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2 | Introduction 

well as an unprecedented control over building or modifying small structures with intricate 
properties. 

This thesis comprises a commented collection of works aimed at exploring structure–reactivity 
relationships of well-defined catalysts from the surface physics perspective. It deals with metal 
single-crystals, thin oxide films grown on metal supports, metallic nanoparticles supported on 
ordered or nanostructured oxides, bimetallic compounds, and other structures used as laboratory 
playgrounds for various chemical processes. The central motivation behind all these studies has been 
the explanation and, wherever possible, optimization of the properties of the investigated catalytic 
systems via detailed comprehension of elementary processes taking part at their surfaces. 

As will be shown in the following text, good understanding of molecular origins of reactivity on 
solid surfaces is crucial for rational design and tuning of catalyst composition and structure, as well 
as for finding optimal reaction conditions. In my contributions to this quest I have employed several 
advanced surface characterization techniques combined with analysis of reactants and reaction 
products, including various spectroscopic (XPS/SRPES/RPES, RAIRS, LEIS, TDS/TPR, AR-
QMS, SIMS) [3-18] and microscopic (STM, LEEM, AFM) [10, 19-21] methods, in most cases in-situ 
ultra-high vacuum (UHV) compatible ones [22-24]. Since the prerequisite for unraveling 
mechanisms of catalyzed reactions is the characterization of all the relevant elementary processes, 
the projects I participated in were devoted to adsorption [7, 9, 10, 16, 25-33], dissociation or 
decomposition [4-6, 13, 19, 20, 29, 31, 33-40], co-adsorption [6, 14, 29], recombination, surface 
diffusion (including spillover, reverse spillover, and local fluctuation phenomena) [3, 11, 41-43], 
interactions between individual components of a catalyst [8, 11, 16, 17, 44-46] and other aspects of 
surface science and chemical physics. When classified by the type of surface, these works deal with 
single crystals [10, 14, 18-21, 28, 36], alloys [7-9, 16, 27, 44, 47], ordered oxides [5, 12, 32, 33, 40], 
nanostructured and non-continuous oxides [46, 48-52], supported nanoparticles [3, 4, 6, 9, 11-13, 15, 
25-31, 33-35, 38, 39, 41-45, 53-56], and inverse catalysts [17, 51]. Several experimental works were 
also complemented with theoretical calculations or simulations [3, 30, 36, 40, 43, 45, 46, 53, 54, 57]. 

The presented research was conducted at several institutions and research infrastructures, namely 
Department of Chemical Physics at Fritz-Haber Institute of Max-Planck Society in Berlin, 
Department of Chemistry at University of California Irvine, Department of Chemistry at University 
of Virginia, Department of Surface and Plasma Physics at Faculty of Mathematics and Physics of 
Charles University, and Elettra Synchrotrone Trieste, together with other collaborating parties 
involved, as indicated in the respective published articles. 

The following chapters and the corresponding appendices are classified topically based on the type 
of chemistry, rather than chronologically, by the type of catalyst used, or by the method(s) applied. It 
covers selected aspects of three significant areas of current heterogeneous catalysis – interaction of 
solid surfaces with COx/NOx, with water, and with hydrocarbons. 
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4 | Heterogeneous catalysis 

Although the complexity of surfaces employed in experimental and theoretical works has increased 
dramatically over the last few decades and understanding basic principles of heterogeneous catalysis 
has been one of the main driving forces for the development of modern surface science [68], this 
field still remains far from becoming routine. 

2.1 Common motivation and challenges 

As has already been indicated in the previous chapter, chemists have been practicing 
nanotechnology (albeit not calling it so) for about two centuries, and for half a century by design. 
What modern nanotechnology and material physics has brought to chemistry was the ingenuity and 
the level of control in organizing atoms and molecules into ultrasmall structures with intricate 
properties and desired functionality. 

The catalysis-related issues of carbon management and renewable energy sources received increased 
recognition by the worldwide scientific, industrial, and political communities. Huge demands are 
being placed mainly on 1) increasing the efficiency of energy production and utilization of renewable 
sources, 2) significantly decreasing the carbon intensity of our economy, and 3) improving our ability 
to capture and sequester atmospheric carbon dioxide. This is why most of the works presented in 
this thesis deal with carbon management in some way – from catalysis of carbon oxides, through 
utilization and activation of light hydrocarbons, to clean hydrogen generation, just to name the main 
topics. 

From a practical point of view, apart from the primary motivation of using catalysts to run reactions 
with higher rates (and thus more affordably) there are a number of particular factors and aims 
driving the progress in the catalysis research, with the aforementioned environmental benignness in 
mind. They can be summarized as follows: 

 Minimization of the noble material usage, e.g. by their replacement with other elements, 
structural tailoring (via morphology, crystallography, dispersion, …), change of their oxidation 
state, alloying with other elements, etc.; 

 High efficiency per amount of the catalytic material used; 

 Low energy consumption (typically implying catalysis at lower temperatures and pressures); 

 Good tolerance for the presence of impurities in source chemicals; 

 High purity of products, putting lower demands on post-reaction purification; 

 Affordable and scalable process of the catalyst fabrication; 

 Production of novel compounds not achievable otherwise (where the cost does not necessarily 
have to be a primary concern). 

In this endeavor, the main quantitative indicators to be monitored are: 

 Activity – this essential parameter describes the increase in rate of a chemical reaction due to 
the presence of a catalyst. Activity is often quantified by turnover frequency (TOF) as the 
number of times that a given overall catalytic reaction takes place per catalytic site per unit 
time for a fixed set of reaction conditions (temperature, pressure or concentration, ratio of 
reactants, extent of reaction) [69]. In realistic applications, the aspect of accessibility of the 
catalytically active surface, which is related to the factors of heat and mass transport, may also 
play an important role in the overall activity. 

 Selectivity towards the desired reaction product is the single most important attribute of the 
catalyst quality. It determines the specific reaction pathway along which the required product is 
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formed, and the purity of the catalyzed reaction output; ideally 100% selectivity for the desired 
molecule in multipath reactions should be achieved via the energetically most facile pathway. 

 Stability is an important practical factor. It reflects the ability of a catalytic system to sustain 
harsh reaction conditions and an eventual presence of foreign materials, which may lead to its 
deactivation (via, e.g., morphological changes or poisoning). The original activity and 
selectivity of a catalyst has to be maintained as long as possible or there has to exist a 
reasonably facile procedure of catalyst regeneration.  

 Among the more practical complementary aspects to be included in the catalyst evaluation is 
the availability of source materials (considering their price, global reserve volume, or 
environmental burden of their extraction and processing), which possesses a strong driving 
force in the search of alternative materials and structures. 

In order to address the above goals, there have been parallel efforts made by the heterogeneous 
catalysis research and development in the following directions: 

 Detailed molecular-level understanding of the behavior of known (and already utilized) 
materials and structures; 

 Optimization of parameters of traditional catalysts (with respect to the material usage 
effectiveness, reaction activity or selectivity, stability, etc.), as well as optimization of 
conditions in which they operate; 

 Rational design of new structures based on traditional materials and their combinations; 

 Development of completely novel systems based on materials and/or structures considered 
non-traditional in catalysis. 

More specific backgrounds and motivations related to the particular classes of chemical processes 
presented in this thesis will be provided individually at the beginning of each respective chapter. 

2.2 Model systems in catalysis 

The conventional route towards the discovery of novel or optimized functional materials in many 
fields of industry consists of a number of iterative steps, which makes it rather long and expensive 
process. In particular, application of this concept in catalysis is largely a matter of trial and error. 
This time consuming procedure can be speeded up through the development of methods for rapidly 
synthesizing large numbers of new diverse chemical compounds, followed by a quick screening of 
such a set for qualitative trends in the desired properties. Such approach is the domain of 
combinatorial methods [70, 71], commonly applied in pharmaceutical industry, exploration of 
complex metal–oxide compositions for potential use in semiconductors and superconductors, 
synthesis of new compounds for both homogeneous and heterogeneous catalysis, etc. 

Another approach is based on a bottom-up strategy of systematically unraveling fundamental origins 
of particular surface processes and applying this knowledge in the design of new catalytic materials 
or their efficacious optimization. For instance, for the class of reactions involving the dissociation of 
reacting molecules and the subsequent removal of the dissociation products, there exists a 
correlation between the reaction activation energy and the stability of reaction intermediates, leading 
to universal relationship between adsorption energies and catalytic activity [72-74]. Scaling relations 
between activation and reaction energies (such as the Brønsted relation [75, 76], the 
Langmuir−Hinshelwood relation [76-78], the Evans–Polanyi relations [76, 79, 80], or the Hammett 
equation [81]) have been identified as quantitative implementations of the classical general Sabatier 
principle [82, 83]. Their merit is to define relatively simple fundamental descriptors of catalytic 
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index crystallographic orientation. However, even with such nominally simple systems non-trivial 
structures can already be observed due to a surface reconstruction (thermally and/or chemically 
induced) [105-109]. An additional variety of potential structural features, along with the ordered 
facets, exists on high-index planes, irregular, or defective surfaces – steps, kinks, corners, and point 
or line defects [110, 111]. The catalytic activity of metals is known to depend substantially on the 
presence of structural imperfections [112-115] and there are many instances in which steps were 
identified as active sites as compared to planar low-index surface [15, 110, 115-121]. 

A partial perturbation from the ordered structure of a monocrystalline solid is represented by 
dislocations and grain boundaries which are usually a result of excessive strain within a crystal or of 
inherent polycrystallinity. These bulk imperfections induce formation of the above mentioned 
surface features and can result in coexistence of domains with different surface orientations. 

All the above considerations are as well applicable to bulk metal alloys or near-surface alloys [103, 
122-126], representing a simplest extension towards multi-component systems. Bimetallic catalysts 
often exhibit electronic and chemical properties not present on either of the parent metal surfaces. 
This synergistic effect is especially important when the surface alloy coverage falls into monolayer or 
submonolayer regime. 

A similar hierarchy can be further applied to metal oxides, starting with ordered and stoichiometric 
bulk structures [95, 127-129]. The variety of oxides is tremendously rich due to the larger amount of 
crystallographic structures and different possible bulk terminations for the same orientation. Even 
for one particular chemical composition (stoichiometry) a variety of structural phases can exist, or 
even coexist – this is especially true for transition metals which are stable in more oxidation states 
[130]. 

A simple classification from the reactivity standpoint differentiates between inert and reducible 
oxides. One of the key concepts in predicting the stability and reactivity of oxide surfaces is their 
polarity [127, 131-134]. Most metal oxides are internally ionic (formally O2- anions surrounded by 
metal cations) [130]. Minimization of surface energy drives the formation of a particular surface 
arrangement, leading to bulk terminations with different structures and polarities. Polar oxide 
surfaces (i.e., those with a dipole moment) are often unstable and prone to reconstructions [131, 
134-136], except when present in the form of a nanostructure or stabilized by a proper modification 
[131, 137, 138]. 

Like in the case of metals, the catalytic relevance of steps on oxides has been recognized as well, e.g., 
on TiO2 [139-143], CeO2 [144-148], SnO2 [149], Al2O3 [150, 151], Cu2O [152], MgO [153, 154], ZnO 
[155], and many others [111, 127-129, 156]. Regarding defects on oxides [157], besides line and point 
defects, domain boundaries, dislocations, and cation interstitials, of special importance are oxygen 
vacancies [40, 143, 158-164] which are associated with a formation of metal cations with lower 
oxidation state. They can act as a nucleation center for nanoparticle growth (heterogeneous 
nucleation), adsorbate dissociation site, or anchoring site for adsorption. As one of the descriptors 
of reactivity, the general concept of basicity and acidity in chemistry [165, 166] can be analogically 
applied to heterogeneous catalysis as well (or specifically to solid oxides as in Ref. [167]). When the 
Brønsted and Lewis acid–base theories are related to catalyst surfaces, they lead to a definition of so-
called Brønsted or Lewis surface sites: acid strength may be defined as the tendency to give up a 
proton, while base strength as the tendency to accept a proton. The basic or acidic character of a 
given surface or a type of surface site is, in general, not only determined by the composition of the 
material but can be strongly structurally dependent. 
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With current modern techniques an extreme level of control can be achieved, e.g., generating 
monodispersed clusters with precise numbers of atoms [126, 199, 200], spatially controlled patterns 
[3, 201], or achieving confinement to strictly reduced dimensionality [202] (for example by creating 
2D arrays of nanoparticles [203, 204], linear (1D) structures [205, 206], or isolating single atoms [99, 
207-209]). 

2.3 Real heterogeneous catalysis 

In previous section we have shown that the key advantage of the model study approach is the 
possibility to identify individual factors determining the properties of catalytic systems and reactions 
on them via systematically increasing their complexity in highly controlled manner. However, there 
still remains what we call a complexity gap between the amount of complexity we are currently 
able to handle and the intricacy of the „real-world” catalytic materials (like the one shown in Figure 
3). Therefore the kinetics observed in industrial catalytic reactions do not necessarily follow what we 
can obtain with simplified model systems. There are two aspects of the complexity gap: 1) the 
structural and compositional complexity of the surfaces (also denoted separately as a materials gap) 
and 2) the chemical complexity of the reaction systems. 

Neverheless, this complexity gap keeps steadily closing with the growing capabilities of sample 
preparation and characterization methods on one side (see also Section 7) and improvement of 
theoretical models on the other. Several research articles and reviews have been devoted to the issue 
of bridging the complexity gap and correlations between models and “real-world“ catalysts, see e.g. 
[98, 100, 181, 210-213], including the Ertl’s Nobel Lecture [97]. 

Another serious simplification of model studies stems from the pressure restraints of the surface 
characterization techniques (most of them requiring UHV environment), which may lead to 
misleading conclusions regarding the subject of study. For example, although the CO oxidation over 
Ru under UHV conditions reveals the lowest catalytic activity among the late transition metals (such 
as Pt, Rh, and Pd), under strongly oxidizing reaction conditions (e.g., in ambient air) the CO 
oxidation rate on Ru turns out to be superior to the above metals [95]. This observation can be 
taken as a clear manifestation of the so-called pressure gap [214]. The transition from an inactive 
catalyst towards an active one turned out to be, in this case, attributed to a structural transformation 
of Ru to RuO2.  

Similarly, contrary to what experiments conducted with UHV equipment had led us to believe, 
under atmospheric pressure of reactant gases Pd or Pt metal surfaces establish PdO or PtO2 surface 
phases, respectively [215], which catalyze the oxidation of CO to CO2 via the Mars–van Krevelen 
mechanism [216] and not the long-assumed Langmuir–Hinshelwood one [22]. In other words this 
catalyzed reaction largely proceeds by utilization of lattice oxygen from oxide phase instead of direct 
involvement of surface chemisorbed oxygen. Hence, the reactivity is not intrinsically linked to the 
availability of gas-phase oxygen, but rather a certain partial O pressure is required in order to form 
oxide phase, igniting a reaction channel which does not participate at lower pressures. This 
observation, for instance, formed the basis of the work presented in Appendix 5.  

Like in the previous issue of the complexity gap, surface science has reached a degree of maturity 
that allows us to cope with the pressure gap to some extent as well. An overview of efforts made 
towards bridging the pressure gap can be found in Refs. [211, 217, 218] (see also Section 2.5). 

In any case, it should be remembered, that industrial catalysis cannot be reduced to merely 
describing the behavior of the active site, no matter how complex and to what level of detail. When 
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regard to the topic of this thesis, we will focus on the latter class of techniques, summarized in Refs. 
[22, 62, 67, 221, 222], namely the preparation of well-defined solid surfaces and supported 
nanostructures. 

Ordered metal surfaces can be prepared by cutting a single crystal along a particular crystalline 
orientation and subjecting to a subsequent cleaning treatment in UHV. Similarly, a fresh oriented 
oxide surface can be obtained by cutting or cleaving a single crystal bulk along the desired plane 
directly under vacuum [94], or via careful (non-reductive) surface treatment of an ex situ pre-cleaved 
single crystal in UHV. And, finally, the preparation of bimetallic surfaces can follow the same recipe 
as suggested for pure metals, however, the attainable compositions of such surfaces is limited to 
those of bimetallic systems forming stable bulk alloys. A more common and flexible way to fabricate 
bimetallic surfaces is via depositing one metal onto the other (usually a well-ordered single crystal), 
as will be briefly described below. Additional advantage of this method is that the admetal can either 
stay on the surface or diffuse into the subsurface region to produce surface or subsurface bimetallic 
layer, respectively; the particular behavior can be tuned through sample temperature during 
deposition. 

Thin epitaxial films of a wide variety of materials (metals, oxides, semiconductors) are often grown 
by a precisely controllable technique of molecular beam epitaxy (MBE) [223-226], representing one 
of the physical vapor deposition (PVD) techniques. In this process, a nearly atomically clean surface 
(kept at an elevated temperature to provide sufficient thermal energy to the arriving species to 
readily migrate over the surface) is exposed to a beam of atoms or molecules in an UHV 
environment, forming a crystalline layer in registry with the substrate (epitaxial film). An eventual 
lattice mismatch between the support and the layer material can result in effects and structural 
features such as interfacial strain, periodical superstructures (superlattices, surface corrugations), 
rotational domains, etc. The source beam is usually realized by evaporating the deposited material 
from a tip or a crucible, using resistive heating or electron-beam sputtering, by ion sputtering, by 
cathodic arc plasma, or by pulsed laser evaporation.  

For the preparation of thin oxide films or oxide nanoparticles three principle routes are at hand [92, 
190, 227, 228]: 1) reactive evaporation of an oxide or a metal on a (typically inert) support in oxygen 
atmosphere [229, 230], 2) deposition of a metal on a suitable (typically inert) support followed by an 
oxidation procedure [135, 172, 231], or 3) direct oxidation of a metal, semiconductor, or metal alloy 
surface (usually a single crystal) [221, 232]. A large number of recipes have been developed for the 
preparation of various ordered oxide films including Al2O3, SiO2, TiO2, FeO or Fe3O4, CeO2, MgO, 
NiO, ZnO, CuO or Cu2O, Cr2O3, SnO2, Co3O4, V2O5, WO3, and many others (see, e.g., Refs. [169, 
227-229] and references therein).  

Apart from the above methods, other members of the PVD family are the pulsed laser deposition 
(PLD) [233, 234] and magnetron sputtering [235-238]. Especially magnetron sputtering has become 
a very popular versatile technique for preparation of new materials, allowing deposition of a very 
wide range of compounds and alloy thin films including oxides, nitrides, carbides, fluorides, or 
arsenides. It is capable of producing thin films of controllable stoichiometry and composition, 
including multicomponent solids with stoichiometries which would be difficult to achieve by other 
methods, via using composite sputtering targets or via simultaneous co-deposition from multiple 
targets. Contrary to conventional evaporation processes magnetron sputtering offers more flexibility 
and does not require heating of the source material, which has limiting consequences for the 
composition and morphology of the resulting layer. Direct current (DC) sputtering [239] is typically 
used for deposition of metals, while the radio frequency (RF) modification [240] is required for the 
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coating by insulating materials or for improved deposition stability; on a larger scale it is usually 
replaced by a pulsed sputtering [235, 238]. RF sputtering also reduces thermal load to the substrate 
and can provide higher deposition rates. The magnetron is operated with low pressure glow 
discharge of either an inert gas (e.g. argon) or a reactive gas (e.g. oxygen), which then directly 
participates in the growth of the thin film and can be used as one of the means of controlling its 
stoichiometry (referred to as the reactive sputtering [240, 241]). 

In contrast to PVD, chemical vapor deposition (CVD) methods [242] are based on exposing the 
substrate to one or more volatile precursors, which produce a deposit with desired composition via 
reaction and/or decomposition on the substrate surface. It can be applied in the preparation of 
various thin films [243-245], metal [246] or oxide [247] clusters, nanorods [248], nanotubes [249, 
250], multilayered [251, 252] or 2D [253, 254] structures, etc. In Section 5.4 of this thesis CVD 
method is used to grow graphene layers on a metal substrate. 

Industrial supported metal catalysts on a large scale are typically made by wet impregnation of a 
porous support (usually an oxide) with a solution of a metal salt, followed by heating in air 
(calcining) and reduction (usually in hydrogen) [255, 256]. This procedure leads to an ensemble of 
metal particles non-uniform in size, shape, and spatial distribution, which can hardly be 
characterized systematically. Better-defined preparation protocols have been established for the 
systematic model studies [62, 92, 221, 222]. Physical vapor deposition (PVD) of metals [65, 92-94] 
(by either evaporation, magnetron sputtering or pulsed laser deposition) or direct deposition of 
metal clusters from the gas phase [126, 200, 257] under UHV conditions have been the preferred 
choice. Various aspects of NP growth, assembly, and modification has been the subject of several 
reviews [92, 190, 220-222]. 

2.5 Experimental strategies and characterization techniques 

The general concepts and techniques used in catalysis, both experimental and theoretical, are 
inextricably mingled. Moreover, the experimental results often stimulate implementation or even 
development of theoretical methods and, in turn, theoretical insight naturally prompts experimental 
endeavor. The experimental tools of surface science can be divided into two main categories: 
spectroscopy and microscopy methods [23, 68, 91, 221, 258, 259]. Employing a combination of 
methods from both categories (multi-scale characterization [260]) and performing kinetic 
measurements of reactivity allows to identify the connections between structural and electronic 
features of the surface on one side and their role in the reaction kinetics on the other [62, 90, 110, 
136, 261].  

A rigorous research aiming at detailed insight into the key stages of reactions and, in particular, the 
modus operandi of a catalyst, requires a direct monitoring “in action” [106, 217, 260]. Even when a 
simultaneous characterization of the catalyst state and of the reaction processes is not feasible, the 
subsequent experimental procedures (including the sample preparation or high-pressure treatments) 
should be performed under well-controlled conditions, ideally within the same apparatus (typically a 
UHV system) [102]. This approach gives rise to the field of in-situ research methods [22-24, 221] 

In contrast, the ex-situ methods involve sample transfer between different experimental devices 
(typically after sample preparation or between individual sample treatments) and thus expose the 
subject of study to different and less controlled environments, usually to ambient air. 
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and the incident geometry generated by molecular beam sources together with the AR-QMS 
detection opens up the possibility of studying the dynamics of gas-surface interaction [60, 307, 310, 
315-319], dynamical parameters of desorbing molecules [309, 320], and experimental probing of 
potential energy surfaces [309, 310]. 

The availability of two effusive beams in the above apparatus permitted a transient isotopic 
exchange experiment [307, 321], which represents a route towards acquisition of transient kinetic 
data at constant surface coverages. It is realized via fast switching between two identically set-up 
molecular beams with chemically the same entities, one of them being isotopically labeled (e.g., 
14NO and 15NO, 12CH3OH and 13CH3OH, CH3OH and CD3OD, etc.). Such capability was utilized, 
e.g., in Refs.[29], [53], and [34], respectively. In some cases, isotopically labelled molecules are used 
only to reduce the background signal during the experiment. 

UHV IR spectroscopy [322-324] operated in grazing-incidence-angle reflection mode (Reflection-
Absorption IR Spectroscopy, RAIRS) [325-327] was used as a very sensitive tool to study surface 
adsorbates, providing very specific information on the nature of adsorbates (molecular 
identification, bond strength and geometry, etc.), their interaction with the substrate, properties of 
adsorption sites, and character and magnitude of intermolecular interactions within adsorbate layer. 
It can be used with any reflective surface including thin oxide films on metals. In the spectra 
evaluation, however, a few factors has to be taken into account, mainly the surface selection rule 
(limiting the sensitivity to modes with a non-zero component of the dynamic dipole moment 
perpendicular to the surface), and dipole coupling effects between neighboring adsorbed molecules. 
The spectrometer also allowed measurements in the time-resolved mode (TR-RAIRS) [328] with 
temporal resolution in the millisecond range. 

Apart from the above described main equipment, other auxiliary devices were installed in the 
attached preparation chamber (separated from the main chamber by a gate valve) for the sample 
preparation and quality control, namely low electron energy diffraction (LEED) and Auger 
spectroscopy (AES) systems, differentially pumped ion sputter gun and gas doser manifold with 
precise leak valves for chamber back-filling with pure gases, electron beam metal evaporator, and 
quartz microbalance monitor for deposition rate measurements.  

2.5.2 Spectro-microscopy system at Charles University 

This multi-probe UHV system combining several complementary in-situ methods of structural and 
spectroscopic characterization is situated in the Surface Physics group laboratory at Charles 
University in Prague. It was built primarily by Dr. J. Mysliveček as a low-temperature scanning 
tunneling microscope (LT-STM) instrument with attached preparation and fast-entry load-lock 
chambers, but many additional upgrades have been made by him and coworkers over the last 
decade. Currently, this apparatus offers a rather unique set of surface science methods located in 
three main chambers (separated by gate valves), between which samples can be transferred by 
transfer rods without breaking vacuum. Apart from the aforementioned LT-STM (with “beetle” 
type head [329, 330] and liquid-nitrogen cryostat), it allows surface and near-surface structural 
characterization by SPA-LEED (SPECS reverse view ErLEED 150) and XPS (SPECS Phoibos 150 
MDC 9 energy analyzer with a dual Al/Mg X-ray source), along with gas analysis by QMS (Pfeiffer 
Prisma Plus). The QMS is housed in a differentially pumped nozzle making temperature-
programmed desorption (TPD) and sticking probability measurements possible. A set of back-fill 
dosing valves and two simple directional effusive gas beams can be employed for sample preparation 
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3 COx and NOx surface chemistry 

3.1 Motivation and background 

Carbon oxide and nitrogen oxide are one of the most abundant gaseous oxides, being naturally 
present as well as (by-)produced by many industrial and technological processes. Along with residual 
hydrocarbons (including partially oxidized volatile organic compounds) they are the main 
constituents of exhaust gas mixture of a conventional combustion engine [335, 336], apart from 
harmless water vapor, indeed. Raising COx and NOx levels are concern for air quality mainly in 
metropolitan areas and increasing CO2 concentration in atmosphere, deemed responsible for the 
greenhouse effect, became a worldwide issue [337]. The reduction of nitrogen oxide emissions has 
become one of the greatest challenges in environment protection [335, 338].  

The above implies the tremendous importance of CO oxidation and NOx (NO and NO2) reduction 
reactions. In a traditional transition-metal-based, three-way car emission control catalyst (TWC), the 
oxidation of CO and residual hydrocarbon fragments is performed simultaneously with the 
reduction of NOx. Today modern vehicles with three-way catalysts can achieve almost complete 
removal of all three exhaust pollutants. TWCs are operated with air-to-fuel ratio controllers which -
maintain the near-stoichiometric fuel mixture composition in order to ensure high conversion 
efficiency for the competing oxidation and reduction processes.  

Both alumina, used as a nanoparticle support material in Section 3.2.1, and ceria, used as an active 
substrate in Section 3.2.2, found its extensive use in TWC [87, 339, 340]. The main role of alumina is 
in providing stable supporting structure with high surface area, whereas ceria possesses a dual 
functionality – operating as a stabilizing component and as an effective oxygen buffer enhancing 
oxidation activity of the catalyst. A systematic study aimed at unraveling molecular and structural 
origins of reactivity of metal-alumina and metal-ceria systems towards the aforementioned reactions 
is expected to aid in catalyst optimization with respect to high reaction yield, good fuel-
stoichiometry tolerance, and resistance against deactivation (e.g., via formation of surface carbon).  

3.2 CO adsorption and catalytic oxidation 

Apart from the numerous practical applications, in fundamental research carbon monoxide has been 
used frequently as so-called surface probe molecule and CO oxidation as a prototypical reaction for 
heterogeneous processes at the gas-solid interfaces [341]. A probe molecule can serve as a sensitive 
local tool to determine, for instance, the exposed surface coverage of the active phase of a catalyst 
or, when handled spectroscopically, even the abundance and properties of specific adsorption sites. 

The CO oxidation is one of the most extensively studied reactions also for being of extreme 
practical importance itself and of vital concern in environmental protection. Especially catalytic CO 
oxidation on surfaces consisting of or containing noble metals has attracted a considerable attention 
over several decades. The main focus has been progressively moving from the simpler systems of 
single crystal surfaces of metals towards more complex model catalysts (see also Section 2.2), hand 
in hand with the development of necessary instrumentation. In the following a few examples of 
particular achievements on this route will be presented. 

3.2.1 CO oxidation on Pd/alumina 

Aluminum oxide (alumina in short) is often used as a base substrate in industrially produced 
catalysts because of its high chemical inertness, strength, and hardness [342, 343]. There are many 
forms (phases) of alumina differing in crystallographic structure and purity [342, 344, 345]. Well-
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The variations of the CO2 angular distribution were analyzed by applying microkinetic simulations as 
a function of particle size, surface temperature and reactant fluxes, which allowed quantitative 
calculation of the surface diffusion rates on the catalyst under reaction conditions [41]. It was further 
shown [43] that the two reaction regimes of the CO oxidation (CO-rich or O-rich) exhibit specific 
angular CO2 distributions – while under CO rich conditions, the product distribution strongly 
depends on the local fluxes of the reactant molecules, under O-rich conditions nearly symmetric 
distributions are observed. This is in a perfect accord with the higher surface diffusivity of oxygen 
on Pd, mentioned earlier, as compared to CO. The residence time of oxygen was shown to depend 
primarily on the surface occupation by CO.  

The particular reaction regime also strongly affects the global transient behavior of the supported 
NP catalyst as a response to abrupt changes of gas flux intensities (both at rising and leading edge of 
the pulse) [56]. Considering the stronger binding of CO to Pd (and its lower mobility) as compared 
to O, transition between the kinetic regimes is primarily driven by the surface mobility of CO. 
Under certain circumstances (ratio of reactant fluxes and surface temperature), a reaction bistability, 
i.e., spontaneous switching between the different regimes, can even be observed as a result of the 
coupling of the surface coverages and reaction rates over the particle surface. This extraordinary 
phenomenon will be described separately in Section 3.3. 

3.2.2 CO oxidation on Pt/ceria and Pt–ceria EMSI 

Although similar at the first sight to the previous Pd/Al2O3 or Pd/SiO2 model catalysts, supported 
Pt nanosized particles on ceria represent a strikingly distinct physicochemical system. In contrast to 
the very inert and stable alumina (Al2O3) and silica (SiO2), ceria (CeO2) belongs to the class of so-
called reducible oxides [368]. These materials, typically characterized by a relatively small band gap 
(<3 eV), can easily give away oxygen because the lowest available empty states in their 
conduction band consist of cation d-orbitals energetically located only slightly above the valance 
band. The removal of oxygen thus results in excess electrons which are subject of redistribution 
to the cationic empty levels, lowering the oxidation state (in the case of ceria from Ce4+ to Ce3+) 
[157, 159, 340, 369]. The consequence to reactivity is that upon changing the oxidation state the 
metal cation can efficiently trap electrons from donor species adsorbed on the surface or from 
supported NPs, making these materials very attractive for heterogeneous catalysis [340, 370, 371].  

In the article presented in Appendix 3 (Ref. [11]) we combined several surface science methods to 
carefully identify adsorption sites participating in CO oxidation on Pt NPs supported on thin-film 
ceria, oxygen spillover [93, 96, 372] between the two components, and their mutual electronic 
interaction. Infrared reflection absorption spectroscopy (RAIRS) was used as a main tool in 
assignment of different adsorption sites. On pristine ceria CO adsorbs only weakly at structural 
defects (steps, edges) and Ce3+ centers. The occupation of these sites changes upon thermal 
treatment. After deposition of Pt clusters, CO primarily occupies Pt surface in 3 different 
configurations (on-top at particle edges and steps, on-top on Pt(111) facets, and bridge-bonded), 
while the bonding to defects and Ce3+ cations is suppressed due to preferential nucleation of Pt at 
these sites, making them unavailable for CO adsorption.  

Upon surface exposure with CO at low temperature (150 K) followed by TPD (with a linear heating 
ramp 1K/s), apart from molecular desorption of adsorbed CO, a production of CO2 can also be 
seen. This happens via oxygen reverse spillover [372] from the ceria support to the Pt particles at 
elevated temperatures and its recombination with adsorbed CO molecule. The oxygen spillover has 
been evidenced directly by RAIRS through an emergence of new absorption bands indicative of 
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electron beam lithography). d) Series of CO oxidation reactivity curves as a function of the CO fraction in the 
impinging gas flux (xCO, total flux equivalent to a local pressure of 10-4 Pa) for five temperatures (in 400-465 K 
range), showing chemical bistability during CO oxidation on a Pd model catalyst (system presented in c)). At 
sufficiently high surface temperatures, a single well-defined transition point between two (CO- and O-rich) reaction 
regimes exists; below 440 K a region with two stable reactive states occurs, depending on whether approached from 
CO-saturated or O-saturated surface (the arrows indicate the direction of the hysteresis). e) Corresponding bistability 
diagram for the CO oxidation on the above model catalyst. Partially adapted from [3]. 

A striking deviation from the otherwise well-defined transition point between the two reaction 
regimes is observed with sufficiently large Pd particles (such as in Figure 21c) and sufficiently low 
temperatures (in this case below 440 K). As indicated by the lower 2 curves in Figure 21d, the steady 
state near the transition point differs substantially depending on whether it is approached from an 
oxygen-precovered or CO-precovered surface. This effect, known as reaction bistability, previously 
observed [397-399] and simulated [398, 400-402] on well-ordered single crystals, was witnessed for 
the first time on supported nanoparticles of a well-defined model system, as presented in 
Appendix 6 (Ref. [3]).  

Time oscillatory phenomena in chemical reactions have already been known since 19th century in 
electrochemical systems [403] and somewhat later (1920s) observed in the liquid phase chemistry 
[404]. Oscillatory reactions, however, did not receive much attention until the discovery of 
Belousov–Zhabotinskii reaction in the 1950s [405-408]. In heterogeneously catalyzed reactions, rate 
oscillations were first observed in CO oxidation on platinum in the early 1970s [397, 409]. The 
switching between different steady states of a surface reaction was also found as a consequence of 
coupling between regions exposing different crystal planes of the same material, such as in the 
works of Ertl et al. [97, 410], who (in the late 1980s) pioneered the imaging of surface reactions [97, 
411] leading to discovery of spatio-temporal pattern formation in heterogeneous catalytic systems 
[97, 411-413]. It was soon realized that such oscillatory systems belong to a whole class of self-
organization phenomena with many instances in chemistry but even far beyond this field (including 
biology [414, 415] or social sciences [416]). A common denominator of all these systems is that they 
require conditions far from thermodynamical equilibrium [417] and that the underlying rate 
equations be nonlinear [397, 412, 415, 417-419]. 

In this particular case, the origin of the two metastable kinetic states is the following: Under 
sufficiently high oxygen flux, the Pd NP surface is to a large extent covered by adsorbed O (Oad) and 
because sticking probability of CO is only moderately influenced by Oad, the reaction rate is high and 
nearly proportional to CO flux. Above certain critical value of xCO in the gas beam, a kinetic phase 
transition [398] to predominantly CO-covered surface occurs, yielding much lower reaction rate, 
because adsorbed CO efficiently inhibits dissociative adsorption of O2.  

Furthermore, size dependence of the reaction bistability was scrutinized, employing Pd NPs 
prepared by vapor deposition and growth on Al2O3, (1.8 nm and 6 nm average diameter, 
respectively), as well as the aforementioned much larger monodispersed 500 nm Pd NPs prepared 
by electron beam lithography on SiO2 – see the micrographs of all three samples in Figure 21a-c. 
The above well-defined bistability window observed on the 500 nm particles (see the diagram in 
Figure 21e) was found to be much narrower for 6 nm NPs and seemingly non-existent for the 
smallest (1.8 nm) and the least ordered NPs, in agreement with theoretical predictions [400].  
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over the surface [398, 420, 421], initiating spontaneous transitions from one kinetic regime to the 
other without an external stimulus. The above mentioned series of experiments supported by 
theoretical microkinetic modelling lead to a discovery of a relation between the local fluctuations of 
coverages of adsorbed reaction intermediates and the timescale of these transitions. It was shown 
that the amplitude of coverage fluctuations increases with both decreasing particle size and 
increasing surface defect concentration. The impact of adsorbate fluctuations on chemical 
oscillations far from equilibrium was shortly after supported by microkinetic Monte Carlo 
simulations of CO oxidation by Zhdanov and Kasemo [422]. 

3.4 NOx reduction on Pd/alumina 

In contrast to oxidation of hydrocarbons and carbon monoxide which is fairly straightforward, 
direct reduction of NOx under lean conditions in modern “lean-burn” diesel engines is a very 
difficult task [335, 423]. Selective catalytic reduction (SCR) of nitrogen oxides to harmless N2 and 
H2O or O2 mixture has been the most often realized by injecting a gaseous reductant (usually 
ammonia or urea [424]) to the exhaust stream; More recently, SCR by hydrocarbons [425, 426], CO 
(present naturally in the exhaust flux) [427], both leading to additional side-products (mainly CO2), 
or the most environmentally friendly reduction by H2 [423] has been employed. Other reaction 
routes without the need for an additional reductant have also been explored. Probably the most 
traditional are Rh-based systems [428] but other noble metals like Pt or Pd [429] have been utilized 
as well. Often the structural properties of the catalyst surface governing its de-NOx activity and 
selectivity (size effects, involvement of different reactive sites and their interplay etc.) are optimized 
empirically and explanations of microscopic origins of reactivity are in most cases lacking. 

A molecular-level characterization of NO interaction (adsorption, dissociation, reduction) with Pd 
NPs supported on well-ordered alumina (Al2O3/NiAl(110)), similar to that referred to earlier in 
Section 3.2.1 (Figure 14), is part of the work published in [4], included herein as Appendix 7 (see 
also related Refs. [5, 6, 29]). RAIR spectroscopy combined with molecular beams (similar setup like 
in Section 3.2.1) was used to reveal that specific atomic adsorbates, which are often present under 
reaction conditions, tend to bind to specific sites of the catalyst. Their presence or absence in the 
vicinity of these sites can, in turn, control the kinetics of the reaction. 

A reference experiment on pristine Al2O3/NiAl(110) surface [5] showed that NO slowly 
decomposes at low temperature (100 K) at oxide defect sites (probably along the antiphase domain 
boundaries), producing a variety of NxOy surface adspecies, accompanied by strong structural 
transformations of the alumina thin film. NO decomposition and reduction to N2O proceeds via 
formation of NO dimers, leaving adsorbed oxygen on the surface. By adding platinum this 
decomposition processes is strongly suppressed due to the preferential coverage of the active sites 
by the metal deposit. NO adsorption is then observed to occur on the Pd particles only, 
preferentially populating edge and defect sites, which was also confirmed by isotopic exchange 
experiments (using 14NO and 15NO) probing the exchange of adsorbed NO with the gas phase. 
Above 300 K the adsorbed NO dissociates; the dissociation activity on the supported Pd NPs is 
strongly enhanced as compared to planar Pd surfaces with preferential N-O bond scission at particle 
edges and steps.  

It was further found that the presence of the dissociation products (atomic nitrogen and oxygen) in 
the vicinity of particle edges and steps controls the NO dissociation activity. Specifically, with the 
presence of strongly bound atomic nitrogen the probability of NO decomposition is greatly 
enhanced. The oxygen-precovered surface results in the formation of a mixed adsorbate layer with a 
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Figure 23. Short CO pulses were periodically applied to the saturated sample by a second beam 
source, resulting in efficient removal of the adsorbed oxygen through oxidation to CO2 [211]. The 
corresponding CO2 signal detected by the quadrupole mass spectrometer (Figure 23d) represents the 
amount of initial oxygen coverage prior to the pulse onset. After the oxygen removal the intensity of 
the IR band 1 is restored completely unlike the band 2 which is only restored to about 60% of its 
original intensity. It reveals the presence of strongly bound nitrogen species in the vicinity of NP 
edge sites partially inhibiting the NO adsorption. The striking observation is that, despite the lower 
adsorption capacity, the adsorbed nitrogen dramatically increases the rate of NO dissociation (about 
5-fold) as can be seen from the much steeper decay of the intensities of both IR bands. 

4 Surface chemistry of water 

4.1 Motivation and background 

As one of the constituents of Earth atmosphere and the most abundant compound in the biosphere, 
water is essential for all life processes and thus has to be taken into consideration in virtually any 
environmentally relevant research. Therefore the water–solid interaction has been a topic of interest 
in a wide variety of scientific disciplines and is one of the most studied adsorption cases since the 
establishment of modern surface science [434, 435]. The contact layer between water and metals, 
semiconductors, and oxides [435] is of fundamental importance with respect to issues of corrosion, 
surface passivation, reoxidation, catalytic activity etc. Regarding the field of heterogeneous catalysis, 
understanding water-surface interactions is highly relevant in huge number of situations such as 
water-gas-shift (WGS) reaction, reforming of hydrocarbons, water splitting, automotive exhaust 
catalysis and many others. Water can be present in catalytic processes in the role of an active agent, 
intermediate, reaction by-product, chemical medium, or carrier. It is also vital in most 
electrochemical applications, including the massively expanding field of the fuel cell technology 
[436]. Last but not least, water molecule also proved an excellent probe for characterization of 
surface properties like catalytic reactivity, adsorption capacity and competitive coadsorption 
phenomena, distribution of surface sites, redox processes, role of surace defects, electronic 
corrugations and charge transfer, etc. [434]. 

4.2 Water interaction with ceria 

Catalysis by ceria represents a very rich matter and thus has been a focus of a number of reviews, see 
e.g. [340, 370, 371] and references therein. Even on the nominally simple systems of pristine cerium 
oxides the interaction with water involves quite complex behavior, depending on the oxide structure 
and stoichiometry. As was already mentioned above, many unique properties of this compound 
stems from its facile reducibility, making ceria what we call an oxygen buffer. A typical descriptor of 
the reducibility of an oxide is the cost of oxygen vacancy formation, which measures the tendency of 
the oxide to lose oxygen or to donate it to an adsorbed species with consequent change in the 
surface composition. The oxide reducibility can be modified in various ways, for instance, by bulk 
doping, presence of another metal (see e.g. Section 3.2.2 or Ref. [158]), and/or nanostructuring (as 
in Section 5.2.3). 

Several studies by photoelectron electron spectroscopy  [160, 437-440] in accord with first principle 
calculations [440, 441] suggest that bonding of water to metal surfaces is governed by a complex 
interplay of a number of factors affecting balance between interaction of water with the surface and 
via hydrogen bonding with other water molecules. Ambient pressure XPS applied to metals and 



oxid
grou
hydr
ceriu
dete
vaca
conc
ultim

In A
oxid
micr
catal
[148
mild
CeO
quan

Figur
oxide
were 
at 16
after 
(b) s
50x4

The 
whil
see t
oxid
acco
mor
samp
sites
the 
deso

des [292] con
up, complem
roxyl groups
um oxide (C
cted. In the

ancy site an
clusion was 
mately lead t

Appendix 8 
des using p
roscopy (ST
lyst was pre

8, 444, 445].
d annealing 
Ox thin film
ntification o

re 24: Compa
e (CeO2-x, pan
acquired duri

60 K, with ph
various water

surfaces. The 
40 nm. Adap

stoichiome
le the ion sp
the STM im

de surfaces 
ompanied w
e stable on
ple annealin
. Upon larg
first monol

orption of w

nfirmed a ge
mented by m
s together w

CeOx), wher
e former ca
nd the relea

made for th
to full oxidat

(published 
photoelectro

TM), and te
epared by d
 By Ar+ spu
to heal the 

m. RPES m
f the concen

arison of wate
nel b) on Cu(
ing stepwise an
hoton energy of
r doses (1.5 L,

STM images
pted from [12]

tric ceria lay
puttered CeO
mages in Fig

primarily 
with formatio
n the partial
ng in Figure 
ger exposure
ayer form a

water physiso

eneral trend
molecular w
with adsorb
reas on the 
se the OH 
sed hydroge
he CeOx/Au
tion of the s

in [32]) this
on spectro
mperature p

deposition o
uttering of 
surface) oxy

method alre
ntration of s

er interaction 
(111) as observ
nnealing of the
f 650 eV. Ser

L, 10 L, 30 L
s show morph
] and [32]. 

yer exhibits 
Ox surface c
gure 24. At
in a mole

on of OH g
lly reduced 
24; these sp

es below 12
a multilayer 
orbed withi

d in water ad
water adsorp
bed molecula

stoichiomet
groups are 
en atom to
u(111) syste
surface. 

s mechanism
scopies (X
programmed

of ceria in o
this surface

xygen vacanc
eady describ
surface vaca

with stoichiom
rved by SRPE
e respective ox
ries of therma

L, and 100 L)
hology of as p

relatively fl
comprises sm
t low tempe
ecular form
groups is ob
CeOx as ev

pecies were f
20 K the wa

ice structu
in the multil

dsorption th
ption. With 
ar water we
tric ceria (C
assumed to

o nearby sur
em used in W

m has been v
XPS, SRPES

d desorptio
oxygen atmo
 with carefu
cies were ge
bed in Sect
ncies exposi

metric ceria (C
ES and TPD 
xide thin film f
al desorption sp

L) at 100 K on
prepared sam

lat morphol
mall islands 
eratures (<1
m. Howeve
bserved. Th
vident from
found to be 
ater molecul
re. The sub
layer, resulti

S

hrough an in
Ru(0001) s

ere observed
CeO2) only t
o be bonded
rface oxyge
WGS reactio

verified thor
S, and RP
n (TPD). T
osphere ont
ully controll
enerated, yie
tion 3.2.2 
ing trivalent

CeO2, panel a
methods. O 1
following exp
pectra (signal 
n both stoichio
mples before th

ogy with or
with a char
20 K) wate

er, a partia
ese surface 

m the SRPE
preferential
es which ca

bsequent ann
ing in a sha

Surface chemi

nitial formati
substrate [44
d only for s
the molecul
d to cerium

en of the o
ion [443]. T

roughly on 
PES), scann
The CeO2 th
to a Cu(111
led ion dose
elding a sub
provided s

t cerium cati

a) and partia
1s core level ph
posure to appro
of mass 18 am

ometric (a) and
the water exp

riented CeO
racteristic di
er adsorbs o
al dissociat
hydroxyls a

ES spectra c
lly bond to o
annot accom
nnealing lead
arp thermod

istry of water 

ion of hydro
42], the surf
slightly redu
ar species w

m at the oxy
xide. A sim
his process 

ordered cer
ning tunne
hin film mo
1) single cry
es (followed

b-stoichiome
urface-sensi
ions [439]. 

ally reduced cer
hotoelectron sp
rox. 10 L of H
mu) were acqu
d partially red
posure; image 

O2(111) terra
iameter <5 
on both cer
ive adsorpt
are substant
captured du
oxygen vaca

mmodate wit
ds to molec
desorption p

| 37  

oxyl 
face 

uced 
were 
ygen 
milar 

can 

rium 
eling 
odel 
ystal 
d by 
etric 
itive 

 

rium 
ectra 
H2O 
uired 
duced 

size 

aces, 
nm, 

rium 
tion 

tially 
ring 
ancy 
thin 

cular 
peak 



38 | Surface chemistry of water 

with maximum between 145–155 K, followed by the single layer leaving the surface around 170–185 
K. The latter peak is noticeably weaker on CeOx due to its higher dissociation activity and stronger 
binding of OH radicals. The broad TPD feature around 275 K is attributed to a recombinative 
desorption of hydroxyl species with surface bond hydrogen. These observations are in accord with 
the thermal evolution of the photoelectron spectra seen in Figure 24. 

An additional piece of evidence for this behavior has been provided in the related work in [12], 
where SRPES/RPES and RAIRS characterization of both (fully oxidized and partially reduced) thin 
films of cerium oxide interacting  with water vapor is complemented by density functional (DFT) 
calculations. Again, mostly molecular H2O adsorption was identified at 160 K on both cerium oxide 
surfaces, together with partial formation of hydroxyl (OH) groups. Three typical PES characteristics 
were used to identify OH groups on ceria: 1) presence of 1π and 3σ states in valence band spectra; 2) 
increase of the BE separation between the O 1s spectral components of lattice oxygen, O2− (Ce4+), 
and OH/H2O; 3) increase of the RER coefficient.  

Dissociation of water and formation of hydroxyl adspecies readily takes place on partially reduced 
CeOx, with OH groups preferentially occupying the positions of the missing lattice oxygen. 
However, the interaction of water with this surface does not cause any detectable reoxidation of 
Ce3+ to Ce4+ – the dissociation of water is fully reversible, either yielding molecular water (via 
recombination of OH groups) or releasing hydrogen and oxygen into the gas phase. The oxidation 
state of the reduced ceria after adsorption and subsequent annealing is fully recovered. The 
differences in dissociation activity of both oxides is further confirmed by the DFT calculations, 
showing that the energetically most favorable surface species on stoichiometric CeO2 terraces is 
adsorbed water, while its dissociation is disfavored by about 0.2 eV, except at the steps, where the 
adsorption energy of water is higher but its dissociation was found to dominate over the molecular 
adsorption on the step edge sites. 

The dissociation of water via filling oxygen vacancies with hydroxyls and leaving adsorbed H, along 
with the above described reverse process of thermal recombination, is a common behavior of all 
reduced oxides of cerium [160, 438, 439]. However, experiments on a strongly reduced ceria with 
stoichiometry approaching Ce2O3 (i.e., nearly all Ce cations in 3+ oxidation state) [148, 444] found 
these oxides to be extraordinarily effective in hydrogen production upon exposure to water via an 
irreversible mechanism. The origin of this peculiar activity has been uncovered in Ref. [40] attached 
as Appendix 9. 

Although the probability of water splitting on ceria to yield molecular H2 and lattice O atoms is 
hardly detectable on the mildly reduced oxides such as those employed in the studies discussed 
above, it increases slightly with the growing concentration of O vacancies on the CeOx surface [160, 
438, 439, 442]. The slow kinetics of this irreversible process was predicted to be due to a high barrier 
to form molecular H2 from surface OH groups [446]. On cerium oxide at high level of reduction, 
however, a new reaction channel opens, with dramatically faster water dissociation kinetics, which is 
observed as a massive recombinative H2 peak in TPD spectra above approx. 500 K (Figure 25b). It 
is associated with partial reoxidation of the CeOx thin film evidenced by an intensity decrease of 
Ce3+ related components of the Ce 3d XPS and by a partial decay of this reaction pathway observed 
within the following adsorption-desorption cycle. After subjecting a 4 nm thick oxide layer to a total 
of 4 such cycles the fast dissociation route is effectively suppressed, which quantitatively agrees with 
a model of gradual incorporation of left-over oxygen within the oxide volume. The structural 
changes towards ordered cerium oxide phases with higher stoichiometry are observed by both STM 
and LEED. 
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A long sought goal of energy-related research has been the search for an efficient method to 
produce hydrogen economically by splitting water using sunlight as the primary energy source [469, 
470]. As we have demonstrated in the previous chapter (Section 4.2), hydrogen can also be 
generated from water by thermally activated catalysis by ceria [40]. However, a lot of research 
remains to be done to make the process of water splitting sufficiently feasible and globally available. 
Hence fossil fuels (mainly natural gas, which is mostly made up of methane [471]) or, in a better 
case, renewable hydrocarbons (such as ethanol [457, 472, 473] or methanol [49, 50, 464] - see also 
Section 5.2) are used as primary sources of hydrogen; a comparative overview has been provided in 
Ref. [464]. 

Regarding the elementary steps involved in H2 production from hydrocarbons, one of the 
fundamental concerns is the activation of C–H bond and, eventually, its functionalization [158, 264, 
474, 475]. It is typically the step that hinders the reaction, due to the large kinetic barrier associated 
to the cleavage of an isolated (non-acidic) C–H bond and its apolar nature. Therefore, carefully 
addressing this elementary process – like in our study in Appendix 16 [36] (see Section 5.4.2 below) 
– provides a key ingredient for the design of novel efficient catalysts and development of processes 
for hydrogen production. 

In the following, a number of selected contributions in the surface chemistry of simple organic 
molecules [476] on palladium and platinum based model catalysts, with hydrogen production being 
of primary concern, will be presented (Sections 5.2 and 5.3). The last section (5.4) will be devoted to 
related topics of reactive carbon deposition and graphene formation on metal surfaces. 

5.2 Methanol catalysis 

So far, methanol has been used in chemical industry primarily for petrochemical purposes in 
synthesis of other organics. However, its global-scale use as an energy carrier and combustion engine 
fuel has been discussed for decades and, more lately, also as a fuel for alcohol driven fuel cells in 
vehicles and other mobile devices. Its attractiveness stems mainly from its safety and low production 
costs [459]. Moreover, methanol can easily be converted to hydrogen by steam reforming or catalytic 
partial oxidation [477] for further use as an energy carrier or direct on-board utilization as a clean 
fuel. 

5.2.1 Methanol oxidation on Pd/alumina catalyst 

In analogy to Chapter 0, we will begin with the chemically more simple case of the traditional oxide-
supported metal NP catalyst supported on an inert substrate, namely the Pd/Al2O3/NiAl(110) 
model system already introduced in Section 3.2.1.  

The prerequisite in exploring surface chemistry of methanol oxidation is good understanding of its 
decomposition on the same catalyst, like it has been addressed in [35] and other related works [15, 
34]. It proceeds via two competing reaction pathways: dehydrogenation to CO and C–O bond 
scission leading to formation of adsorbed carbon species. From the perspective of methanol 
decomposition the previously presented RAIRS identification of CO adsorbed on clean and carbon-
covered Pd NPs (see, for instance, Figure 14) is a perfect example of utilizing CO as a probe 
molecule, like mentioned previously in Section 3.2. In this particular case we have demonstrated 
selective deposition of carbon on Pd NPs via the C–O scission pathway, which is shown to take part 
predominantly at defect sites (steps and edges); on contrary, the dehydrogenation pathway exhibits 
no such preference. Apart from this qualitative conclusion regarding structure dependent reaction 
selectivity, reaction rates corresponding to individual reaction routes were determined from time-
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present in all oxygenated hydrocarbons – see the molecular illustration in Figure 32a, showing the 
most abundant organic polymer cellulose and oleic acid, the most common natural fatty acid. 

It turns out that the reaction pathways governing the catalyzed decomposition of these basic 
building blocks of organic molecules (mainly the scission of C–C bond and carbon surface 
poisoning, see also the overview of surface reactions in Figure 32b) depend substantially on a 
particular combination of the model compound and the catalyst surface [39], as will be also shown 
in the rest of this section. A general observation is that ceria actively participates in surface reactions 
via spillover of surface species between Pt and ceria [11, 13, 33, 42, 332]. 

5.3.1 Formic acid decomposition on Pt/ceria 

On many metallic [521, 522] surfaces, formic acid dissociates to produce formate (HCOO-) and 
hydrogen (H+). On oxides, the deprotonation of formic acid occurs via the loss of acidic H+, 
yielding formate and hydroxyl radical (OH-) [523-525]. The formate can further decompose via 
dehydrogenation or dehydration route, resulting in desorption of CO2+H2, or CO+H2O, 
respectively. It was found that dehydrogenation is the dominant pathway on metals [521, 522, 526] 
(which is also the case of Pt(111) [526]) and on basic oxides [527, 528], whereas dehydration 
pathway prevails on acidic oxides [528, 529]. On the surfaces yielding only a single set of the above 
products the reaction proceeds via a simple monomolecular decomposition [530, 531], whereas on 
the surfaces where a mixture of desorbing CO2, H2, CO, and H2O is formed, the reaction may 
proceed via a bimolecular mechanism [530], involving interaction between two formate species, or 
between formate and formic acid molecule.  

The reaction selectivity can be often tuned via surface temperature [20-21] and, in the case of oxides, 
by the introduction of vacancies [523, 525]. From the microscopic point of view the preference for a 
particular decomposition pathway of the surface formate may be promoted by its particular bonding 
configuration. The article in Appendix 13 [33] presents a comprehensive characterization of formic 
acid adsorption and decomposition on cerium oxide thin-film (both fully oxidized and mildly 
reduced) grown on Cu(111) and Pt/ceria model catalysts by means of SRPES, RPES, RAIRS, and 
TPD methods.  

On these systems, two distinct temperature intervals can be recognized – see Figure 33 where the 
selected SRPES and TPD data for Pt/CeO2(111) have been correlated. Below approx. 400 K a 
bimolecular decomposition mechanism leads to simultaneous desorption of CO2, H2, CO, and H2O, 
with some methanol by-produced above 210-280 K. At higher temperatures (>400 K), the 
desorption pattern depends substantially on both the cerium oxide stoichiometry and presence of Pt 
NPs. On the non-stoichiometric CeO2−x the production of CO2 is suppressed, whereas its 
enhancement is observed on Pt/CeO2(111).  

Unlike for the rather intact pristine stoichiometric ceria, the annealing of molecularly adsorbed 
formic acid on partially reduced CeO2−x results in a significant reoxidation of the surface between 
250 and 400 K due to an electron transfer from Ce3+ to formate (see the RPES comparison in 
Figure 33d). With increasing temperature it is followed by an opposite process of reduction due to 
rapid decomposition of formate via the dehydration route. A completely different scenario is seen 
on Pt/CeO2, where hydrogen spillover from Pt to the support (identified by RAIRS) occurs below 
260 K, followed by a reverse hydrogen spillover from ceria to Pt NPs at higher temperatures, 
resulting in desorption of molecular hydrogen starting above 350 K (see Figure 33a-c). Some 
hydrogen is, in parallel, removed in the form of methane. Moreover, traces of formaldehyde have 
also been found on all samples.  
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at oxygen defect sites not present on CeO2. In the higher temperature region the main difference 
from stoichiometric ceria is that the decomposition route leading to ketene desorption near 500 K is 
suppressed, as well as the production of CO2 and CO which is nearly eliminated in the whole range 
above 450 K. It is suggested to be due to the rupture of C−O bond within acetate near Ce3+ centers, 
giving rise to observed reoxidation of CeO2−x accompanied with a formation of strongly adsorbed 
carbonaceous (C2Hx) species, not present on pristine CeO2 at all (see Figure 34d).  

The situation is somewhat more complex on Pt/ceria. A mixed adsorbate comprising molecular 
acetic acid and acetate is formed at low temperatures on both ceria and platinum. Such identification 
is allowed owing to the high energy resolution of SRPES in which distinct groups in C 1s spectra 
(methyl and carboxyl/carboxylate) binding to either ceria or platinum can be resolved by fitting 
routine. The increase of acetate signal on ceria between 150–200 K results from deprotonation of 
molecularly adsorbed acetic acid to acetate on Pt particles followed by its spillover to the support. 
The denser acetate layer on ceria tends to promote binding at different (monodentate) adsorption 
geometry above 250 K. Decomposition of these monodentate acetate species yields large amounts 
of hydrogen and CO at the expense of the formation of ketene and acetone, as observed by TPD 
(Figure 34a). The decomposition process leads to carbon accumulation on both Pt NPs and on 
ceria, but it is reacted off above 450 K by thermally activated self-cleaning process, related to reverse 
oxygen spillover from the ceria support to the Pt particles. The carbon deposits are oxidatively 
removed even from the ceria support above 600 K on Pt/CeO2, effectively preventing carbon 
deactivation of this catalyst in potential reactions involving acetic acid.  

An illustrative overview of different processes which take part on all types of surfaces discussed 
above is provided in Figure 34e. Again, the interaction of Pt/ceria with acetic acid clearly 
demonstrates the synergy between metal and oxide components mutually “communicating” via bi-
directional spillover, as well as the important role of the facile reducibility of the support in the 
process. 

5.4 Hydrocarbons and graphene 

Graphene is a two-dimensional honeycomb lattice of sp2-bonded carbon atoms with very distinct 
physico-chemical properties [533-537]. Although already known since over 4 decades by surface 
science and catalysis communities [538-542], it has attracted an enormous interest since it has been 
first isolated in a free-standing form via exfoliation of highly oriented pyrolytic graphite (HOPG) 
[543, 544], followed by a Nobel prize award relatively shortly after in 2010. Apart from the originally 
used method of micromechanical cleavage, other means of graphene preparation were developed 
since then, with the most common being thermal decomposition of SiC [533, 536, 545, 546], 
reduction of graphene oxide [533, 547, 548], or growth on metal surfaces [538, 549]. The growth on 
metals is usually realized by either segregation of bulk-dissolved carbon [550], or by chemical vapor 
deposition (CVD) technique [536, 538, 549, 551, 552], typically using a hydrocarbon as a reactant 
molecule. 

From the surface physics and chemistry standpoint there are two central motivations in studying 
graphene on metals: 1) understanding passivation mechanisms of catalysts, where deposition of 
carbon in different forms (of which graphene is often the most resilient) is one of the main 
deactivation routes [119, 287, 473, 553], and 2) understanding structural nuances and microscopic 
details of growth of high quality graphene, potentially usable in applications. 
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orientations relative to the Pt(111) lattice. Although the initial nucleation takes place at platinum 
steps, graphene patches grow readily over the steps and step bunches. The growth proceeds in both 
directions – away from the lower and upper Pt step edges, in contrast to the uni-directional growth 
exclusively at the lower step edges, previously observed by temperature-programmed growth (TPG) 
[19, 560, 574]. The average island size increases significantly with temperature, yielding single-
orientation high-quality structures with smooth edges and diameters exceeding 10 μm at 
temperatures only slightly above 1000 K. Quite surprisingly considering the rather decoupled 
character of the platinum–graphene system, growing graphene is able to induce noticeable 
morphological changes in the hot platinum surface (step bunching and reshaping), such as in Figure 
37 (right).  

The graphene coverage captured in LEEM images was further quantified for temperatures between 
927 and 1014 K; the values were consistently lower than those determined by an integral method 
(AES following exposure of Pt(111) to ethylene), especially at lower temperatures, because the size 
of the smallest graphene islands and, eventually, carbonaceous clusters was under the resolution of 
the microscope. The sticking coefficients determined by AES up to 850 K were consistent with a 
precursor-mediated thermalized trapping model for ethylene dissociative chemisorption [575]. 
However, this model had to be extended with a parallel reaction to account for the reversed 
tendency of the reaction rate, effectively increasing apparent sticking probability at higher surface 
temperatures [20]. It may happen due to surface structural changes such as roughening transitions, 
or the onset of additional reactive channels that ultimately lead to surface carbon. 

Despite the recent boom in graphene literature there has been an ongoing debate on the exact 
mechanisms of graphene nucleation and growth. The unique two-dimensional polymeric structure 
of sp2-bonded carbon causes graphene to grow on metal substrates through mechanisms that are 
different from those known from a conventional heteroepitaxy. Several works has indicated that it 
happens via attachment from 2D gas of carbonaceous precursors (carbon clusters or CxHy 
fragments) rather than via a direct grow from the already established graphene island edges. The 
recent work presented in Appendix 18 (reference [18]) provided an experimental support to the 
previously rendered idea of graphene growth via attachment of Cn clusters, with a predicted optimal 
size of n=5 [576]; this was later complemented by a theoretical study leading to the same conclusion 
[577]. It has also been reported that coalescence of much larger pre-organized structures is possible 
as well [578], yet the C5 chain appears to be the most elementary preferred building block of 
graphene growth, sometimes called a principal graphene „feeding species“. 

The spectroscopic characterization of the CVD growth of graphene on Pt(111) using high-
resolution synchrotron radiation excited photoelectron spectroscopy (SRPES) confirmed that 
although the initial dehydrogenation of 1-alkenes to adsorbed alkylidynes starts to occur at 
essentially the same temperature (200-240 K) regardless the alkene chain length, the further loss of 
hydrogen commences at lower temperatures the longer the hydrocarbon chain. At higher 
temperature when graphitization takes place, the kinetics of the graphene formation also exhibits a 
noticeable dependence on the alkene molecule size. The lowest apparent activation energy and the 
highest turnover rate were obtained for pentene (C5 alkene) as predicted. 
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out to be responsible for formation of spatial non-homogeneities on Pd/alumina nanocatalyst 
during methanol oxidation due to surface diffusion limitations (such as in Appendix 2). 

Another key phenomena in reactivity of multicomponent heterogeneous catalysts is a mutual 
communication (electronic and/or chemical) between the individual components. The results 
presented in Appendix 1 indicate that particle-size dependent electronic metal-substrate interaction 
plays an important role in CO binding and dissociation on alumina supported Pd nanoparticles, 
especially on the aluminum-rich oxide substrates. A successful attempt to experimentally quantify 
electron transfer between a strongly interacting reducible oxide support (ceria) and metal 
nanoparticles of various sizes can be seen in Appendix 4. A whole class of communication 
phenomena is represented by spillover effects, well documented experimentally, e.g., in Appendices 
3, 13, and 14. Oxygen spillover from ceria to Pt also plays a decisive role in activity of the inverse 
catalyst in Appendix 12. These surface diffusion processes are closely related to surface dynamics 
effects [315, 316] which can eventually lead to macroscopically detectable phenomena such as 
reaction bistability (or, more generally, multistability); we have demonstrated in Appendix 6 that in 
some cases atomistic origins of such multistable behavior can be uncovered. 

An attempt to at least partially overcome the infamous pressure and complexity gap was made in 
Appendix 5 (and related works in [48, 50]) dealing with platinum oxide, considered one of the active 
phases present during oxidative processes on catalysts containing platinum under realistic 
conditions. 

Finally, a contribution to the currently hot topic of graphene science has been provided in 
Appendices 15, 17, and 18 by combining microscopic and spectroscopic methods to shed some light 
on the formation of this unique 2D material via decomposition of hydrocarbons, supported by the 
combined experimental and theoretical insight into the activation of C–H bond on platinum 
(Appendix 16). 

7 Outlook 

With environmental concerns getting into the front of public interest, several implications arise for 
the ever-growing field of catalysis. Currently in the forefront of interest are the sustainability and 
energetic issues [458] stirring up topics such as catalytic breakdown of biomass, functionalization of 
abundant naturally occurring hydrocarbons, and facile electrolysis of water. The need for protection 
of limited natural resources motivates continued search for cheaper, earth-abundant, replacements 
of noble metals or reduction of their use via improved material utilization and/or enhanced catalytic 
effectivity, e.g., through development of novel tailored structures. Increasing emphasis has also been 
given to catalyst recovery issues (their regeneration or recycling [22, 61]). Last but not least, a related 
issue of potential health impacts of exposures to increasingly abundant nanomaterials [579, 580], 
which has emerged only relatively recently, should definitely not be overseen as well. 

All the above points impose numerous challenges for both industrial and academic research [581]. 
From the academic point of view, even getting to “merely” understand atomistic details of reaction 
mechanisms of already known catalytic systems can lead to much more rational optimization, as well 
as to development of brand new catalysts. Many degrees of freedom are available in the fabrication 
of novel catalytic materials, including structural aspects (dispersion, porosity, periodicity, vacations, 
low-coordinated surface sites such as steps, edges, or controlled defects [110, 111, 184], surface 
strain, limited dimensionality, etc.) or combinations of different materials (such as bimetals, mixed 
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span of ±22 ° and three different energies. The four differential pumping zones are colored in different shades of blue. 
Courtesy of SPECS Surface Nano Analysis GmbH. Right: Separation – Schematic of a microcell allowing ambient 
pressure reaction observations by standard surface science tools. The catalyst is confined between two silicon nitride 
windows, and the reaction gases flow through the system to interact with the confined catalyst at atmospheric pressure. 
In this case, four different beams (electron, X-ray, IR, and laser) probe different parts of the catalytic system 
simultaneously. Adapted from [597]. 

However, even the established, currently considered “standard” instrumentation may allow to 
achieve a higher degree of understanding by employing new strategies (experimental or theoretical), 
implementing a greater control over the investigated systems, and by finding links between catalysis 
and other nanomaterial-oriented fields (e.g., colloid chemistry or nanoelectronics [608]). For 
instance, a sophisticated nanofabrication recipe was recently utilized to prepare controlled and 
precisely tunable model system in order to quantify hydrogen spillover phenomena in Ref. [609]. 
Preparation of materials with accurately size-selected clusters [199, 358], synthesis of tailored alloy 
nanoparticles [195], and fabrication of self-assembled solid structures [610] (just to give a few 
examples) have made a significant progress in the last years as well. 

Hand in hand with the rise in computing power, more emphasis is being put on engaging multiple 
characterization methods mentioned above in tandem with theoretical calculations. Theory has been 
making rapid progress in the area of catalysis, providing insights into the mechanistic details and 
energetics of chemical reactions or even giving directions in the design of new catalytic materials 
[122, 611-615]. The complexity of the systems which the theory is able to handle keeps increasing; 
the current capabilities of theoretical modelling cover, e.g., relatively large supported clusters, crystal 
slabs with dopants or structural defects, thin films, extended adsorbate assemblies, and material 
growth processes. Intensive recruitment of computational and modelling approaches [616, 617] 
utilizing microkinetic simulations [217, 618-622] and quantum mechanics methods such as ab initio 
[217, 621, 623, 624], density functional theory (DFT) [611, 620, 621, 625-627], quantum molecular 
dynamics [620, 621, 628], and their variants became almost routine in modern trends of surface 
science and catalysis. 

 

Industrial catalysis is a multidisciplinary activity with fundamental research being one of the key 
components [581]. In contrast to the extensive and sometimes rather intuitive approaches natural to 
chemical engineering, the surface science approach relies heavily on the reductionist view that if all 
the key factors affecting individual discrete steps involved (such as adsorption, desorption, 
poisoning, surface diffusion, reorganization and restructuring, etc.) are sufficiently evaluated, one 
ought to be better placed to rationally design superior catalysts. Although it is fair to admit that the 
chemist’s way has been typically more successful in finding altogether new catalysts so far, it is 
largely a merit of the model system studies that the face of heterogeneous catalysis has changed 
substantially over the course of past few decades, through providing an unprecedented level of 
insight into the – sometimes seemingly mysterious – realm of catalysis. 
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2D ........................ Two-dimensional 
3D ........................ Three-dimensional 
AES ..................... Auger Electron Spectroscopy 
AFM .................... Atomic Force Microscopy 
AR-QMS ............ Angle Resolved Quadrupole Mass Spectrometry 
ATR-FTIR ......... Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy 
BE ....................... Binding Energy 
CNT .................... Carbon Nanotube 
CVD .................... Chemical Vapor Deposition 
DFT .................... Density Functional Theory 
DPF ..................... Diesel Particulate Filter 
DRIFTS .............. Diffuse Reflectance Infrared Fourier Transform Spectroscopy 
EMSI ................... Electronic Metal-Support Interaction 
fcc ........................ Face Centered Cubic 
FTIR ................... Fourier-Transform Infrared Spectroscopy  
FWHM ............... Full Width at Half Maximum 
GCA .................... Glass Capillary Array 
HC ....................... Hydrocarbon 
hcp ....................... Hexagonal Close-Packed 
HOPG ................ Highly Oriented Pyrolytic Graphite 
IR ......................... Infrared 
IRAS.................... Infrared Absorption Spectroscopy (equivalent to RAIRS) 
ISS ....................... Ion Scattering Spectroscopy (equivalent to LEIS) 
KE ....................... Kinetic Energy 
LEED ................. Low-Energy Electron Diffraction 
LEEM ................. Low-Energy Electron Microscopy 
LEIS .................... Low-Energy Ion Scattering Spectroscopy (equivalent to ISS) 
LH ....................... Langmuir-Hinshelwood 
LT ........................ Low Temperature 
MB ....................... Molecular Beam 
MBE .................... Molecular Beam Epitaxy 
MC ....................... Monte-Carlo 
ML ....................... Monolayer 
LEED ............... Low-Energy Electron Microdiffraction 
MSI ...................... Metal-Support Interaction 
MURT ................. Microcanonical Unimolecular Rate Theory 
MvK .................... Mars–van Krevelen 
MWCNT ............ Multiwall Carbon Nanotube 
NAP-XPS ........... Near-ambient Pressure X-ray Photoelectron Spectroscopy  
NIL ..................... Nanoimprint Lithography 
NP ....................... Nanoparticle, Nanometer-sized Particle 
PES ..................... Photoelectron Spectroscopy 
PLD ..................... Pulsed Laser Deposition 
PVD .................... Physical Vapor Deposition 
QMS .................... Quadrupole Mass Spectrometry, Quadrupole Mass Spectrometer  
PEEM ................. Photoemission Electron Microscopy 
RAIRS ................. Reflection Absorption Infrared Spectroscopy (equivalent to IRAS) 
RPES ................... Resonance Photoelectron Spectroscopy 
RT ........................ Room Temperature 
SAM .................... Self-assembled Monolayer 
SCR ..................... Selective Catalytic Reduction 
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SEM..................... Scanning Electron Microscopy 
SFG ..................... Sum Frequency Generation Laser Spectroscopy 
SIMS .................... Secondary Ion Mass Spectrometry 
SMSI .................... Strong Metal-Support Interaction 
SPA-LEED ........ Spot Profile Analysis Low Energy Electron Diffraction 
SPEM .................. Scanning Photoemission Microscopy (a.k.a. X-ray Spectromicroscopy) 
SPM ..................... Scanning Probe Microscopy 
SRPES ................. Synchrotron Radiation Photoelectron Spectroscopy  
STM ..................... Scanning Tunneling Microscopy 
SXRD .................. Surface X-ray Diffraction 
TDS ..................... Thermal Desorption Spectroscopy (equivalent to TPD) 
TMP .................... Turbomolecular Pump 
TOF ..................... Turnover Frequency; Time-of-Flight Spectrometry 
TPD ..................... Temperature-Programmed Desorption (equivalent to TDS) 
TPG ..................... Temperature-Programmed Growth 
TPR ..................... Temperature-Programmed Reaction 
TR-FTIR ............. Time-resolved Fourier-Transform Infrared Spectroscopy 
TR-RAIRS .......... Time-resolved Reflection Absorption Infrared Spectroscopy 
TWC .................... Three-Way Catalyst  
UHV .................... Ultra-High Vacuum 
WGS .................... Water-Gas Shift 
XANES ............... X-ray Absorption Near Edge Structure 
XAS ..................... X-ray Absorption Spectroscopy 
XPEEM .............. X-ray Photoemission Electron Microscopy 
XPS ...................... X-ray Photoelectron Spectroscopy 
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