needs to introduce additional
conditions on the neighbors of prescribed endvertices. Kueng et al. [118] strengthened the
number of tolerable faults to |F | ≤ 2n− 5 under the condition that the minimal degree of
Qn − F is at least 2. Fink and Gregor [59] showed that a much weaker condition is both
necessary and sufficient for sets F with |F | ≤ 2n− 4. Namely, for every two vertices u and
v of Qn − F , there exists a long F -free uv-path in Qn if and only if N(u) 6⊆ F ∪ {v} and
N(v) 6⊆ F ∪ {u}, where N(x) denotes the set of neighbors of a vertex x in Qn.

In [60] we show that F can be as large as f(n+1)/2 if both prescribed endvertices have
only few neighbors in F .

Theorem 18 ([60]). For every set F of at most (n2 + n− 4)/4 vertices in Qn and n ≥ 5,
the graph Qn−F contains a path of length at least 2n−2|F |−2 between every two vertices
such that each of them has at most 3 neighbors in F .

The general difficulty with quadratic bounds on |F | in Theorems 17 and 18 is that the
hypercube cannot be always split into subcubes so that the bounds hold in each subcube.
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Thus, the standard induction technique fails. We introduce up to our knowledge a new
technique of so called potentials which allows us to effectively deal with such situations.

From Theorem 17 it follows that the decision problem whether the hypercube Qn for the
given set F of faulty vertices contains an F -free cycle has a trivial answer if |F | ≤

(
n
2

)
− 2.

On the other hand, Dvořák and Koubek [49] showed that this problem is NP-hard if |F | is
unbounded. Moreover, they [49] presented a function φ(n) = Θ(n6) such that the problem
remains NP-hard even if |F | ≤ φ(n). Later, Dvořák et al. [47] showed that this problem
remains NP-hard even for a certain function φ(n) = Θ(n4). Furthermore, Dvořák and
Koubek [48] described a polynomial algorithm for the similar decision problem of long
F -free paths between given vertices in Qn if |F | ≤ n2/10 + n/2 + 1.

Li et al. [122] considered a variant of the long path problem in the hypercube Qn with
f faulty vertices for multiple paths. They showed that for any integer k with 1 ≤ k ≤ n−1
and any two sets S and T of k fault-free vertices in different partite sets of Qn (n ≥ 2),
if f ≤ 2n − 2k − 2 and each fault-free vertex has at least two fault-free neighbors, then
there exist k fully disjoint fault-free paths linking S and T which contain at least 2n− 2f
vertices. Note that their bound on the number f of faulty vertices is linear whereas we
have quadratic bounds in Theorems 17 and 18.

1.8 Linear extension diameter

As for other classes of combinatorial Gray codes, Pruesse and Ruskey [143] considered the
problem of generating all linear extensions of a given poset P by adjacent transpositions.
This corresponds to finding a Hamiltonian path in a so called linear extension graph of P ,
which they first introduced.

A linear extension L of a poset (a partially ordered set) P is a linear order on the
elements of P that preserves the relation from P ; that is, x ≤P y implies x ≤L for all
x, y ∈ P . By an adjacent transposition in L we mean swapping the order of two consecutive
elements in L. The linear extension graph G(P) of P has all its linear extensions as vertices,
two of them being adjacent whenever they differ in a single adjacent transposition. For
example, the linear extension graph of an antichain is the permutahedron.

An explicit study of structural properties of linear extension graphs was started by
Björner and Wachs [11] and by Reuter [145]; see also [134]. Among its properties, let us
mention that the linear extension graph of any poset is a partial cube; that is, an isometric
subgraph of a hypercube. Incomparable pairs of the poset correspond to directions in the
minimal hypercube into which the linear extension graph isometrically embeds, which also
correspond to the Θ-classes of the so called Djoković-Winker relation Θ.

The linear extension diameter of a finite poset P , denoted by led(P), is the diameter
of G(P). It equals the maximum number of pairs of P that appear in a reversed order in
two linear extensions of P . In other words, it is the maximum number of incomparable
pairs in a 2-dimensional extension of P . The linear extension diameter was introduced by
Felsner and Reuter [57] who investigated its relation to other poset parameters such as
height, width, fractional dimension and other properties. They also conjectured that the
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linear extension diameter of the Boolean lattice Bn is

led(Bn) = 22n−2 − (n+ 1)2n−2.

Felsner and Massow [56] proved this conjecture by an (elegant) combinatorial argument
and characterized all diametral pairs of linear extensions of Bn. They are formed by a
reversed lexicographical order with respect to some permutation σ of atoms (shortly σ-
revlex) and a σ-revlex order where σ denotes the reverse of σ. Moreover, they extended
this characterization to a more general class of downset lattices of 2-dimensional posets.

Brightwell and Massow [16] show that determining the linear extension diameter of a
given poset is NP-complete problem. Interestingly, diametral pairs can be used to obtain
optimal drawings of the poset [56]. For further properties of linear extension graphs and
the linear extension diameter we refer to a dissertation of Massow [125] and the references
within.

In our work [61] we determine the linear extension diameter of the subposet B1,k
n of

the Boolean lattice Bn induced by the 1st and kth levels and we describe an explicit
construction of all diametral pairs of linear extensions. This partially solved a question of
Felsner and Massow [56] on diametral pairs of subposets of the Boolean lattice induced by
two levels.

Theorem 19 ([61]). For every 1 < k ≤ n,

led(B1,k
n ) =

((n
k

)

2

)
+ 2

(
n

k + 1

)
+

(
n

2

)
−

n−2∑

i=k
i≡n (mod 2)

(
i

k

)
.

Almost all diametral pairs are formed by two linear extensions that reverse all pairs of
atoms, all pairs of k-sets and certain pairs of an atom and a k-set that correspond to a
minimal vertex cover of so called dependency graph. For a precise characterization of all
diametral pairs see [61]. Our approach in fact allows to determine the maximal distance
between two linear extensions with fixed orders of atoms in terms of the minimal size of
a vertex cover of the respective dependency graph. The concept of dependency graphs is
new and may be of independent interest.
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Summary

The thesis is compiled as a collection of 12 publications from years between 2012 and
2018 selected from the total of 43 publications since 2000. It is divided into the intro-
duction with commentary as the first chapter and 7 following chapters that correspond to
combinatorial structures studied in these publications: queue layouts, level-disjoint par-
titions, incidence colorings, distance magic labelings, parity vertex colorings, Gray codes,
and linear extension diameter.

In these publications several open problems and conjectures have been solved, or pre-
viously known results were significantly improved. The improvements were often achieved
by novel constructions or by development of new techniques. In some of these publications,
new concepts have been introduced and explored. The most interesting results are listed
in the synopsis of the thesis.
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[72] P. Gregor, B. Lužar, and R. Soták, Note on incidence chromatic number of subquartic
graphs, J. Combin. Optim. 34 (2017), 174–181. DOI:10.1007/s10878-016-0072-2.

125

https://doi.org/10.1016/j.dam.2016.04.030
https://doi.org/10.1007/s10878-016-0072-2


Chapter 5

Distance magic labelings

This chapter contains the following publication:
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