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Introduction

This habilitation thesis summarizes contributions of its author in the area of valu-
ation of Asian options. As the work spans now a period of two completed decades,
we can put all the existing results into a broader perspective. Asian options are
contracts whose payoff depends on the average of the price of a specific asset. As
the average is one of the basic statistics of the price (the other being the price itself
at a given moment, also known as a spot, or the maximum of the price), its study
attracts constant attention in both practice and academia. The simplest distribu-
tion of an asset price is modeled by geometric Brownian motion, which is obtained
by exponentiation of Brownian motion W (t). More specifically, the asset price in
the geometric Brownian motion is modeled by a process

S(t) = S(0) exp(σW (t)− 1
2
σ2t).

The average price is then represented by an integral

1

T

∫ T

0

S(t)dt =
1

T
S(0)

∫ T

0

exp(σW (t)− 1
2
σ2t)dt.

The main problem is that from the mathematical point of view, the average of the
price is – perhaps surprisingly – too complicated to admit a tractable analytical for-
mula even in the simplest price models, such as in the geometric Brownian motion
model.

Historically, the problem of analytical characterization of the average of the ge-
ometric Brownian motion was studied from several different perspectives. The two
most important papers that shaped the field are Geman and Yor [31] and Rogers
and Shi [71]. These two papers are also most cited works in this direction. The
paper by Geman and Yor found a Laplace transform representation of the average
price, but the exact transformation is in the form of an integral, and its inversion
comes with a substantial computational challenge. In addition, it applies only in the
situation of continuous averaging, but the applications in practice require discrete
averaging. The approach of Rogers and Shi is to find a representation of the aver-
age price in terms of a partial differential equation. This approach does not lead to
an analytical representation of the distribution of the average, but the partial dif-
ferential equation characterization allows for a numerical approach with arbitrary
precision. The PDE approach was already known from Ingersoll [45], but his formu-
lation was in terms of a partial differential equation with 2 spatial variables. Rogers
and Shi were able to reduce the PDE to one spatial variable by choosing a stock
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as a reference asset, making it more numerically tractable. However, they used a
running average as their explanatory variable, which in today’s perspective seems
like a suboptimal choice for the problem. The running average cannot be obtained
by a self-financing trading strategy, which means that its stochastic evolution is
not a martingale. Non-martingale evolutions in turn produce some extra terms in
the resulting PDE, making it more complicated and less numerically stable. The
PDE approach can also be applied to the discretely sampled averages as shown in
Andreasen [1], but the discrete averaging applied to the running average introduces
discontinuities at each sampling point. This approach requires that the PDE has to
be pasted at these points, making this approach somewhat complicated.

It should be mentioned that papers focused on Monte-Carlo simulation meth-
ods dominated most of the literature on Asian options from 1990’s. It has been
known that a specific choice of a control variable – the geometric average – was
a well-suited choice since the geometric average of a geometric Brownian motion
admits a closed form solution. However, the Monte-Carlo methods are in general
ill-suited for evaluation of the arithmetic average price since the average requires to
compute all values at the sampling points, making such methods computationally
inefficient. The simulation methods were later replaced by methods based on nu-
merical solutions of the partial differential equations, an approach that is promoted
by the author of this work. We do not list these papers in this part of the text as
the references to such papers can be found in the individual publications presented
in this thesis. We would like to mention two results, namely Dufresne [24] Milevsky
and Posner [63]. These works looked at the distribution of the average price in a
perpetual setup (when T → ∞). Interestingly, they found that the distribution of
the perpetual average is inverse gamma, which is itself regarded as a remarkable
observation.

The author’s main contribution is in a proper martingale formulation of the prob-
lem, which leads to the simplest possible form of the resulting partial differential
equation that also easily applies to a discretely sampled average. The martingale
formulation allows for natural extensions of the price evolution, in particular, it can
be extended to models with stochastic volatility or models with jump evolution of
the price. In addition, one can simplify Geman and Yor’s formula for Laplace trans-
form for the continuously sampled option and find a representation which does not
involve an integral by using Whittaker functions. The author later showed that the
price of the Asian option admits analytical representation analogous to the Nobel
Prize winning Black-Scholes formula (Black and Scholes [8]). The representation of
the hedging formula also becomes available. Lastly, the approach can be applied
to other types of price averaging, in particular to the harmonic average. In total,
we present six papers in this direction. These papers attracted a number of cita-
tions that rank these results somewhat favorably and place them among the top
publications in this area. Only two of them have another coauthor (Steven Shreve,
the Ph.D. adviser of the author, and Mingxin Xu, the author’s schoolmate), which
indicates that most of these ideas are indeed entirely original contributions. The
existence of such a number of solo papers is somewhat unusual even for the author
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himself as most of his other publications are results of teamwork.

The thesis has the following structure. The first part reviews the theory of
martingale pricing with fundamental results that are used in our study of Asian
option pricing. Our explanatory part consists of three parts:

Martingale pricing theory, where we introduce the basic principles of mathe-
matical finance,

Diffusion models, where we illustrate these principles on models driven by Brow-
nian motion, and

Asian options, where we focus on explanation of the basic principles behind Asian
option pricing.

We explain the basic finance principles, in particular we review no-arbitrage princi-
ple (no agent in the market can produce a risk-free profit). According to the First
Fundamental Theorem of Asset Pricing, no arbitrage is equivalent to the fact that
prices are martingales. This central result dates back to Harrison and Kreps [36]
and Harrison and Pliska [37], but we use a generalized version using an arbitrary
reference asset that is needed for our purposes. While various choices of a refer-
ence asset have been used in some particular situations, for instance in a work of
Geman et al. [32], such a general exposition is original. The author published an
entire monograph Vecer [81] “Stochastic Finance: A Numeraire Approach” in this
direction. The explanatory part of the habilitation thesis is partly based on some
parts that appear in this monograph. The idea of using a general reference asset
in pricing is motivated by the fact that the valuation of the Asian option is simpler
if we use stock as a reference asset in contrast to using money as a reference asset.
This approach proved to be very fruitful as it simplifies many pricing problems that
have been historically valued in more complicated fashion.

Once we have all the necessary theoretical foundation, we apply these techniques
to pricing the Asian options. We also put the published papers on this topic in a
broader perspective, so a contribution of each paper for understanding the problem
is clearly explained. The first part thus serves as a brief introduction to a broader
area of mathematical finance related to this problem so that it allows a non-specialist
to understand and follow the core ideas presented in the papers in the second part
of the thesis.

The second part includes the published papers of the author in this direction of
study. Specifically, it includes the following six papers:

1. Shreve, S., J. Vecer (2000): “Options on a Traded Account: Va-
cation Calls, Vacation Puts and Passport Options”, Finance and
Stochastics, Vol. 4, No. 3, 255-274. [77]

This paper studies pricing options on a traded account. A traded account is a
portfolio created by a client who trades in several underlying assets – typically
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just two, such as money and a stock. The client is restricted by contractual
trading constraints, such as on a maximal and a minimal position in the stock,
but he is free to change the positions at any time with any frequency. One nov-
elty of the paper is to study different constraints on the trading position in the
stock. At the end of a monitoring period, he can keep all the resulting profits
of a such trading and he is forgiven any losses. In this sense, this represents an
insurance on an actively managed portfolio. In practice, this contracts did not
become mainstream financial products for several reasons. Such contracts are
relatively complicated, leading to a decreased demand for them. Some clients
may regard such insurance as relatively expensive. Moreover, the formulation
of this problem is not symmetric with respect to the assets involved in the
contract, which makes it unnatural in markets with equal treatment of the
assets (such as in the foreign exchange markets).

From the mathematical point of view, this is an interesting application in the
field of stochastic optimal control. As the client is free to use any contractually
allowed strategy, the seller of this product must be ready to face the worst
case scenario in terms of the implied costs. It turns out that the most costly
strategy maximizes the volatility. The strategy can be found both from the
probabilistic arguments or by using analytical techniques by solving the re-
sulting Hamilton-Jacobi-Bellman equation. This technique allowed us to find
the analytical formulas for the price of such products.

This paper made an observation that turned out to be critical in the subse-
quent research, namely that the price of the actively traded portfolio repre-
sented in terms of a stock is Markovian in one dimension, while the price of the
same portfolio represented in terms of money is Markovian in two dimensions.
The reason is the asymmetry of the contractual constraints, the constraints
on the stock position are deterministic, but the constraints on the money po-
sition are implied by the current value of the portfolio, and thus random. As
a consequence, this contract has the stock as a preferential reference asset,
which leads to a simpler formulation of the pricing problem. The resulting
partial differential equation has only one spatial variable.

2. Vecer, J. (2001): “A new PDE approach for pricing arithmetic av-
erage Asian options”, Journal of Computational Finance, Vol. 4,
No. 4, 105-113. [79]

This paper extends the work on the options on a traded account. It makes a
new observation that the portfolios that depend on an average price can be
replicated by an active trading strategy, thus representing a particular form
of an option on a traded account. This approach covers both discrete and
continuous averaging. Interestingly, the strategy replicating the average is
deterministic, and thus the pricing problem is somewhat simpler than the pre-
viously studied problem of an option on a traded account that allowed for a
choice of a strategy for the holder of the option. The observation that a self-
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financing strategy can replicate the average price is indeed critical. It means
that the price evolution of a portfolio that replicates the average is a martin-
gale and thus according to the theory, its price must be a martingale under
the probability measures corresponding to a reference asset. This approach
finds a proper choice of an explanatory variable.

As it was previously known from our previous paper, the choice of the reference
asset is asymmetric, the one-dimensional formulation corresponds to the stock
chosen as a reference asset. Even though the paper is from the mathemat-
ical point of view relatively simple, it did provide a computationally simple
method to determine the price of the Asian options. It has been receiving a
constant citation response.

It is interesting to note that while the problem for the options on a traded
account with that allowed the client to change the positions randomly led to an
analytical solution, a seemingly simpler problem of the Asian option that has a
deterministic position in a stock has no simple analytical representation. The
problem is that the deterministic position is a function of time t so the spatial
term uzz in the pricing PDE is multiplied by a coefficient that also depends on
time. This fact makes the problem complicated from the analytical point of
view. Even for the simplest choice of parameters, there is no simple analytical
formula. We know it as a fact since in the later work, the Laplace transform is
expressed analytically, but the inversion cannot be expressed in a simple form.

3. Vecer, J. (2002): “Unified Asian Pricing”, Risk, Vol. 15, No. 6,
113-116. [80]
This paper is an extension of the “A new PDE approach for pricing arithmetic
average Asian options” paper. A simple and numerically stable 2-term par-
tial differential equation characterizing the price of any type of arithmetically
averaged Asian option is given. The PDE is improved, it is formulated in a
proper martingale fashion that absorbs all discounting into the explanatory
variables and thus it removes the uz term that appeared previously. The ap-
proach includes both continuously and discretely sampled options, and it is
easily extended to handle continuous or discrete dividend yields. In contrast
to the previous methods, this approach does not require to implement jump
conditions for sampling or dividend days. Numerical examples are given.

4. Vecer, J., M. Xu (2004): “Pricing Asian Options in a Semimartin-
gale Model”, Quantitative Finance, Vol. 4, No. 2, 170-175. [84]
This paper shows that the previously presented approach for pricing Asian
options also applies to all semimartingale evolutions of the underlying price
as the results in the previous papers were limited to the geometric Brownian
motion models. In particular, it applies to models with jumps. The paper de-
rived the corresponding partial integro-differential equation. In the meantime,
it was shown by Fouque and Han [27] that the author’s approach can be used
in the stochastic volatility setup.
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5. Vecer, J. (2014): “Black-Scholes Representation for Asian Options”,
Mathematical Finance, Vol. 24, No. 3, 598-626. [83]
The author revisits this topic after 10 years. In the meantime, he published
a monograph Vecer [81] (Stochastic Finance: A Numeraire Approach), which
puts the previous research to a new perspective. The paper is mathematically
quite heavy both in terms of the theory and the actual computations involved.
The main contribution is in finding a novel representation for the Asian op-
tion price in terms of probabilities under two different martingale measures
associated with a stock S and an abstract asset A (an “average asset”) that
pays off a weighted average of the stock price number of units of a dollar
at time T . They are model independent formulas and they are analogous to
the Black-Scholes formula for the plain vanilla options; they are expressed in
terms of probabilities under the corresponding martingale measures that the
Asian option will end up in the money. Computation of these probabilities
is relevant for hedging. In contrast to the plain vanilla options, the prob-
abilities for the Asian options do not admit a simple closed form solution.
However, the paper shows that it is possible to obtain the numerical values in
the geometric Brownian motion model efficiently, either by solving a partial
differential equation numerically or by computing the Laplace transform. The
Laplace transform formula is given in terms of Whittaker functions and does
not involve any integration in contrast to the previous result of Geman and
Yor [31]. Models with stochastic volatility or pure jump models can also be
priced within the Black-Scholes framework for the Asian options.

6. Vecer, J. (2014): “Asian Options on the Harmonic Average”, Quan-
titative Finance, Vol. 14, No. 8, 1315-1322. [82]
This paper extends the pricing techniques to contracts written on the har-
monic average. As the arithmetic average dominates the harmonic average,
the contracts covering the increase of the average price are cheaper in the situ-
ation of the harmonic average. For this feature, the contracts on the harmonic
average enjoy some popularity on the foreign exchange market. If X denotes
the foreign currency and Y denotes the domestic currency, the payoff of the
contract is a function of a price of an asset H which is defined as

H(T ) =

[∫ T

0

[XY (t)]
−1η(t)dt

]−1

Y (T ) =

[
1∫ T

0
YX(t)η(t)dt

]
Y (T ).

The harmonic average resembles a quanto option: the price YX(t) is monitored
with respect to the foreign currency X, but the payoff is settled in the domestic
currency Y . Although the pricing problem appears to be rather complex, it
can be ultimately simplified to a partial differential equation in one spatial
variable after a numeraire change and using the time reversal argument.
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Chapter 1

Martingale Pricing Theory

This chapter provides a summary of contemporary techniques used in mathematical
finance in relation to the author’s work in this direction. Today, the entire mathe-
matical theory of pricing is based on a principle that no agent can produce a risk-free
profit by trading in the available assets. The possibility to produce a risk-free profit
is called an arbitrage and the assumption of the pricing theory is that there is no
arbitrage. While this condition may seem obvious, it was not the first principle to
be used. The traditional economic theory has been based on the fact that agents on
the market have supply and demand functions, the number of assets they are willing
to sell and buy that is a function of the market price. The price where these two
functions intersect is called an equilibrium. While the approach based on supply and
demand functions may explain the market behavior in the traditional markets such
as individual stocks, it does not explain the derivatives markets that are dependent
on some primary asset. The no-arbitrage principle sets restrictions on the prices
of derivatives and provides a typically narrow interval of possible values where the
price could be.

The key result of the pricing theory is the First Fundamental Theorem of Asset
Pricing by Harrison and Kreps [36] and Harrison and Pliska [37] which states that
no-arbitrage assumption is equivalent to the martingale evolution of the prices. Mar-
tingales are processes that keep a constant conditional expectation, so the intuition
of this result is that the prices should not exhibit a predictable drift. In particular,
this means when the prices are continuous, they cannot have a derivative, otherwise
the agents in the market would be able to lock a risk-free profit from observing the
drift. As a consequence, the drift component must be zero and the entire evolution
of the price is due to a diffusion process (an integrated Brownian motion).

Some of the basic concepts of finance are widely understood in broad terms;
however this chapter will introduce them from a novel perspective of prices being
treated relative to a reference asset. We first show the difference between an asset
and the price of an asset. The price of an asset is always expressed in terms of
another reference asset. The reference asset is also called a numeraire. The nu-
meraire asset should never become worthless so that the price with respect to this
asset is well defined. The relationship between prices of an asset expressed with
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respect to two different reference assets is known as a change of numeraire. The
concept of price appears in different markets under different names, so it may not be
obvious that it is just a particular instance of a more general concept. For instance,
an exchange rate is in fact a price representing a pairwise relationship of two curren-
cies. An even less obvious example of a price is a forward London Interbank Offer
Rate (LIBOR). By adopting a precise definition of price, we are able to treat various
markets (equities, foreign exchange, fixed income) in one single unified framework,
which simplifies our analysis.

The second section introduces the concept of arbitrage – the possibility of making
a risk free profit. We study models of markets where no agent allows an arbitrage
opportunity. One can create an arbitrage opportunity just by holding a single asset
such as a banknote. This is known as a time value of money. Thus the concept
of no arbitrage splits assets into two groups: no-arbitrage assets – the assets that
do not allow any arbitrage opportunities; and arbitrage assets – the assets that do
allow arbitrage opportunities. In theory, the market should have only no-arbitrage
assets. Financial contracts are typically no-arbitrage assets; they become arbitrage
assets only when their holder takes some suboptimal action (such as not exercising
the American put option at the optimal exercise time). On the other hand, real
markets include arbitrage assets such as currencies.

Currencies, in terms of banknotes, are losing an interest rate when compared to
the corresponding bond or money market account. Since the loss of the currency
value is typically small, money still serves as a primary reference asset in the econ-
omy. However, in order to avoid this loss of value in pricing contingent claims,
one should use discounted prices rather than dollar prices of the assets. Discounted
prices correspond to either a bond or a money market account as a reference asset.
Stocks paying dividends are arbitrage assets when the dividends are taken out, but
an asset representing the equity plus the dividends is a no-arbitrage asset. We find a
simple relationship between the dividend paying stock and the portfolio of the stock
and the dividends.

In the section that follows, we introduce the concept of a portfolio. A portfolio is
a combination of several assets, and it is important to realize that it has no numer-
ical value. In fact, one should not confuse the concept of a portfolio (viewed as an
asset) with the price of a portfolio (number that represents a pairwise relationship of
two assets). It should be noted that a portfolio may be staying physically the same,
but the price of this portfolio with respect to some reference asset may be changing.
We also introduce the concept of trading. Self-financing trading is exchanging assets
that have the same price at a given moment. As a consequence, portfolios may be
evolving in time by following a self-financing trading strategy.

When no arbitrage exists in the markets, all prices are martingales with respect
to the probability measure that comes with the specific no-arbitrage reference asset.
Martingales are processes whose best estimator of the future value is its present
value. Mathematically, a process M that satisfies Es[M(t)] = M(s), s ≤ t, is a
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martingale, where Es[.] denotes conditional expectation. The reader should refer to
the Appendix for more details about martingales and conditional expectation. The
result that prices are martingales under the probability measure that is related to the
reference asset is known as the First Fundamental Theorem of Asset Pricing. In par-
ticular, every no-arbitrage asset has its own pricing martingale measure. Other
no-arbitrage assets have different martingale measures. The martingale measure as-
sociated with the money market account is known as a risk-neutral measure. The
martingale measures associated with bonds are known as T-forward measures.
Stocks have martingale measures known as a stock measure. Arbitrage assets,
such as currencies, do not have their own martingale measures. In particular, there
is no dollar martingale measure.

Many authors do not regard currencies as true arbitrage assets because this ar-
bitrage opportunity is one sided for the issuer of the currency. It is also easy to
confuse money (in terms of banknotes) with the money market account. Banknotes
deposited in a bank start to earn the interest rate and become a part of the money
market account. When borrowing money, the debt is not a currency, but rather the
corresponding money market account. The debt earns the interest to the lender, and
thus it behaves like the money market account. However, arbitrage pricing theory
applies only to no-arbitrage assets, such as the money market account, bonds, or
stocks. It does not apply to money in terms of banknotes. No-arbitrage assets have
their own martingale measure, while arbitrage assets do not.

An important consequence of the First Fundamental Theorem of Asset Pricing
is that the prices are martingales with respect to a probability measure associated
with a particular reference asset. Martingales in continuous time models are under
some assumptions just combinations of continuous martingales, and purely discon-
tinuous martingales. Moreover, continuous martingales are stochastic integrals with
respect to Brownian motion. This limits possible evolutions of the price to this class
of stochastic processes since other types of evolutions allow for an existence of arbi-
trage.

Another related question to the concept of no arbitrage is a possibility of repli-
cating a given financial contract by trading in the underlying primary assets. The
martingale measure from the First Fundamental Theorem of Asset Pricing may
not necessarily be unique; each reference asset may have infinitely many of such
measures. However, each martingale measure under one reference asset has a cor-
responding martingale measure under a different reference asset that agrees on the
prices of the financial contracts. The two measures are linked by a Radon–Nikodým
derivative. In particular, when there is a unique martingale measure under one ref-
erence asset, the martingale measures that correspond to other reference assets are
also unique due to the one-to-one correspondence of the martingale measures.

In the case when the martingale measure is unique, all financial contracts can
be perfectly replicated. This result is known as the Second Fundamental Theorem
of Asset Pricing. The market is complete essentially in situations when the number
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of different noise factors does not exceed the number of assets minus one. Thus
models with two assets are complete when there is only one noise factor, which
is, for instance, the case in the binomial model, in the diffusion model driven by
one Brownian motion, or in the jump model with a single jump size. When the
market is complete, the financial contracts are in principle redundant since they can
be replicated by trading in the underlying primary assets. The replication of the
financial contracts is also known as hedging.

1.1 Price
This section defines price as a pairwise relationship of two assets.

Price is a number representing how many units of an asset Y are re-
quired to obtain a unit of an asset X.

We denote this price at time t by

XY (t).

Here an asset Y serves as a reference asset. The reference asset is known as a nu-
meraire. Price is always a pairwise relationship of two assets.

For practical purposes the role of a reference asset is typically played by money,
a choice of the reference asset Y being a dollar $. However, the choice of the ref-
erence asset is in principle arbitrary as long as the reference asset is not worthless.
The reader should note that some financial assets may become worthless at a certain
stage (such as options expired out of the money), and such contracts would be a
poor choice of the reference asset. There are also some desirable properties that the
reference asset should satisfy: it should be sufficiently durable, and there should
exist enough identical copies of the asset. From this perspective, consumer goods
(such as cars, electronic products, most food products) may be used as a reference
asset, but this choice would not be appropriate since the asset itself has time value;
it is deteriorating in time.

In practice, a small loss of the value of the reference asset is acceptable. Cur-
rencies in particular lose value in time by allowing an arbitrage opportunity with
respect to the money market account, and they still play a role of a primary refer-
ence asset in the economy. However, when the loss of the value becomes large, for
instance in a period of hyperinflation, such currency may no longer be accepted as
a reference asset. The property of having sufficient identical copies of the asset en-
sures that the individuals in the economy can easily acquire the reference asset. The
reference asset should be sufficiently liquid. For instance some art works (paintings,
sculptures, buildings) have a significant value, but they cannot be easily bought or
sold and thus using them as a reference asset would not be a good choice.

Typical choices of a reference asset used in practice are currencies (denoted by $,
e, £, ¥, etc.), bonds (denoted by BT ), a money market (denoted by M), or stocks
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and stock indices (denoted by S). A bond BT is an asset that delivers one dollar
at time T . The money market M is an asset that is created by the following
procedure. The initial amount equal to one dollar is invested at time t = 0 in the
bond with the shortest available maturity (ideally in the next infinitesimal instant),
and this position is rolled over to the bond with the next shortest maturity once
the first bond expires. The resulting asset, the money market M , is a result of an
active trading strategy involving a number of these bonds. In principle, there is a
counter party risk involved in delivering a unit of a currency at some future time.
The counter party may fail to deliver the agreed amount at the specified time. The
following text assumes situations when there is no such risk present, as in the case
when the delivery of the asset is guaranteed by the government.

The reference asset itself does not need to be a traded asset. As we will see in the
chapter on pricing exotic options, some natural reference assets that are useful for
pricing complex financial contracts do not exist in real markets. For instance, one
can use an asset that represents the running maximum of the price max0≤s≤t XY (s)
for pricing lookback options, or one can use an asset that represents the average
price for pricing Asian options. A price of a financial contract that is expressed in
terms of an asset which is not traded can be easily converted to a price expressed
in terms of a traded asset. Thus for practical purposes it does not matter if the
reference asset exists or not in real markets.

Let us introduce the following notation. By X(t) we mean a unit of an asset
X at time t, not its price in terms of a different asset. In principle, an
asset X that has no time value stays the same at all times (think of an ounce of
gold), so there is really no need to index it with time. However, by adding the
time coordinate we express that a particular asset is used at that time for trading,
pricing, hedging, or for settling some contract. When there is no ambiguity, we will
simply drop the time index, and write only X to stress that the asset in fact stays
the same.

Recall that price is a pairwise relationship of two assets denoted by XY (t) – the
number of units of an asset Y required to obtain one unit of an asset X. The asset
Y is known as a reference asset, or as a numeraire. We can write that

1 unit of X = XY (t) units of Y ,

or simply
X = XY (t) · Y. (1.1)

Assets X and Y on their own do not have any numerical value (such as an ounce of
gold), and the above equality does not mean that the assets on the left hand side
and on the right hand side of the equation are physically the same. Note that we
cannot divide by Y in the above equation since Y is an asset.

The relation “=” when used for assets as in Equation (1.1) is an equivalence
relation. We will write X(t) = Y (t) in the sense of assets when XY (t) = 1
in the sense of numbers. Clearly, the relation “=” for assets is
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• reflexive: X(t) = X(t),

• symmetric: X(t) = Y (t) implies Y (t) = X(t),

• transitive: X(t) = Y (t) and Y (t) = Z(t) imply X(t) = Z(t).

The assets are also ordered according to their prices. We can write X(t) ≥ Y (t) in
terms of assets when XY (t) ≥ 1 in terms of numbers. It should be noted that two
assets X and Y with an equal price at time t1 (meaning XY (t1) = 1) may differ
in price at some other time t2 (meaning XY (t2) ̸= 1). If two assets X and Y have
the same price at time t, they can be exchanged for each other at that time. This
procedure is known as a self-financing trade.

It may not be clear as to why we should adopt notation XY (t) for the price,
instead of using just a single letter for it, say S(t), which is typically used for the
price of a stock in terms of dollars. The following examples illustrate that the con-
cept of price appears in different markets, such as in equity markets, in the foreign
exchange markets, or in fixed income markets. By using our notation, we are able
to treat these prices in one single framework, rather than studying them separately.

Example 1.1 (Examples of the price)

• The dollar price of an asset S, S$(t), where the role of the asset X is played
by the stock S, and the role of the reference asset Y is played by the dollar $.
Most of the current literature writes simply S(t) for the dollar price S$(t) of
this asset, but we want to avoid in our text confusing the asset S itself with
the price of the asset S$(t).

• The price of a stock S in terms of the money market M , SM(t), where the
asset X is a stock S, and the asset Y is a money market M with M(0) = $(0).
The price SM(t) is known as a discounted price of an asset S.

• The price of a stock S in terms of a zero coupon bond BT with maturity T ,
SBT (t), where the asset X is a stock S, and the asset Y is a bond BT . This
is also a form of a discounted price which is more appropriate than SM

for pricing derivative contracts that depend on S and $. Note that we have
SBT (T ) = S$(T ).

• The exchange rate, e$(t), where X is the foreign currency (e), and Y is the
domestic currency $. The choice of domestic and foreign currency is relative,
and thus $e(t) is also an exchange rate.

• Forward London Interbank Offered Rate, or forward LIBOR for short,[
BT −BT+δ

]
δBT+δ (t),

where the role of the asset X is played by a portfolio of two bonds [BT −BT+δ],
and the reference asset Y is δ ·BT+δ.
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We will discuss these examples of price in more detail after introducing the
concepts of inverse price, and change of numeraire. Since the assets X and Y
considered in the above are arbitrary, it also makes perfect sense to consider the
inverse relationship when X is chosen as a reference asset. For instance, one may
think about X and Y as two currencies. When X = e, and Y = $, we have both
the exchange rate e$(t) – the number of dollars required to obtain a unit of a euro,
and the exchange rate $e(t) – the number of euros required to obtain a unit of a
dollar. Thus we can also write

1 unit of Y = YX(t) units of X,

or simply
Y = YX(t) ·X. (1.2)

The price YX(t) is the inverse price to XY (t). Let us show the relationship between
YX(t) and XY (t). Suppose that an agent starts with a unit of an asset Y . He can
change it for YX(t) units of an asset X. This amount can be split in two parts:
YX(t)−XY (t)

−1 and XY (t)
−1 units of an asset X. The part of XY (t)

−1 units of an
asset X can be exchanged back for a unit Y , which follows from the relationship

X = XY (t) · Y,

which is equivalent to
Y = XY (t)

−1 ·X.

We can rewrite the above trading procedure using the following identities

Y = YX(t) ·X
= (YX(t)−XY (t)

−1) ·X +XY (t)
−1 ·X

= (YX(t)−XY (t)
−1) ·X + Y.

Thus the net result of this exchange is YX(t)−XY (t)
−1 units of an asset X, which

must be zero in order not to allow a risk-free profit. Therefore the prices XY (t) and
YX(t) are related by the following relationship

YX(t) =
1

XY (t)
. (1.3)

This relationship is valid when 0 < XY (t) < ∞, which is the case that neither the
asset X nor the asset Y is worthless. In this case, XY (t) and its inverse price YX(t)
have the same information.

In general, it should not matter which reference asset is chosen, one should ob-
serve similar price evolutions. We will use this as a key principle for pricing derivative
contracts studied in this book. One can look at it as a theory of relativity in
finance: how one views prices depends on one’s choice of the reference asset.

Given an asset X and two reference assets Y and Z, we can write the price of
X with respect to the reference asset Y using

X = XY (t) · Y. (1.4)
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Similarly, we can write
X = XZ(t) · Z (1.5)

when we use Z as a reference asset. Thus we have

X = XY (t) · Y = XZ(t) · Z, (1.6)

which is known as a change of numeraire formula. The above relationship is
written in terms of assets. We can rewrite the above relationship in terms of the
price as

XY (t) = XZ(t) · ZY (t). (1.7)

This relationship is valid for assets X, Y , and Z that are not worthless.

Example 1.2 (Foreign Exchange Market)
Let us illustrate the concepts of the inverse price and the change of numeraire on
the foreign exchange market. Prices in the real markets satisfy the relationship

YX(t) = XY (t)
−1

at all times (up to the rounding errors). For instance, on January 8th, 2010, at
8:00PM EST, the exchange rates between e and $ were:

e$ = 1.4415 $e = 0.6937.

We can easily check that

$−1
e =

1

0.6937
= 1.441545...

Thus the inverse exchange rate $−1
e matches the first four digits of the exchange

rate e$. The exact match is typically not possible since these exchange rates are
quoted in four decimal digits. However, the arbitrage is still not possible due to the
difference of the prices offered and asked. An agent who wants to acquire a unit of
an asset should be ready to pay more than an agent who wants to sell a unit of the
same asset.

More specifically, the market exchange works in the following way: Agents who
want to buy a particular asset place their orders on the market exchange, and wait
until they find corresponding counter parties that are willing to match their orders.
The orders compete according to the price that is quoted; a higher quote has a higher
priority of being executed. The highest quote is known as the best bid. Similarly,
agents who want to sell a particular asset place their orders on the market exchange.
A smaller price asked for a unit of a given asset has a higher priority. The smallest
price asked is known as the best ask. Clearly, the best ask is larger than the best
bid. The smallest difference between two possible quoted prices on the exchange is
known as a tick. In the case of euro/dollar exchange rates, the tick is equal to
0.0001. The difference between the best bid and the best ask is known as a bid-ask
spread. Bid-ask spreads may be larger than a tick. More liquid assets have smaller
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bid-ask spreads, the difference between the buying and the selling price being smaller.

From the perspective of having both XY (t) and YX(t) as prices, there is no abso-
lute direction of up and down in the market. Each trade has two sides, a seller and
a buyer. If the market moves in one direction, it is either to the benefit of the seller
and at the expense of the buyer, or vice versa. This is another way of saying that
when one of the prices XY (t) or YX(t) goes up, the inverse price must go down.

Exchange rates also serve as an example of the change of numeraire formula.
Table 1.1 shows the exchange rate table for four major currencies: dollars, euros,
pounds, and yen as seen on January 8th, 2010 at 8:00PM EST. For instance the
entry ($,e) gives the price $e = 0.6937, etc.

Table 1.1: Exchange Rate Table.
$ e £ ¥

$ 1 0.6937 0.6238 92.6300
e 1.4415 1 0.8991 133.5260
£ 1.6032 1.1122 1 148.5040
¥ 0.0108 0.0075 0.0067 1

From the change of numeraire formula, we should also have among other similar
relationships

$e = $£ ·£e. (1.8)
In fact,

$£ ·£e = 0.6238× 1.1122 = 0.693790...

This matches the original $e rate in four decimal digits if we neglect the rounding
error in the fourth digit. This match is close enough not to allow for any arbi-
trage opportunities due to the market imperfections such as the bid-ask spread, or
transaction costs.

Remark 1.3 The change of numeraire formula (1.7) applies to all assets, with
or without time value. Note that Equation (1.8) is an example of the change of
numeraire formula for assets with time value.

Example 1.4 (Forward London Interbank Offered Rate)
The Forward London Interbank Offered Rate, or LIBOR for short, is defined as a
simple interest rate that corresponds to borrowing money over the time interval T
and T + δ as seen at time t ≤ T . We denote forward LIBOR by L(t, T ). When
t = T , L(T, T ) is known as a spot LIBOR since it corresponds to borrowing money
at the present time T .

Suppose that one dollar is borrowed at time T , and assume that L(t, T ) is the
simple interest rate for the period between T and T + δ. Then the agent should
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return 1 + δL(t, T ) dollars at time T + δ. Thus L(t, T ) can be defined by the
following relationship:

(1 + δL(t, T )) ·BT+δ(t) = BT (t). (1.9)

The right hand side of the above relationship indicates that one dollar will be delivered
at time T . The left hand side indicates that (1 + δL(t, T )) dollars will be returned
at time T + δ. Therefore

δL(t, T ) ·BT+δ(t) = BT (t)−BT+δ(t). (1.10)

We can rewrite this relationship in the following form:

L(t, T ) =
[
BT −BT+δ

]
δ·BT+δ (t), (1.11)

showing that forward LIBOR L(t, T ) is in fact a price, where the asset X is a port-
folio [BT − BT+δ] (long the BT bond, and short the BT+δ bond), and the reference
asset Y is δ units of the bond BT+δ.

If we wanted to compute XY (t) for two general assets, we can do so from the
dollar prices of the assets X and Y :

XY (t) = X$(t) · $Y (t) =
X$(t)

Y$(t)
, (1.12)

where we substitute Z for $ in the change of numeraire formula. Using Equation
(1.12), we can determine forward LIBOR from dollar prices of bonds by using

L(t, T ) =
[
BT −BT+δ

]
δBT+δ (t)

=
[
BT −BT+δ

]
$
(t) · $δBT+δ(t) =

BT
$ (t)−BT+δ

$ (t)

δBT+δ
$ (t)

. (1.13)

Here we have used the change of numeraire formula, and linearity of the prices:

[aX + bY ]Z(t) = aXZ(t) + bYZ(t). (1.14)

Foreign exchange markets, or fixed income markets that trade on LIBORs, are
in fact much larger than the equity markets in terms of the volume traded, and thus
the main focus of financial markets is on prices that are not expressed exclusively in
dollar terms. It is also not an obvious observation that exchange rates and forward
LIBORs are in fact prices. Calling them the exchange rates or forward LIBORs is
slightly misleading, and the literature tends to study the asset prices, foreign ex-
change rates, and forward LIBORs separately. In our approach, they are just special
cases of a more general concept of price.

Price is always a pairwise relationship of two assets, and we will use this nota-
tion throughout this book to indicate the reference asset. This distinction will help
us study derivative contracts later on in the text that are written on more than
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one underlying asset. The second (or the third asset when applicable in the case
of exotic options) asset also serves as a viable reference asset for pricing a given
derivative contract. This notation is especially helpful when studying quantos and
other exotic options, which represent financial contracts that are written on three
underlying assets. The reader should also note here that every contract is settled
in units of particular assets (dollars, stocks, bonds) rather than in the price itself –
the price indicates only how many units of a particular asset are needed.

1.2 Arbitrage
This section discusses another fundamental concept of finance, namely arbitrage.

Arbitrage is an opportunity to make a risk free profit in the market.

It is important to distinguish an arbitrage opportunity from a profitable trading
strategy. Arbitrage means that there is at least one agent that can make money
for sure, while a profitable trading strategy simply works on average, meaning that
some scenarios may lead to a loss.

An arbitrage opportunity means that one can create a guaranteed profit starting
from a portfolio with a zero initial price. It is easy to see that if a portfolio has a
zero price with respect to one asset, it has a zero price with respect to any reference
asset. A typical example of an arbitrage opportunity is the ability to purchase an
asset at a given price and then sell the same asset immediately or some later time for
a higher price. The guarantee of a higher price is necessary to make it an arbitrage
opportunity, assuring that the portfolio always ends up with more assets than when
it started. Such arbitrage trades can happen when a purchase price in one market
is less than the selling price in a different market.

Example 1.5 Assume that at time t = 0, the price of an asset X with respect to an
asset Y is XY (0) = K. Suppose that at a fixed time T ≥ 0, the price will be exactly
XY (T ) = J with J > K. In such a case one can construct a portfolio, starting at
time t = 0 with P 0(0) = 0, exchange it for the portfolio P 1(0) = X − K · Y that
has a zero price (long one unit of X and short K units of Y ), and end up with a
portfolio P 1(T ) = X −K · Y at time T . This portfolio can be exchanged by selling
a unit of an asset X for J units of an asset Y for a portfolio with the same price
P 2(T ) = (J −K) · Y > 0. This is clearly an arbitrage opportunity.

A slightly less obvious arbitrage opportunity is a free lottery ticket. Although
in most cases a typical lottery ticket does not win any prize, one is certain not to
lose any money and still have a possibility of winning something. That qualifies as
an arbitrage opportunity.

Example 1.6 Assume that there is a free lottery ticket L whose price in terms
of the dollar $ is zero: L$(0) = 0. We have seen in the previous example that
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having dollars in a portfolio provides an arbitrage opportunity, but let us assume
for the purpose of this example that dollars keep their value with respect to bonds
in order to illustrate a different kind of arbitrage. The lottery ticket either expires
worthless, or it wins N dollars at time T . One can construct the portfolio starting
from zero P 0(0) = 0, acquiring one zero price lottery ticket, thus creating a portfolio
P 1(0) = L(0). This portfolio will convert to P 1(T ) = N · I(ω = Win) · $, where
I(ω = Win) is the indicator function of the win. We have that P 1(T ) ≥ 0 for sure,
with the possibility of P 1(T ) > 0. This also constitutes an arbitrage opportunity.

Another example of an arbitrage opportunity is when the price XY (t) of an asset
X in terms of an asset Y does not correspond to the price YX(t) of an asset Y in
terms of an asset X.

Example 1.7 (Arbitrage opportunity when XY (t) ̸= YX(t)
−1.)

If the relationship
XY (t) =

1

YX(t)

does not hold, it is possible to realize a risk-free profit. Assume for instance

1

XY (t)
< YX(t).

In this case, we can start with a unit of an asset Y , and exchange it for YX(t) units
of an asset X. We can split this position in two parts: YX(t)−XY (t)

−1 and XY (t)
−1

units of an asset X. The second part, XY (t)
−1 units of an asset X, can be exchanged

back for a unit of an asset Y . This follows from

X = XY (t) · Y,

which is equivalent to
Y = XY (t)

−1 ·X.

Therefore one can generate a certain profit of YX(t)−XY (t)
−1 > 0 units of an asset

X.

Example 1.8 Assume that XY (t) = 3, and YX(t) =
1
2
. How can one realize a risk

free profit? First check that YX(t) = 1
2
̸= XY (t)

−1(t) = 1
3
. Therefore the prices

allow for an arbitrage opportunity. Following the method described in the previous
example, we can start with borrowing one unit of Y . Using YX(t) = 1

2
, we can

immediately exchange the unit of Y for 1
2

units of X. We can split 1
2

units of X
in two parts, consisting of 1

6
and 1

3
units of X. The first part 1

6
units of X is a

net profit from this transaction; the second part can be used for an acquisition and
return of a borrowed unit Y using the price relationship XY (t) = 3.

Formally, an arbitrage opportunity is defined by:

If one starts with a zero initial portfolio P (0) = 0, follows a self-
financing strategy, and ends up with P (T ) ≥ 0 with probability 1, and
has a possible outcome of P (T ) > 0 with positive probability at any given
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time T , then an arbitrage opportunity is available in the market.

Note that the definition of an arbitrage opportunity does not depend on the
choice of the reference asset Y . If PY = 0 or PY > 0 for the reference asset Y , then
PU = 0 or PU > 0 for any other reference asset U .

1.3 Time Value of Assets, Arbitrage and No-
Arbitrage Assets

As stated in the previous section, an asset can either stay the same over time or
change over time. In the first case, we say that the asset has no time value. Ex-
amples of assets that do not change over time include precious metals, a contract
to deliver a particular asset in some fixed future time, or a stock that reinvests div-
idends. One should not confuse the concept of an asset with no time value with the
concept of the price of an asset with no time value. For instance an ounce of gold is
an asset with no time value, and it does not change over time, but the price of this
asset with respect to a dollar may be changing over time.

When the asset is changing over time, we say that the asset has a time value.
Assets with time value may deteriorate over the passage of time or not. Examples
of time value assets that deteriorate over time include currencies, stocks that pay
out dividends, and most consumer goods. However, some assets may change over
time and not deteriorate, for instance portfolios that actively exchange assets with
no time value.

One certainly does not create an arbitrage opportunity by holding an asset that
has no time value. On the other hand, assets that have time value may or may not
create arbitrage opportunities. It depends if the asset with time value deteriorates
(or appreciates) in time or not. If one creates an arbitrage opportunity by holding a
given asset, we will call this asset an arbitrage asset. If an arbitrage opportunity
is not possible by holding a given asset, we call this asset a no-arbitrage asset.
There is a simple method to determine whether a given asset X is an arbitrage or
a no-arbitrage asset. Let V be a contract to deliver a unit of the asset X at some
future time T . We can write

V (T ) = X(T ).

When V (t) = X(t) at all times t ≤ T , the asset X is a no-arbitrage asset. When
V (t) ̸= X(t) for some t ≤ T , the asset X is an arbitrage asset.

The identity V (t) = X(t) means that V , the contract to deliver a unit of an
asset X, is identical to the asset X itself. The only way to deliver a no-arbitrage
asset is to hold it at all times up to time T . For instance the contract to deliver a
stock costs the stock itself, a contract to deliver an ounce of gold costs the ounce of
gold (neglecting a possible cost of carry which is close to zero for financial assets).
Some hedge funds try to realize arbitrage opportunities even in these primary assets,
so it may be hard to tell which asset is a no-arbitrage asset without observing the
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corresponding contract to deliver. A contract to deliver usually does not exist for a
no-arbitrage asset since it coincides with the asset itself, and thus it is completely
redundant. However, the nonexistence of the contract to deliver can happen for
two reasons: the underlying asset is a no-arbitrage asset, or there is no market for
the contract to deliver. This makes it harder to determine whether the asset is a
no-arbitrage asset.

Rational investors do not allow any arbitrage opportunities, and thus their port-
folios hold only no-arbitrage assets, or arbitrage assets that provide one sided ad-
vantage for the investor. If the market has only rational investors, there would be
no arbitrage assets at all. For a given asset X, the contract V to deliver an
asset X is always a no-arbitrage asset, even when the asset X to be delivered
is an arbitrage asset. This is easily seen from the following argument. Let U be a
contract to deliver the asset V at time T , or in other words, U(T ) = V (T ). From
the identity V (T ) = X(T ), we also have U(T ) = X(T ). Thus U is also a contract
to deliver X at time T , and therefore U is identical to V . This proves that V , a
contract to deliver an asset X at time T , is a no-arbitrage asset. In particular,
bonds are no-arbitrage assets.

On the other hand, assets with V (t) ̸= X(t) for some t < T are arbitrage assets.
We have either V (t) < X(t), or V (t) > X(t). When V (t) < X(t), it is possible
to deliver the asset X at time T at a cheaper price than just holding the asset X
itself. The exact procedure to lock the arbitrage opportunity for an arbitrage asset
is described in Example 1.9 which follows. When V (t) < X(t), one should buy a
contract to deliver V and sell a corresponding number of units of an asset X.

Arbitrage assets do exist in real markets, mostly representing assets with dete-
riorating time value (food, consumer goods, banknotes). However, these assets are
not typically included in financial portfolios as holding them would create arbitrage
opportunities that are not favorable for the holders of such assets. But the arbitrage
assets still may appear in the payoffs of financial contracts, such as a contract to
deliver a unit of the asset in a fixed future time. We have already seen that a con-
tract to deliver any asset is always a no-arbitrage asset. Such derivative contracts
facilitate trading of assets with deteriorating time value. While the underlying asset
creates arbitrage opportunities, the contract to deliver does not, and as such it may
be included in a financial portfolio that does not deteriorate over time.

Examples of arbitrage assets that appear in such payoffs include certain food
products (orange juice, coffee, pork bellies), currencies, or stocks that pay dividends.
A stock together with the corresponding dividend payments is a no-arbitrage asset.
However, a stock when taken separately without the dividends is an arbitrage asset.
Taking away the dividends is an obvious arbitrage opportunity. Another example
of an arbitrage asset is an asset that corresponds to a maximum price of an asset
X with respect to a reference asset Y defined as [max0≤s≤t XY (s)] · Y (t). This asset
appears in the payoff of a lookback option, and although it does not exist in the real
markets, it can still be used as a reference asset for pricing lookback options.
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Arbitrage assets do change over some periods of time; in particular we have

$(t) > $(t+ 1), (1.15)

which means that a dollar today is worth more than a dollar tomorrow. Inequality
(1.15) is known as the time value of money.

Example 1.9 (Arbitrage opportunity created by an arbitrage asset)
Let V be a contract that delivers a unit of an asset X at time T , or in other
words,

V (T ) = X(T ).

This equality is written in the sense of two assets, the contract to deliver V has the
same price as an asset X at time T . In terms of prices, we can write

VX(T ) = 1,

which means that the price of the contract to deliver V with respect to the reference
asset X is one at time T . When V (0) < X(0), we can realize a risk free profit by
buying a unit of an asset V , and sell VX(0) < 1 units of an asset X, thus creating
a zero price portfolio

P (0) = 1 · V − VX(0) ·X.

Clearly, PX(0) = 1 · VX(0)− VX(0) = 0. This portfolio is kept until time T , when it
becomes

P (T ) = 1 · V − VX(0) ·X
= (1− VX(0)) ·X > 0.

Thus one can get a portfolio with a guaranteed positive price starting from a portfolio
with a zero price.

The most typical examples of arbitrage assets are currencies. Let X be a dollar
$. A contract to deliver a dollar at time T is known as a bond, and it is denoted by
BT . The dollar price of the bond is typically less than one (BT

$ (0) < 1), making a
dollar an arbitrage asset. In order to lock the risk free profit, one would have to buy
a bond BT , and sell BT

$ (0) units of a dollar. This means one would have to borrow
money to get a short position in dollars, which leads us to the following important
remark.

Remark 1.10 (Borrowing money)
When one borrows money in terms of a dollar $, the resulting asset that
is owed is not money but rather a money market account M , an interest
bearing account. The asset that is borrowed is different from the asset that is
owed. In contrast, if one borrows a stock S (in terms of short-selling on the stock
exchange), the debt is still the same stock S. The exchange may charge a fee for
that, but the asset that is borrowed is the same as the asset that is owed.

Even governments have to pay interest when borrowing money. The only excep-
tion when interest is not paid is when governments issue banknotes. Governments
typically have a limited intention to print more banknotes in order to finance their
debts, and thus exploration of this arbitrage opportunity is not significant.
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1.4 Money Market, Bonds, and Discounting
The fact that currencies have time value means that prices in terms of a dollar may
not be consistent in time. This is known as time value of money: A dollar today is
worth more than a dollar tomorrow. Thus when one expresses prices of an asset S in
terms of a dollar, these prices will have an upward drift component that corresponds
to the loss of value of the reference asset.

In order to remove the effect of the depreciation of the reference asset, one can
express the price of the asset S in terms of no-arbitrage proxy assets to a dollar,
such as a money market M , or a bond BT . Prices SM(t) and SBT (t) are known as
discounted prices of the asset S.

Recall that the money market M is an asset created by the following procedure.
The initial amount equal to one dollar is invested at time t = 0 in the bond with
the shortest available maturity (ideally in the next infinitesimal instant), and this
position is rolled over to the bond with the next shortest maturity once the first
bond expires. The resulting no-arbitrage asset, the money market M , is a result
of an active trading strategy involving a number of these no-arbitrage bonds. The
dollar price of the money market is given by

M$(t) = exp
(∫ t

0
r(u)du

)
, (1.16)

where r(t) is a parameter known as the interest rate. In practice, the money
market asset is replicated as a portfolio of different bonds by banks or investment
funds.

Equation (1.16) can be written in a differential form as

dM$(t) = r(t)M$(t)dt. (1.17)

The interest rate r(t) can be viewed as a rate of deterioration of an arbitrage asset
$ with respect to a no-arbitrage asset M , the money market account. Since the
parameter r(t) is related only to the shortest available bond, in this case Bt, a bond
that matures immediately at time t, a simple analog of Equation (1.17) for a bond
BT is not available. Only if we take a simplifying assumption that the interest rate
r(t) is deterministic, can we also write

BT
$ (t) = exp

(
−
∫ T

t
r(u)du

)
. (1.18)

The reason is that there is only one way to deliver one dollar at time T by investing
in the money market account M . If one starts with exp

(
−
∫ T

t
r(u)du

)
units of a

dollar at time t and invests it in the money market account M , it will be worth

exp
(
−
∫ T

t
r(u)du

)
· exp

(∫ T

t
r(u)du

)
= 1

unit of a dollar at time T . Therefore the price of the bond BT at time t must be
given by Equation (1.18); otherwise we would have an arbitrage opportunity. In this
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case, the price of the bond BT and the price of the money market M are related by
the formula

BT (t) = exp
(
−
∫ T

0
r(u)du

)
·M(t). (1.19)

Thus the money market M is just a constant multiple of the bond BT .

In the case of a deterministic interest rate r(t), we can also write

dBT
$ (t) = r(t)BT

$ (t)dt, (1.20)

which is similar to Equation (1.17). Moreover, when the interest rate is constant,
the above relationships lead to

M(t) = ert · $(t), (1.21)

BT (t) = e−r(T−t) · $(t), (1.22)
and

BT (t) = e−rT ·M(t). (1.23)
The relationship between the money market M and the bond BT is no longer

trivial when the interest rate r(t) is stochastic. In this case, the price of the money
market starts at a deterministic value M$(0) = 1, but at later time t, M$(t) will be
stochastic in general. On the other hand, the price of the bond BT

$ (t) is random
in general for times t < T before the expiration of the bond, but it becomes one
at time T (BT

$ (T ) = 1), which is a deterministic value. We study the evolution of
bond prices in detail in the chapter on term structure models.

As seen earlier, we can regard both SM(t) and SBT (t) as discounted prices of an
asset S. When we express the price of S with respect to the money market M using
the change of numeraire formula for assets X = S, Y = M , and Z = $, we get

SM(T ) = S$(T ) · $M(T ) = exp
(
−
∫ T

0
r(u)du

)
· S$(T ) ≤ S$(T ), (1.24)

with
SM(0) = S$(0) · $M(0) = S$(0). (1.25)

Similarly, when we express the price of S with respect to the bond BT using the
change of numeraire formula for assets X = S, Y = M , and Z = $, we get

SBT (T ) = S$(T ) · $BT (T ) = S$(T ), (1.26)

with
SBT (0) = S$(0) · $BT (0) =

S$(0)

BT
$ (0)

≥ S$(0). (1.27)

The two types of discounting are also related by

SBT (t) = SM(t) ·MBT (t). (1.28)
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In particular, when the interest rate r is constant, the relation between SBT and SM

is simply
SBT (t) = erT · SM(t). (1.29)

The important difference between SM and SBT is that the price of SM agrees with
the price S$ at time t = 0, while the price of SBT agrees with the price S$ at time T .
The reference point for discounting with the money market M is at time t = 0, while
the reference point for discounting with the bond BT is at time T . Since typical
European-type derivative contracts explained in the next chapter pay off f(S$(T ))
for some function f , discounting with respect to the bond BT makes more sense as
SBT (T ) = S$(T ).

Bonds usually deliver units of a currency at multiple times until their maturity.
However, without loss of generality we consider only bonds with a single delivery
time T . A bond BT that pays one dollar at time T is also known as a zero coupon
bond. A bond with multiple delivery times is just a combination of several zero
coupon bonds. A zero coupon bond is also a possible choice of a no-arbitrage refer-
ence asset.

1.5 Portfolio
This section addresses the following questions: What is a portfolio? What is the
price of a portfolio? What is a self-financing trading strategy?

A portfolio is a sum of one’s assets

P (t) =
N∑
i=0

∆i(t) ·X i, (1.30)

where ∆i(t) represents how many units of an asset X i are held at time t.

When ∆i(t) > 0, we say that the portfolio has a long position in the asset X i.
When ∆i(t) < 0, we say that the portfolio has a short position in the asset X i.
When ∆i(t) = 0, we say that the portfolio has a neutral position in the asset X i.

Note that a portfolio is not a number. A car, a house, paintings, and jewelery
are assets that do not take numerical values. Thus a portfolio is a distinct concept
from the price of a portfolio, the number of units of the reference asset that is
required to acquire the entire portfolio. As mentioned earlier, price is relative to the
chosen reference asset. If we fix Y = X0 to be the reference asset, the price of a
portfolio with respect to the reference asset (numeraire) Y is given by

PY (t) =
N∑
i=0

∆i(t) ·X i
Y (t). (1.31)
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In other words, PY (t) is the number of units of the asset Y that one would obtain,
should one exchange all assets in one’s portfolio for an asset Y at time t.

The individual portfolio position ∆i(t) has to be known at time t; it cannot be
set in retrospect after observing prices in the future. It is similar to betting in a
casino – one first places the stake before observing the outcome of a given game.
Mathematically, each ∆i(t) has to be a predictable process, which means that
the portfolio position is set before the market observes the price move. Predictable
processes are generated by the processes that have left continuous paths.

A portfolio, P (t), together with prices X i
Y (t) determine the price of a portfolio

PY (t). On the other hand, different portfolios may have the same price at a given
time t. We assume that one can exchange one’s portfolio for any other portfolio
that has an equal price at time t. We also assume that all assets in the portfolio
are no-arbitrage assets. This procedure of exchanging no-arbitrage assets with equal
price is known as a self-financing trading strategy. Trading portfolios with equal
prices means that no asset is either added or withdrawn from the portfolio without
being properly exchanged with a combination of assets of an equal price. Holding
only no-arbitrage assets ensures that the resulting portfolio is also a no-arbitrage
asset. If the prices of two portfolios are the same with respect to one asset Y , the
prices are also the same with respect to any other asset Z. This is easily seen from
the change of numeraire formula

PZ(t) = PY (t) · YZ(t).

Since exchanging portfolios with equal price can be done in principle at any given
time t, one can have continuously rebalanced portfolios as a result.

Let us give an example of self-financing trading.

Example 1.11 (Self-financing trading) The portfolio

P 1(t) =
N∑
i=0

∆i(t) ·X i

can be exchanged for the portfolio

P 2(t) =

[
N∑
i=0

∆i(t) ·X i
Y (t)

]
· Y

since the two have the same price. This is easily seen from

P 1
Y (t) =

N∑
i=0

∆i(t) ·X i
Y (t),

and

P 2
Y (t) =

N∑
i=0

∆i(t) ·X i
Y (t).
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Therefore we have
P 1
Y (t) = P 2

Y (t).

However, the two portfolios are physically different. The first portfolio P 1(t) has
∆i(t) units of an asset X i, for i = 1, . . . , N , while the second portfolio P 2(t) has∑N

i=0∆
i(t) ·X i

Y (t) units of an asset Y , and zero positions in the remaining assets.
But since they have the same price, they can be exchanged for each other at time t.

Remark 1.12 Note that self-financing trading may come with some limitations.
For instance in the economy consisting of just two assets X and Y , portfolios of the
form

P = ∆X(t) ·X + (PY (t)−∆X(t)XY (t)) · Y

have the same price PY (t) with respect to the reference asset Y , where ∆X(t) is
an arbitrary number. But in reality, one usually cannot take arbitrarily large or
arbitrarily small (negative) positions in the underlying assets. These positions are
usually bounded. For instance, sometimes it may not be possible to take a short
position in a particular asset. The bounds on the portfolio position may depend on
a given situation, and they may even be different for different agents (think about
credit lines). Therefore it is not clear how to define acceptable portfolio positions in
order to reflect the reality of the market. There can be also a physical limit on the
number of assets that can be held: some assets are nondivisible, and thus one can
have only an integer number of them in a given portfolio.

Another limit is that the price of the portfolio may be required to stay above
a certain minimal threshold; otherwise a bankruptcy occurs. An adapted portfolio
process ∆i(t)

N
i=0 that guarantees PY (t) ≥ L for some lower bound L for all t is called

admissible.

The last concern we mention is continuous trading. The traders in the real mar-
kets are allowed to change their portfolio positions rather frequently, but only finitely
many times in a given time interval. However, mathematical models in continuous
time assume that the portfolio positions can be changed continuously. Such an ap-
proach gives realistic results, but one should be careful not to construct portfolios
that require an infinite number of trades that are not the result of a limit of discrete
trading.

We will not be specific in this text about these limitations since this is not a prime
focus of the book, but the reader should be aware of them.

1.6 Evolution of a Self-Financing Portfolio
Let us discuss how the portfolio can evolve in time, using a self-financing trading
strategy. We also assume that all assets are no-arbitrage assets; otherwise
the portfolio itself is an arbitrage asset. Consider first the discrete time case.
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Let the portfolio at time k be given by

P (k) =
N∑
i=0

∆i(k) ·X i.

At time k + 1, the portfolio will have the same positions ∆i(k) in each asset X i:

P (k + 1) =
N∑
i=0

∆i(k) ·X i,

but since X i stays the same over time for each i = 0, 1, . . . , N , the portfolios P (k)
and P (k + 1) are the same, only taken at two different time periods.

While the portfolio remains unchanged, its price with respect to a reference asset
may be changing. When we write the difference of the prices of the portfolio taken
at two consecutive times k and k + 1, we get

PY (k + 1)− PY (k) =
N∑
i=0

∆i(k) ·
[
X i

Y (k + 1)−X i
Y (k)

]
. (1.32)

Note that we can omit the changes in the reference asset Y = X0 since

YY (k + 1)− YY (k) = 1− 1 = 0.

For example, one ounce of gold in the portfolio will still be one ounce of gold in the
portfolio in the next time interval, and its price will stay unchanged if the reference
asset is chosen to be gold. Similarly, a particular asset will remain the same in the
portfolio, but its price with respect to gold may fluctuate in time.

Equation (1.32) says that the change of the price of the portfolio is explained
only by the changes of the prices of individual assets in the portfolio. On the other
hand, possible changes in the asset positions ∆i(k) from time k to k+1 do not enter
this equation. At time k+1, the holder of the portfolio is free to exchange his present
portfolio for a portfolio that has the same price. If we denote the old portfolio that
was inherited from time k by P old(k + 1) = P (k) =

∑N
i=0∆

i(k) ·X i, and the newly
exchanged portfolio at time k + 1 by P new(k + 1) =

∑N
i=0∆

i(k + 1) ·X i, we have

P old
Y (k + 1) = P new

Y (k + 1).

The holder of the portfolio can change his position in the underlying assets X i from
∆i(k) to ∆i(k + 1) given that the two portfolios under consideration have the same
price. It means that

N∑
i=0

∆i(k) ·X i
Y (k + 1) =

N∑
i=0

∆i(k + 1) ·X i
Y (k + 1),
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or in other words,

N∑
i=0

[
∆i(k + 1)−∆i(k)

]
·X i

Y (k + 1) = 0. (1.33)

This is the condition a discretely rebalanced portfolio must satisfy in order to be
self-financing. The above identity can be also expressed as

N∑
i=0

[
(∆i(k + 1)−∆i(k)) ·

[
X i

Y (k + 1)−X i
Y (k)

]
+ (∆i(k + 1)−∆i(k)) ·X i

Y (k)
]
= 0. (1.34)

When we consider continuous time models, the above identities will take the
following forms. For the evolution of the price of the portfolio, we have

dPY (t) =
N∑
i=0

∆i(t) · dX i
Y (t), (1.35)

a continuous analog of Equation (1.32). Similarly, the identity corresponding to
Equation (1.34) is

N∑
i=0

[
(d∆i(t)) · dX i

Y (t) + (d∆i(t)) ·X i
Y (t)

]
= 0. (1.36)

Indeed, if we applied Ito’s formula for the evolution of the price of the portfolio, we
would get

dPY (t) = d

(
N∑
i=0

∆i(t) ·X i
Y (t)

)

=
N∑
i=0

[
∆i(t) · dX i

Y (t) + (d∆i(t)) · dX i
Y (t) + (d∆i(t)) ·X i

Y (t)
]
,

But since the last two terms of the above identity sum to zero from (1.36), we have
Equation (1.35).

Example 1.13 Consider a portfolio P that holds ∆X(t) =
[
1− t

T

]
units of an asset

X, and ∆Y (t) =
[
1
T

∫ t

0
XY (s)ds

]
units of an asset Y at time t, where t ∈ [0, T ]. In

other words,
P (t) =

[
1− t

T

]
·X +

[
1
T

∫ t

0
XY (s)ds

]
· Y. (1.37)

We can show that this is a self-financing portfolio. The condition of self-financing
trading (1.36) reads as

(d∆Y (t)) · dYY (t) + (d∆Y (t)) · YY (t)

+ (d∆X(t)) · dXY (t) + (d∆X(t)) ·XY (t) = 0,
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where we substituted X0 = Y , and X1 = X. Since YY (t) = 1, the above relationship
simplifies to

(d∆Y (t)) + (d∆X(t)) · dXY (t) + (d∆X(t)) ·XY (t) = 0. (1.38)

Note that

d∆Y (t) = 1
T
XY (t)dt,

d∆X(t) = − 1
T
dt,

and thus

d∆Y (t) + d∆X(t) · dXY (t) + d∆X(t) ·XY (t) =

= 1
T
XY (t)dt+ (− 1

T
dt) · dXY (t) + (− 1

T
dt)XY (t) = 0.

Therefore we have the self-financing evolution of the prices of the portfolio from
(1.35). When we choose Y to be the reference asset, we have

dPY (t) = ∆X(t)dXY (t) =
[
1− t

T

]
dXY (t),

when we choose X to be the reference asset, we have

dPX(t) = ∆Y (t)dYX(t) =
[
1
T

∫ t

0
XY (s)ds

]
dYX(t).

Note that the portfolio P (t) starts with P (0) = X(0) and ends with P (T ) =[
1
T

∫ T

0
XY (s)ds

]
·Y (T ). Therefore the above described self-financing strategy delivers[

1
T

∫ T

0
XY (s)ds

]
units of Y at time T . The number

[
1
T

∫ T

0
XY (s)ds

]
represents the

average price of the asset X in terms of the reference asset Y .

The trading strategy described in Example 1.13 does not depend on the evolu-
tion of the underlying price XY (t). Also, d∆X(t) and d∆Y (t) have only a dt term,
so ∆X(t) and ∆Y (t) are smooth. Because of that, the (d∆X(t)) · dXY (t) cross term
is zero. However, the positions ∆X(t) and ∆Y (t) in the underlying assets can be
even diffusions, such as in the following example. In that case, the (d∆X(t)) ·dXY (t)
cross term may not disappear.

Example 1.14 Assume that an asset price follows geometric Brownian motion

dXY (t) = σXY (t)dW
Y (t),

where X and Y are two no-arbitrage assets. Consider a portfolio P (t) which is given
by

P (t) = [N (d+)] ·X + [−KN (d−)] · Y,

where
N(x) =

∫ x

−∞

1√
2π

· e−
y2

2 dy,
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and
d± = 1

σ
√
T−t

· log
(

XY (t)
K

)
± 1

2
σ
√
T − t.

The portfolio P holds ∆X(t) = N (d+) units of an asset X, and ∆Y (t) = −KN (d−)
units of an asset Y . It turns out that this portfolio is indeed self-financing. The
self-financing condition is given by

d∆Y (t) + d∆X(t) · dXY (t) + d∆X(t) ·XY (t) =

= −KdN(d−) + dN(d+) · dXY (t) + dN(d+) ·XY (t).

It is not trivial to show that

−KdN(d−) + dN(d+) · dXY (t) + dN(d+) ·XY (t) = 0,

but it is true. Thus we have

dPY (t) = N (d+) dXY (t),

and
dPX(t) = −KN (d−) dYX(t).

The portfolio P (t) in this example is in fact a hedging portfolio for a European option
with a payoff (X(T )−K · Y (T ))+ in a geometric Brownian motion model.

1.7 Fundamental Theorems of Asset Pricing
The general assumption in finance is that the market does not contain arbitrage. If
an arbitrage opportunity appears, the market usually corrects itself in a short time
period. On the other hand, profitable trading strategies may exist for long periods.
Some profitable trading strategies may even come with a risk of a catastrophic loss.

Obviously, the entire theory depends upon the fact that the assets in the port-
folio are no-arbitrage assets to start with; otherwise the portfolio is not arbitrage
free. The central result of finance theory is the First Fundamental Theorem of Asset
Pricing:

Theorem 1.15 (First Fundamental Theorem of Asset Pricing) If there ex-
ists a probability measure PY such that the price processes XY (t) are PY -martingales,
where X is an arbitrary no-arbitrage asset, and Y is an arbitrary no-arbitrage asset
with a positive price, then there is no arbitrage in the market.

Proof: Let Y be a fixed reference asset. If there is an arbitrage opportu-
nity, one can start with a zero price portfolio PY (0) = 0 and obtain a portfolio
PY (T ) in the form PY (T ) = ξ(ω), where ξ(ω) is a non-negative random vari-
able with PY (ξ(ω) > 0) > 0. In this case, PY (T ) cannot be a martingale since
EY [PY (T )] > 0 = PY (0).
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Remark 1.16 (Market interpretation of PY ) The probability measure PY as-
sociated with a no-arbitrage reference asset Y has the following market interpreta-
tion. Let A be an event in FT , which can be viewed as a set of market scenar-
ios ω that satisfy a condition ω ∈ A. As an example of such an event, consider
A = {ω ∈ Ω : XY (T, ω) ≥ K}. This is a set of scenarios where the market price
of X with respect to the reference asset Y exceeds a fixed constant K at time T .
Each set A from the information set FT has some objective probability P(A). The
probability measure P is known as the real probability measure. However, the
real probability measure does not play any role in the First Fundamental Theorem
of Asset Pricing, and thus its role in pricing financial contracts is limited.

What is relevant to pricing financial contracts is the probability measure PY .
Imagine that there is a security V that pays off one unit of the asset Y at time T
when the scenario ω is in A; otherwise it pays nothing. In mathematical notation,

V (T ) = IA(ω) · Y (T ),

where I denotes an indicator function. We can also rewrite the above equation in
terms of the prices as

VY (T ) = IA(ω).
The contract V is known as a digital option. If we want to find the price of this
contract at time t = 0, we can use the fact that VY (t) is a martingale under the
probability measure PY . Therefore

VY (0) = EY [VY (T )] = EY [IA(ω)] = PY (A).

In terms of the assets, we have

V (0) = PY (A) · Y (0).

In other words, PY (A) is the initial market price of the contract V in terms of the
asset Y . Clearly, delivering a unit of Y at time T for a set of scenarios in A should
cost at most a unit of Y at time t = 0. So PY (A) indicates what fraction of Y is
required to start with in order to deliver the digital option at time T . The probability
PY does not indicate directly how likely is the event A to occur, but rather how costly
it is with respect to the asset Y .

When the number of possible scenarios in Ω is finite, we can consider events with
a single scenario only, meaning A = {ω}. The price corresponding to the Arrow–
Debreu security for this event, PY (ω), is known as an Arrow–Debreu state price.
This concept generalizes to a countable number of states. When the number of states
is not countable, representing a continuous random variable, the Arrow–Debreu state
price can be interpreted as a density:

PY (A) =

∫
ω∈A

dPY (ω).

In this situation, dPY (ω) is known as an Arrow–Debreu state price density.
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Note that the probability measure PX that is associated with a different no-
arbitrage reference asset X is in general different from PY . The corresponding
digital option U would pay off one unit of an asset X when a scenario ω is in A;
otherwise it would pay nothing. In other words,

U(T ) = IA(ω) ·X(T ).

This contract differs from V only in the underlying asset. The initial price of U is
given by

U(0) = PX(A) ·X(0).

In general, the fraction PY (A) of the asset Y needed for the security V and the
fraction PX(A) of the asset X needed for the security U will differ.

Consider for instance a geometric Brownian motion model for an asset price

XY (t) = XY (0) · exp
(
σW Y (t)− 1

2
σ2t
)
.

Let A be the set of scenarios where the terminal price XY (T ) of the asset ends up
below the initial price of the asset XY (0), or in other words,

A = {ω ∈ Ω : XY (T, ω) ≤ XY (0)}.

Let V be the corresponding digital option that delivers a unit of the asset Y at time
T when the asset price XY (T ) ends up below XY (0), and let U be the correspond-
ing digital option that delivers a unit of the asset X at time T . It turns out that
PY (A) > 1

2
, but PX(A) < 1

2
. Take as an example X to be a stock market, and Y to

be a money market. The set of scenarios in A represents outcomes when the market
makes a downturn with respect to the reference asset Y . Should one deliver a unit
of Y on the downturn, this happens to cost more than half a unit of Y to start with.
But that is not surprising; when the market takes a downturn, the reference asset
Y , such as the money market in this case, becomes more expensive to deliver. The
reason is that Y has appreciated with respect to X, and thus it takes more than
one half units of Y to cover the payoff of the corresponding digital option. On the
other hand, it costs less than half a unit of X to deliver a unit of X on the market
downturn. This is also not surprising, since on the downturn, the asset X becomes
less valuable, and cheaper to deliver.

Remark 1.17 The inverse statement in the First Fundamental Theorem of Asset
Pricing that a no-arbitrage condition implies existence of a martingale measure PY

is also true, at least in typical mathematical models. This means no arbitrage implies
that prices are martingales with respect to the corresponding probability measure. A
proper mathematical statement of this theorem requires a careful definition of an
admissible trading strategy. The interested reader should refer to academic litera-
ture on this topic. For practical purposes, it is enough that we start with
a martingale evolution of the price. Furthermore, martingales in continuous
time are just combinations of diffusions and jumps, so no other processes (such as a
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fractional Brownian motion for Hurst index ̸= 1
2
) can be considered for a no-arbitrage

description of the prices.

We now consider how to determine the probability measure PY . One should
start with describing the set of possible outcomes Ω that represent the individual
scenarios of a price evolution. One can consider discrete time and discrete space
models, which are known as tree models (binomial or trinomial tree). Continuous
time models can have either continuous paths, which lead to diffusion models, or
they can have jumps, which lead to purely discontinuous models. Note that requiring
prices to be martingales limits possible types of the price evolution.

A general martingale in continuous time can be written as a sum of a martingale
with continuous paths and a purely discontinuous martingale:

M(t) = Mc(t) +Md(t). (1.39)

A martingale Md(t) is called purely discontinuous if its product with any continu-
ous martingale remains a martingale. For instance, a compensated Poisson process
N(t) − λt is a purely discontinuous martingale. Note that a purely discontinuous
martingale may have continuous paths. Continuous martingales adapted to a fil-
tration FW

t generated by a Brownian motion W are in fact diffusions; they can be
represented as stochastic integrals with respect to Brownian motion. Thus

Mc(t) = Mc(0) +

∫ t

0

ϕ(s)dW (s), (1.40)

where ϕ(t) is adapted to FW
t . This result is known as the Martingale Representation

Theorem.

The following example lists some possible martingale evolutions of the price.

Example 1.18 (Martingale evolution of the price)

Trinomial Model The price XY (0) is assumed to take three possible values in the
next time instant: event A – go up to u ·XY (0) (u > 1), event B – stay the
same, or event C – go down to d ·XY (0) (d < 1).

XY (1, A) = u ·XY (0)

XY (0) XY (1, B) = XY (0)

XY (1, C) = d ·XY (0)
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When the probabilities of the events A, B and C are given by

PY,ξ(A) =
1− d

u− d
· ξ, PY,ξ(B) = 1− ξ, PY,ξ(C) =

u− 1

u− d
· ξ. (1.41)

where ξ ∈ [0, 1], the price process XY (n) is a martingale. Note that each ξ
defines a different probability measure, so in this case there exist infinitely
many martingale measures PY,ξ. One can check that

EY,ξXY (1) = XY (1, A) · PY,ξ(A) +XY (1, B) · PY,ξ(B)

+XY (1, C) · PY,ξ(C)

= u ·XY (0) ·
1− d

u− d
· ξ +XY (0) · (1− ξ)

+d ·XY (0) ·
u− 1

u− d
· ξ

= XY (0).

It means that the prices of Arrow–Debreu securities may not be uniquely de-
fined, meaning that there exists a range of the prices when there is no arbitrage
present. Consider for instance an Arrow–Debreu security that pays off one unit
of Y when the scenario A happens. The initial price of this security is

PY,ξ(A) =
1− d

u− d
· ξ,

which can be any number in the interval [0, 1−d
u−d

], depending on the value
of the parameter ξ. The market can quote any price in that interval, and
there would be no arbitrage opportunity. The question is which martingale
measure should one use when there is more than one in order to determine the
prices of financial securities? The answer is that it is the market that chooses
the martingale measure. For instance, if the market quotes the price of the
above mentioned Arrow–Debreu security, it already determines the value of the
parameter ξ, thus effectively choosing only one martingale measure.

Binomial Model A binomial model is a special case of a trinomial model with
ξ = 1. The price either goes up to u ·XY (0) (u > 1), or goes down to d ·XY (0)
(0 < d < 1).

XY (1, H) = u ·XY (0)

XY (0)

XY (1, T ) = d ·XY (0)

36



We have a martingale evolution of the price when

PY (H) =
1− d

u− d
, PY (T ) =

u− 1

u− d
. (1.42)

Note that the martingale measure here is unique.

Geometric Brownian Motion Geometric Brownian motion is a process that sat-
isfies the following stochastic differential equation:

dXY (t) = σXY (t)dW
Y (t). (1.43)

The parameter σ is known as the volatility. The above stochastic differential
equation admits a closed form solution

XY (t) = XY (0) · exp
(
σW Y (t)− 1

2
σ2t
)
, (1.44)

which is a martingale. The market noise process, namely Brownian motion
W Y (t), comes with the reference asset Y and determines the martingale mea-
sure PY .

Geometric Poisson Process Geometric Poisson process satisfies the following
stochastic differential equation:

dXY (t) = (eγ − 1) ·XY (t−)d(N(t)− λY t). (1.45)

The price with the above dynamics is given by

XY (t) = XY (0) exp
(
γ ·N(t)− (eγ − 1)λY t

)
. (1.46)

This is also a martingale process. In contrast to a geometric Brownian motion
model, the market noise process N(t) that represents Poisson jumps does not
come with a particular asset. However, different assets come with different
martingale measures, which is captured by the intensity of jumps λY that
comes with a particular reference asset Y .

Note that when there is more than one asset with a positive price available, any
of them can be used as a reference asset. Consider a situation when both X and Y
are no-arbitrage assets with a positive price, and let V be an arbitrary no-arbitrage
asset. Then we have that VY (t) is a PY martingale, but also VX(t) is a PX mar-
tingale. The relationship between martingale measures PY and PX is explained in
detail in the following text. It turns out that an important assumption is that both
prices XY (t) and YX(t) stay positive, which is a reasonable assumption for primary
reference assets that are represented by currencies, stocks, or precious metals. It is
possible that even such basic assets may become worthless, in which case the worth-
less asset cannot be used as a numeraire. For instance when X = 0, we still have
a well-defined price XY (t) = 0, but YX(t) is not well defined. Note that derivative
contracts can have in principle any price, they may even take negative values, but
in this case they cannot be used as reference assets.
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An example of a situation when we have two assets with a positive price is a
foreign exchange market, where X stands for a domestic bond and Y stands for
a foreign bond. Bonds serve as no-arbitrage proxies to the respective currencies.
However, an asset is domestic relative to a location, and thus Y is a domestic asset
and X is a foreign asset for somebody else. Therefore it makes sense to consider the
price of the foreign asset in terms of the domestic asset XY (t), and vice versa, the
price of the domestic asset in terms of the foreign asset YX(t).

When the underlying asset is a bond BT with maturity T , the corresponding PT

measure is known as a T-forward measure. The term risk-neutral measure is
used when the underlying asset is the money market account M . We will denote the
risk-neutral measure by PM . The risk-neutral measure and T-forward measure coin-
cide when the interest rate evolution is deterministic. The reader should note that
the natural choice for the pricing measure for contracts that are settled in money is
the T-forward measure which works also in situations of random interest rates. The
risk-neutral measure can be used for pricing such contracts only when the interest
rate is deterministic. There is no martingale measure P$ that would correspond to a
dollar as a reference asset since the dollar is an arbitrage asset. Other no-arbitrage
reference assets have their own martingale measure. When the underlying reference
asset is a stock S, the corresponding PS measure is known as a stock measure.

The price of an arbitrary no-arbitrage asset V can be computed from the First
Fundamental Theorem of Asset Pricing, which gives us a stochastic representation
of the prices. The theorem states that the prices are martingales under a proper
probability measure, and thus their expected value does not change with time. We
have the following relationship:

VY (t) = EY
t [VY (T )] , (1.47)

where V and Y are two no-arbitrage assets. The symbol Et[.] denotes conditional
expectation. Rewriting the above relationship in terms of assets, we get

V = EY
t [VY (T )] · Y. (1.48)

This literally means that V is worth EY
t [VY (T )] units of Y at time t. Note that

EY
t [VY (T )] is an Ft measurable random variable that represents the price VY (t).

Computing this conditional expectation is a key aspect of pricing financial con-
tracts. The computation can be done in the following ways: finding a closed form
solution for a particular contract; using Monte Carlo simulation to estimate the
expected value; or by using differential methods to compute the price as explained
later in the text.

Remark 1.19 (Computing dollar prices) The First Fundamental Theorem of
Asset Pricing does not apply when a dollar is used as a reference asset since it is an
arbitrage asset. The dollar prices have to be computed from the change of numeraire
formula. Consider a contingent claim V with a payoff at a fixed maturity T . The
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claim will pay V$(T ) units of a dollar $ at time T . We can use any no-arbitrage
asset Y to compute the price of V using the formula

VY (t) = EY
t [VY (T )].

From the change of numeraire formula, we can compute the dollar price of the
contract by

V$(t) = VY (t) · Y$(t).

A natural no-arbitrage asset to use is the bond BT that matures at time T . In this
case we can write

VBT (t) = ET
t [VBT (T )].

Converting to dollar prices by the change of numeraire formula and using the fact
that BT

$ (T ) = 1, we can also write

V$(t) = VBT (t) ·BT
$ (t) = ET

t [V$(T ) · $BT (T )] ·BT
$ (t) = ET

t [V$(T )] ·BT
$ (t).

Thus we have
V$(t) = BT

$ (t) · ET
t [V$(T )]. (1.49)

Equation (1.49) is of central importance in the current literature on derivative pric-
ing. The advantage is that one can immediately obtain the dollar value of a given
contingent claim by using the corresponding T-forward measure. Note that the in-
terest rate r(t) does not enter the formula. It appears only indirectly in the price
of the bond BT

$ (t) if we assumed some dependence of this price on the interest rate.
However, such a step is not needed as we can get the value of BT

$ (t) directly from
the price quoted on the market.

Another possible choice of a no-arbitrage proxy asset to a dollar is the money
market M . We can write

VM(t) = EM
t [VM(T )].

Converting to dollar prices, we get

V$(t) = VM(t) ·M$(t) = EM
t [V$(T ) · $M(T )] ·M$(t).

We have already seen in Equation (1.16) that M$(t) is given by M$(t) =

exp
(∫ t

0
r(s)ds

)
, and thus the above formula simplifies to

V$(t) = EM
t

[
exp

(
−
∫ T

t
r(s)ds

)
· V$(T )

]
. (1.50)

Equation (1.50) says that “the price of a contingent claim V is the expected value
of its discounted payoff under the risk-neutral measure.” Some authors use this
equation as a starting point of pricing financial contracts, but this method can be
safely used only in the case of a deterministic interest rate r. When the interest
rate process r(t) is stochastic, which is a typical case in real markets, the random
variables exp

(
−
∫ T

t
r(s)ds

)
and V$(T ) that show up in the expectation in (1.50)

could be correlated, and the problem of pricing a contingent claim V would have to
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address the joint distribution of exp
(
−
∫ T

t
r(s)ds

)
and V$(T ). This may not be a

trivial task, especially when V itself is an interest rate product.

When the interest rate is deterministic, the discount factor exp
(
−
∫ T

t
r(s)ds

)
is

also deterministic and thus independent of the payoff V$(T ). Thus it can be factored
out from the expectation, and we have

V$(t) = exp
(
−
∫ T

t
r(s)ds

)
· EM

t [V$(T )].

However, in the case of a deterministic interest rate we also have BT
$ (t) =

exp
(
−
∫ T

t
r(s)ds

)
, and we can rewrite Equation (1.49) as

V$(t) = exp
(
−
∫ T

t
r(s)ds

)
· ET

t [V$(T )].

This shows that
EM

t [V$(T )] = ET
t [V$(T )]

for an arbitrary claim V , and thus the T-forward measure PT and the risk-neutral
measure PM are the same, but only when the interest rate is deterministic.

When the contingent claim V depends on a stock S, we can also choose S as the
reference asset. Converting the price to dollar values, we obtain

V = ES
t [VS(T )] · S = ES

t [VS(T )] · S$(t) · $. (1.51)

Due to the symmetry of the First Fundamental Theorem of Asset Pricing, a
similar formula is valid for the choice of a different reference asset X:

VX(t) = EX
t [VX(T )] , (1.52)

or in other words,
V = EX

t [VX(T )] ·X. (1.53)

This means that V is worth EX
t [VX(T )] units of X at time t.

Let us illustrate the concept of X being a reference asset on a trinomial model.
The cases of a binomial model, a geometric Brownian motion model, and a geometric
Poisson model are discussed in detail in the corresponding chapters.

Example 1.20 (Trinomial model with X as a reference asset)
Recall that the trinomial model assumes the following evolution of the price process.
The price can take three different values in one time step. When Y was chosen as
a reference asset, the price can go up to XY (1, A) = u · XY (0) for u > 1 (event
A), it can stay the same XY (1, B) = XY (0) (event B), or it can go down to
XY (1, C) = d ·XY (0) for 0 < d < 1 (event C). Let us take X as a reference asset,
and let us study the inverse price process YX . On event A, the price YX(1) is equal
to YX(1, A) = 1

u
· YX(0). This follows from the relationship between the price XY
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and its inverse price YX : YX(t) = XY (t)
−1. When the price XY goes up (such as in

the case of event A), the inverse price YX goes down, and vice versa. On event B,
the price YX stays the same: YX(1, B) = YX(0). On event C, the price YX goes up
to YX(1, C) = 1

d
· YX(0).

YX(1, A) =
1
u
· YX(0)

YX(0) YX(1, B) = YX(0)

YX(1, C) = 1
d
· YX(0)

When the probabilities of the events A, B and C are given by

PX,ξ(A) = u · 1− d

u− d
· ξ, PX,ξ(B) = 1− ξ, PX,ξ(C) = d · u− 1

u− d
· ξ. (1.54)

where ξ ∈ [0, 1], the price process YX(n) is a martingale. As in the case of Y being
a reference asset, we get infinitely many martingale measures PX,ξ, one for each
choice of the parameter ξ. One can check that

EX,ξYX(1) = YX(1, A) · PX,ξ(A) + YX(1, B) · PX,ξ(B) + YX(1, C) · PX,ξ(C)

= 1
u
· YX(0) · u · 1− d

u− d
· ξ + YX(0) · (1− ξ)

+1
d
· YX(0) · d ·

u− 1

u− d
· ξ

= YX(0).

The probability measure PX corresponds to Arrow–Debreu securities that use the
asset X as the underlying asset. For instance, a security U that pays off one unit
of an asset X when the event A happens has the initial price

PX,ξ(A) = u · 1− d

u− d
· ξ.

The price of U is also not uniquely defined, it can be any number in the interval
[0, u · 1−d

u−d
].

We have two possible representations of the price of a contract V : it is either
EY

t [VY (T )] units of an asset Y , or EX
t [VX(T )] units of an asset X. This leads to the

following variant of the change of numeraire formula

V = EY
t [VY (T )] · Y = EX

t [VX(T )] ·X. (1.55)
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The reference asset appears in three places in the pricing formula: X – the reference
asset; EX

t – the conditional expectation that is associated with the reference asset;
and X – the discount factor in the payoff function. Thus if one wants to price a
contract under a different numeraire Y , one just needs to replace the formula with
Y at these three locations.

Note that the probability measure PY in the change of numeraire formula (1.55)
may not be unique, and the price VY (t) = EY

t [VY (T )] of a general contingent claim
Y may depend on a particular choice of PY . We have seen this situation in the
trinomial model. Similarly, the probability measure PX may not be unique, and the
price VX(t) = EX

t [VX(T )] may depend on a particular choice of PX . However, to one
particular probability measure PY corresponds one particular probability measure
PX that agrees on the prices in the sense of the change of numeraire formula (1.55).
It turns out that the two measures PY and PX are linked by a Radon–Nikodým
derivative as we will show in the next section.

Example 1.21 (One-to-one correspondence of the probability measures
PY and PX in the trinomial model)

Let us show a one-to-one correspondence of the probability measures PY and PX in
the trinomial model. Let V be an arbitrary contingent claim. Since the price VY is
a martingale with respect to PY , we can write

VY (0) = EY [VY (1)].

This expectation depends on a particular choice of the probability measure PY,ξ.
When we fix a parameter ξ, we get

VY (0) = EY,ξ[VY (1)].

Note that a different choice of ξ may lead to a different value of VY (0). Expanding
the expectation, we can also write

VY (0) = VY (1, A) · PY,ξ(A) + VY (1, B) · PY,ξ(B) + VY (1, C) · PY,ξ(C).

Using the change of numeraire formula VY = VX · XY , the above equality can be
rewritten as

VX(0) ·XY (0)

= VX(1, A) ·XY (1, A) · PY,ξ(A) + VX(1, B) ·XY (1, B) · PY,ξ(B)

+ VX(1, C) ·XY (1, C) · PY,ξ(C).

After dividing by XY (0), we can also write

VX(0)

= VX(1, A) ·
XY (1, A)

XY (0)
· PY,ξ(A) + VX(1, B) · XY (1, B)

XY (0)
· PY,ξ(B)

+ VX(1, C) · XY (1, C)

XY (0)
· PY,ξ(C). (1.56)
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But VX is a martingale under some probability measure PX , and thus we have

VX(0) = EX [VX(1)],

or

VX(0) = VX(1, A) · PX(A) + VX(1, B) · PX(B) + VX(1, C) · PX(C) (1.57)

after expanding the expectation. The prices in (1.56) and (1.57) should agree, so we
must have

PX(ω) =
XY (1, ω)

XY (0)
· PY,ξ(ω). (1.58)

Thus for a particular choice of the martingale measure PY,ξ there is a single corre-
sponding measure PX given by (1.58) that gives the same prices of contingent claims
V . Since

XY (1, A)

XY (0)
= u,

XY (1, B)

XY (0)
= 1,

XY (1, C)

XY (0)
= d,

the measure PX is given by

PX(A) = u · PY,ξ(A), PX(B) = PY,ξ(B), PX(C) = d · PY,ξ(C). (1.59)

It turns out that the probability measure PX corresponds to the probability measure
PX,ξ that is given in (1.54). Therefore the price of a contingent claim V would
be the same if computed both under PY,ξ or under PX,ξ for a fixed parameter ξ.
The relationship between PY and PX in a general model is given by the so-called
Radon–Nikodým derivative, and it is studied in the next section.

Remark 1.22 (All martingale measures PY agree on the price of a contract
to deliver)

A given model of a price evolution may come with infinitely many martingale mea-
sures PY , and the price of a general contingent claim may depend on the choice
of the probability measure PY . We have seen this situation in the trinomial model.
However, all martingale measures PY agree on a price of a contract to deliver a
no-arbitrage asset Y . Let us denote this contract by V , with V (T ) = Y (T ) at the
delivery time T . Since VY (t) is a martingale, the initial price VY (0) is given by

VY (0) = EY [VY (T )] = EY [YY (T )] = EY [1] = 1,

and thus V (0) = Y (0). This result is independent on the choice of the probability
measure PY . From the change of numeraire formula (1.55), we would get the same
price of the contract V by using any probability measure PX . Similarly, all martingale
measures PX and PY agree on the price of a contract to deliver a no-arbitrage asset
X.

In perfectly symmetric situations when the roles of X and Y can be exchanged,
it makes sense to study models where XY (t) and its inverse price YX(t) admit similar
evolutions. That would make the observer unable to identify the reference asset just
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by looking at the price process. More specifically, we can consider the situation
when the distribution of the price XY (T )

XY (0)
under the probability measure PY has the

same distribution as YX(T )
YX(0)

under the probability measure PX . When this is the case,
we can also write

LY

(
XY (T )

XY (0)

)
= LX

(
YX(T )

YX(0)

)
, (1.60)

meaning that the laws of the two distributions agree. We will call this principle the
exchangeability of the reference assets. We show in the following text that it
is possible to model the prices of assets in a way that the role of X and Y can be
freely exchanged, for instance in the binomial model or in the diffusion model.

Another important question is: when is it possible to replicate a contingent claim
V whose payoff depends on underlying assets X i by trading in these assets? Or in
other words, is there a portfolio P of the form

P =
∑

∆i(t) ·X i

such that P (t) = V (t)? We call such a situation a complete market. A market is
incomplete if it is not complete.

Theorem 1.23 (Second Fundamental Theorem of Asset Pricing)
A market is complete if and only if the martingale measure PY is unique.

Rule of Thumb: The market is typically complete in situations when the number
of different noise factors does not exceed the number of assets minus one asset that
serves as a numeraire.

Example 1.24 (Complete models)
Consider a situation when there are just two assets X and Y . The binomial model has
one noise factor which can be thought of as a coin toss, and the market is complete.
Similarly, the market is complete in a geometric Brownian motion model, where the
only source of uncertainty is the Brownian motion. In the case when the asset price
has stochastic volatility, there are two noise factors (the original Brownian motion,
and stochastic volatility), and the market is incomplete. Jump models are complete
only if the jump size takes one single value, such as in a geometric Poisson process
which represents the only noise factor. Jump models with multiple jump sizes are
incomplete.

Example 1.25 (Trinomial model)
We have already seen that a trinomial model, with XY (1, A) = u ·XY (0), XY (1, B) =
XY (0), and XY (1, C) = d · XY (0), where 0 < d < 1 < u, does not have a unique
probability measure PY .
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XY (1, A) = u ·XY (0)

XY (0) XY (1, B) = XY (0)

XY (1, C) = d ·XY (0)

The price process is a martingale when the probability PY is given by

PY,ξ(A) =
1− d

u− d
· ξ, PY,ξ(B) = 1− ξ, PY,ξ(C) =

u− 1

u− d
· ξ,

where ξ ∈ [0, 1]. Here one can think of PY (A) and PY (B) as two sources of uncer-
tainty (or noise factors). The probability of event C, PY (C) is already determined
since PY (C) = 1 − PY (A) − PY (B). Let us show that this is indeed an incomplete
market. Let V be a contingent claim that pays off VY (1) units of Y at time T = 1.
A hedging portfolio for this claim takes the form

P (0) = ∆X(0) ·X +∆Y (0) · Y. (1.61)

If P replicates a contract V , we should have P (1) = V (1) for all outcomes A, B,
and C. Note that the portfolio P remains unchanged from time t = 0 to time t = 1,
and thus we also have

P (1) = ∆X(0) ·X +∆Y (0) · Y.

The identity P (1) = V (1) can also be written in terms of the prices as PY (1) = VY (1).
Thus we have three equations, one for each outcome:

VY (1, A) = ∆X(0) ·XY (1, A) + ∆Y (0),

VY (1, B) = ∆X(0) ·XY (1, B) + ∆Y (0),

VY (1, C) = ∆X(0) ·XY (1, C) + ∆Y (0).

However, we have only two unknowns, ∆X(0), and ∆Y (0) and there is no way to
match all three different values of VY (1) in general. Since P (1) = V (1) cannot be
satisfied in general, this model is incomplete.

One way to overcome the incompleteness of the model is to consider more un-
derlying assets that may exist in the real markets, thus completing the model. Let us
assume for instance that the market trades an Arrow–Debreu security Z that pays
one unit of an asset Y when the outcome A happens. The quote of the price ZY (0)
already determines the probability measure PY,ξ uniquely from the relationship

ZY (0) = PY,ξ(A) =
1− d

u− d
· ξ,
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and thus
ξ = ZY (0) ·

u− d

1− d
.

The market becomes complete if we consider a portfolio in the form

P (0) = ∆X(0) ·X +∆Y (0) · Y +∆Z(0) · Z.

At time t = 1, the portfolio P will remain unchanged. In order to match P (1) = V (1)
for a general claim V , we must have

VY (1, A) = ∆X(0) ·XY (1, A) + ∆Y (0) + ∆Z(0),

VY (1, B) = ∆X(0) ·XY (1, B) + ∆Y (0),

VY (1, C) = ∆X(0) ·XY (1, C) + ∆Y (0),

where we used the fact that ZY (1, ω) = IA(ω). We can always find a solution for
∆X(0), ∆Y (0), and ∆Z(0) that would match the payoff of the contingent claim V .

An alternative way to complete the market with other securities is to change
the condition on the hedging portfolio P . Instead of requiring P (1) = V (1) which
corresponds to a perfect hedge, one may require P (1) ≥ V (1) which corresponds
to a superhedge. A superhedging portfolio guarantees that the contractual payoff
represented by a claim V is always met, but in some scenarios the resulting port-
folio P may have a higher price than V . Unfortunately, it often happens the the
superhedging portfolio P has a substantially higher price than the actual claim V .
Even the superhedging portfolio that has the smallest initial price PY (0) may give
unrealistically high prices. For this reason, superhedging is almost never used in
practice.

A perfect hedge in the assets X and Y is only possible in two notable situations:
either when VY (1) = 1, or when VY (1) = XY (1). The first case represents a
situation when V (1) = Y (1), so the payoff is the asset Y itself. In this case, V
becomes a contract to deliver an asset Y , and the corresponding hedge is ∆X(0) = 0
and ∆Y (0) = 1. All martingale measures PY,ξ do agree that the initial price of
this contract is simply V (0) = Y (0). The second case represents a situation when
V (1) = X(1), so the payoff is the asset X itself. The contract V becomes a contract
to deliver the asset X, with the initial price V (0) = X(0) that is independent of the
choice of the martingale measure PY,ξ and the corresponding hedge is ∆X(0) = 1,
∆Y (0) = 0.

1.8 Change of Measure via Radon–Nikodým
Derivative

This section describes the relationship between measures implied by using a different
numeraire. Suppose that X is a no-arbitrage reference asset, Y is another no-
arbitrage reference asset, and V is a contract to be priced. From the change of
numeraire formula, we have

V = EY [VY (T )] · Y = EX [VX(T )] ·X. (1.62)
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Recall that we may have in principle infinitely many different martingale measures
PY and PX , but the change of numeraire formula links one probability measure PY

with another probability measure PX that agrees with PY on the same prices for an
arbitrary claim V .

The two measures PY and PX can be also related through a scaling factor Z(T )
in the following sense:

EY [VX(T ) · Z(T )] = EX [VX(T )]. (1.63)

Rewriting this equation in integral form∫
Ω

VX(T, ω)Z(T, ω)dPY (ω) =

∫
Ω

VX(T, ω)dPX(ω)

which is valid for any integrable random variable VX(T, ω), we get the following
representation of Z(T ):

Z(T ) =
dPX

dPY
. (1.64)

In other words,
PX(A) =

∫
A

Z(T, ω)dPY (ω), A ∈ F . (1.65)

Intuitively this represents how much one must increase or decrease the weight placed
upon the probability of ω under the PY measure so that one gets the same answer
as if one used the PX measure to start with. The scaling factor Z is known as
the Radon–Nikodým derivative. When the space of outcomes Ω is discrete,
Equation (1.65) can be expressed as

PX(ω) = Z(T, ω) · PY (ω), ω ∈ Ω. (1.66)

We can also consider a reciprocal change of measure

1

Z(T )
=

dPY

dPX
, (1.67)

meaning that
EY [VY (T )] = EX

[
VY (T )

Z(T )

]
. (1.68)

The Radon–Nikodým derivative has the following financial interpretation. We
can write

EX [VX(T )] ·X(0) = EY [VX(T ) · Z(T )] ·X(0) = EY [VY (T )] · Y (0),

where the first equality results from changing measures, and the second equality
comes from the change of numeraire formula. Since this relationship is valid for an
arbitrary payoff V , we must have

[VX(T ) · Z(T )] ·X(0) = [VY (T )] · Y (0),
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or

Z(T ) =
dPX

dPY
=

XY (T )

XY (0)
. (1.69)

We used that
VY (T )

VX(T )
= XY (T ),

which follows from the change of numeraire formula. Note that the Radon–Nikodým
derivative for the reciprocal change of measure is given by

1

Z(T )
=

dPY

dPX
=

YX(T )

YX(0)
, (1.70)

which preserves the symmetry between assets X and Y .

Remark 1.26 (Condition for equivalence of the martingale measures PX

and PY ) When both Z(T ) and 1
Z(T )

stay positive, the two measures PY and PX

agree on zero probability events in FT . When PY (A) = 0 for A ∈ FT we also have
PX(A) = 0 and vice versa, PX(A) = 0 implies PY (A) = 0. This follows from the
relationships

PX(A) =

∫
A

Z(T, ω)dPY (ω),

and
PY (A) =

∫
A

1

Z(T, ω)
dPX(ω).

When two probability measures agree on zero probability events in FT , they are
equivalent. Thus the probability measures PY and PX are equivalent when both
prices XY (T ) and YX(T ) stay positive.

Remark 1.27 (The risk-neutral measure PM agrees with the T-forward
measure PT when the interest rate is deterministic) We have already seen
that when the interest rate is deterministic, the risk-neutral measure PM that comes
with the money market account M and the T-forward measure PT that comes with
the bond BT that matures at time T give the same prices of contingent claims. This
means that the two measures are the same. We can also check this result using the
Radon–Nikodým derivative

Z(T ) =
dPM

dPT
=

MBT (T )

MBT (0)
=

M$(T ) · $BT (T )

M$(0) · $BT (0)
=

exp
(∫ T

0
r(t)dt

)
· 1

1 · exp
(∫ T

0
r(t)dt

) = 1, (1.71)

which implies that

PM(A) =

∫
A

Z(T, ω)dPT (ω) =

∫
A

1dPT (ω) = PT (A), A ∈ F . (1.72)
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Therefore the two martingale measures PT and PM are the same when the interest
rate is deterministic. When the interest rate is stochastic, the Radon–Nikodým
derivative becomes

Z(T ) =
dPM

dPT
=

MBT (T )

MBT (0)
=

M$(T ) · $BT (T )

M$(0) · $BT (0)

=
exp

(∫ T

0
r(t)dt

)
· 1

1 · $BT (0)
= exp

(∫ T

0
r(t)dt

)
·BT

$ (0),

which is no longer one, and the relationship between the risk-neutral measure PM

and the T-forward measure PT is no longer trivial.

Remark 1.28 (Radon–Nikodým derivative for conditional expectations)
The Radon–Nikodým derivative as described in the above text corresponds to chang-
ing the measure at time t = 0. However, we can generalize this concept to any time
t ≤ T . From the change of numeraire formula, we have

EX
t [VX(T )] ·X(t) = EY

t [VY (T )] · Y (t) = EY
t [VX(T ) ·XY (T )] · Y (t).

This can be rewritten as

EX
t [VX(T )] = EY

t

[
VX(T ) ·

XY (T )

XY (t)

]
= EY

t

[
VX(T ) ·

Z(T )
Z(t)

]
.

Therefore we have

EX
t [VX(T )] =

1

Z(t)
· EY

t [VX(T ) · Z(T )] (1.73)

in terms of the original Radon–Nikodým derivative Z. This relationship is known
as the Bayes formula.

Remark 1.29 (European call option) A European call option is a contract
that pays off (X(T )−K ·Y (T ))+ at maturity time T , where K is a constant defined
by the contract and is known as the strike. Let us denote the European call option
contract as V . We can assume that both assets X and Y are no-arbitrage assets.
If not, we can consider corresponding no-arbitrage assets that deliver a unit of an
asset X, or a unit of an asset Y respectively, at time T . We can rewrite the option
payoff as

V (T ) = (X(T )−K · Y (T ))+ = I (XY (T ) ≥ K) ·X −K · I (XY (T ) ≥ K) · Y.

The above expression suggests that a European option is simply a combination of two
digital options, one that pays off a unit of an asset X when XY (T ) ≥ K, and one
that pays off K units of an asset Y on the same event when XY (T ) ≥ K. We have
already seen in Remark 1.16 that the initial value of the digital option that pays off a
unit of an asset X when event A happens is PX(A) units of an asset X. Similarly,
the initial value of the digital option that pays off a unit of an asset Y when event
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A happens is PY (A) units of an asset Y . If we consider A to be event XY (T ) ≥ K,
the value of the European call option at time t is simply

V (t) = PX
t (XY (T ) ≥ K) ·X −K · PY

t (XY (T ) ≥ K) · Y. (1.74)

The above relationship is known as the Black–Scholes formula. Note that deriving
the Black–Scholes formula in this form does not require any computation. The ques-
tion how to determine the probabilities PX

t (XY (T ) ≥ K) and PY
t (XY (T ) ≥ K) more

explicitly for more specific martingale models of the price evolution is the subject of
following chapters.

Note that the choice of the probability measure PY in situations when there
is more than one such measure already determines the corresponding probability
measure PX , and vice versa. The two probability measures must agree on the prices
of all contingent claims, and thus they are related by the Radon–Nikodým derivative.
This follows from

V = EY
t

[
(X −K · Y )+Y (T )

]
· Y

= EY
t [XY (T ) · I(XY (T ) ≥ K)] · Y − EY

t [K · YY (T ) · I(XY (T ) ≥ K)] · Y
= EX

t [XX(T ) · I(XY (t) ≥ K)] ·X −K · PY
t (XY (T ) ≥ K) · Y

= PX
t (XY (T ) ≥ K) ·X −K · PY

t (XY (T ) ≥ K) · Y,

where we have used the change of numeraire formula

EY
t [XY (T ) · I(XY (T ) ≥ K)] · Y = EX

t [XX(T ) · I(XY (T ) ≥ K)] ·X.

This shows that the probability measures PX and PY are indeed linked by the Radon–
Nikodým derivative.

1.9 Leverage: Forwards and Futures
Leverage is one of the most important concepts of finance. It allows investors to
magnify their positions in the underlying assets. Let us consider a situation when
an investor believes that the price XY of a specific asset X will appreciate in the
near future. A straightforward way how to realize the potential profit is to buy the
asset X now, and sell it at some subsequent time T . The result of this trading is
summarized in Table 1.2. At time t = 0, the investor has one unit of an asset X
that costs him XY (0) units of an asset Y . At time t = T , the asset X is sold for
XY (T ) units of an asset Y . Therefore at time t = T , the position in the asset X
is zero, and the position in the asset Y is XY (T ) − XY (0). The net profit or loss
of this trading is thus XY (T ) −XY (0) units of an asset Y . When XY (T ) −XY (0)
is positive, this trade results in a net profit, when XY (T )−XY (0) is negative, this
trade results in a net loss.

There is an alternative way to realize this profit or loss by trading in contracts to
deliver. Instead of buying the asset X at time t = 0, one can buy a contract U that
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Table 1.2: Trading in the asset X.
Time t = 0 Time t = T

Asset X 1 0
Asset Y −XY (0) XY (T )−XY (0)

delivers the asset X at time T , and pay for it in terms of a contract V that delivers
the asset Y at time T . Consider first the case that X and Y are both no-arbitrage
assets. We have seen that a contract to deliver a no-arbitrage asset agrees with
the asset itself at all times, so U(t) = X(t), and V (t) = Y (t). Thus it may not
be obvious why this approach gives any advantage over the case when the investor
trades in the primary assets X and Y . Table 1.3 shows the positions in the assets
U , V , X and Y . Note that at time t = 0, the investor has zero positions in the
assets X and Y . The major advantage in this trade is that the investor does not
need to have a short position in the reference asset Y . The choice of Y is typically a
money market account. In contrast to the previous case, the investors do not need
to decrease their position in the money market by paying XY (0) units of an asset Y
for a unit of an asset X.

Table 1.3: Trading in the contracts to deliver U and V .
Time t = 0 Delivery, t = T Sale of X, t = T

Asset U 1 0 0
Asset V −XY (0) 0 0
Asset X 0 1 0
Asset Y 0 −XY (0) XY (T )−XY (0)

The contract U delivers a unit of an asset X at time T . Similarly, XY (0) units
of the contract V delivers the corresponding number of units of an asset Y to the
counter party of this trade at time T . Furthermore, the holder of the asset X may
immediately sell it for XY (T ) units of an asset Y , resulting in the net profit or loss
of XY (T ) − XY (0) units of an asset Y . This is the same as in the case when the
asset X was bought at time t = 0, and sold at time T .

Developing this idea even further, one can introduce a contract that pays off one
unit of an asset X for K units of an asset Y at time T :

F (T ) = X(T )−K · Y (T ). (1.75)

The contract F is known as a forward. When X and Y are no-arbitrage assets,
the price of the forward contract is given by

FY (t) = EY
t [XY (T )−K · YY (T )]

= EY
t [XY (T )−K · YY (T )] = XY (t)−K. (1.76)
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Thus we have
F (t) = X(t)−K · Y (t)

at all times t ≤ T . More generally, the forward can be written as

F (t) = U(t)−K · V (t),

where U is a contract that delivers a unit of an asset X, and V is a contract that
delivers a unit of an asset Y . This relationship is valid in both cases when assets X
and Y are arbitrage or no-arbitrage assets.

The forward price For(t, T ) is the value of K that makes the forward contract
F have zero price at time t. It is obvious that

For(t, T ) = XY (t) (1.77)

when X and Y are no-arbitrage assets. Table 1.4 shows that one receives
XY (T ) − XY (0) units of an asset Y at time T by buying a forward contract F .
The forward contract itself has a zero price at time t = 0, and entering this contract
does not require any change of positions in the assets X and Y . Since the price of
the forward contract F is zero, one can potentially enter an unlimited number of
forward contracts at a given time. Although the forward contract should formally
deliver a unit of the asset X, it is still typically settled entirely in the asset Y . Thus
the number of the forward contracts may exceed the total supply of the asset X.
This is indeed the case for many typical assets. For instance there are many more
contracts to deliver gold or oil than is physically available. However, these contracts
are typically settled in money; the asset itself is delivered only in rare cases.

Table 1.4: Trading in the forward contract F .
Time t = 0 Time t = T

Asset F 1 0
Asset X 0 0
Asset Y 0 XY (T )−XY (0)

Obviously, entering a huge number of forward contracts comes with a significant
risk of a bankruptcy. The contractual payoff XY (T )−XY (0) at time T can be both
positive or negative, and having a substantial number of such contracts may lead
to a significant gain, or to a significant loss. In order to prevent the situation that
one of the contractual parties fails to meet its obligations, one can split the payoff
XY (T ) −XY (0) into a series of daily payments that reflect the change of the price
of the forward contract.

Splitting the payoff into a series of payments is done in the following way. Let
0 = t0 < t1 < · · · < tn = T be the times of the payments. One can think about
them as days if the payments come on a daily basis. At time t0 = 0, one enters a
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forward contract F t0 = X −XY (t0) · Y that has a zero price. At time t1, the price
of F t0 will change to

F t0
Y (t1) = EY

t1
[XY (T )−XY (t0)] = XY (t1)−XY (t0).

In order to make F t0 a zero price contract at time t1, one should subtract XY (t1)−
XY (t0) units of the asset Y from it. This technically creates a new forward contract
F t1 that has a zero price at time t1. The relationship between F t1 and F t0 is the
following

F t1 = F t0 − [XY (t1)−XY (t0)] · Y
= X −XY (t0) · Y −XY (t1) · Y +XY (t0) · Y = X −XY (t1) · Y.

One can continue this procedure for other times tk. Table 1.5 shows the result of
this procedure between times tk−1 and tk.

Table 1.5: Splitting the payments.
Time t = tk−1 Time t = tk

Asset F tk−1 1 0
Asset F tk 0 1
Asset X 0 0
Asset Y 0 XY (tk)−XY (tk−1)

In contrast to the forward contract, this procedure does not wait until its expi-
ration T , but rather settles the changes of the price of the forward contract daily.
The forward contract F tk−1 from the previous time tk−1 is replaced by a new forward
contract F tk at time tk so that F tk has a zero price. The difference between the
prices of F tk−1 and F tk is settled in the asset Y . At the end of this procedure, one
would collect

n∑
k=1

[XY (tk)−XY (tk−1)] = XY (T )−XY (0)

units of an asset Y . Splitting the payments is a principle of a contract known as
futures. A futures contract is defined as a series of payments

n∑
k=1

[Fut(tk, T )− Fut(tk−1, T )] · Ytk (1.78)

that are settled in the asset Y at the corresponding times tk. The futures price
Fut(tm, T ) is a number that makes the series of the remaining payments

n∑
k=m+1

[Fut(tk, T )− Fut(tk−1, T )] · Ytk
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have a zero price at time tm. At time t = T , Fut(T, T ) agrees with the price XY (T ),
the number of units of an asset Y required to obtain a unit of an asset X.

Let us determine Fut(tm, T ) when X and Y are two no-arbitrage assets. At time
tn−1, the futures contract has only one payment left, namely

[Fut(T, T )− Fut(tn−1, T )] · Y (T ) = [XY (T )− Fut(tn−1, T )] · Y (T ).

If the price of this contract be zero at time tn−1, we must have

0 = EY
tn−1

[XY (T )− Fut(tn−1, T )] = XY (tn−1)− Fut(tn−1, T )

from the martingale property of XY (t). We conclude that

Fut(tn−1, T ) = XY (tn−1).

Repeating this argument, we obtain

Fut(tm, T ) = XY (tm)

at all times tk. Thus in the case when both assets X and Y are no-arbitrage assets,
the forward and the futures price agree:

Fut(t, T ) = For(t, T ) = XY (t),

and futures is the same as the forward contract. However, by splitting the payments,
one minimizes the default risk of the counter party.

One can avoid the counter party risk completely by trading such contracts on an
exchange. Members of the exchange are required to deposit enough funds to cover
for all their potential losses that may happen within one day. This deposit is known
as a margin account. When the funds in the margin account become critically
low, the member receives a margin call, a request to add more funds. If the member
fails to do so, his positions are closed. Closing the existing positions does not cost
anything as the prices of the futures contracts are set to zero continuously.

The most typical futures contracts are settled in currencies, rather than in a
no-arbitrage asset. It slightly changes the situation since we also need to take into
account the time value of money. Let us assume that the asset X is a stock S, and
the asset Y is a dollar $. The futures contract is defined in this case as a series of
payments of the following form

n∑
k=1

[Fut(tk, T )− Fut(tk−1, T )] · $(tk). (1.79)

Fut(tm, T ) is the value that makes the price of the remaining payments
n∑

k=m+1

[Fut(tk, T )− Fut(tk−1, T )] · $(tk).
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to be zero at time tm. Equation (1.79) is written in terms of an arbitrage asset $.
However, the investor would immediately convert the dollar position into a position
in the money market M . Assume that the price of the money market M$(0) starts
at one, so we have M$(0) = 1. From the relationship

M$(tk) · $(tk) = M(tk),

we can write
$(tk) =

1

M$(tk)
·M(tk).

The dollar $ at time tk can be exchanged for 1
M$(tk)

number of units of the money
market M . Thus the payoff of the futures contract can be reexpressed as

n∑
k=1

[Fut(tk, T )− Fut(tk−1, T )] ·
1

M$(tk)
·Mtk . (1.80)

Note that this makes the money market M a natural reference asset for computing
the price of the futures contract. Let us determine Fut(tm, T ). At the terminal time
tn = T , Fut(T, T ) agrees with the dollar price of the stock S$(T ). At time tn−1 the
futures contract has only a single payment

[Fut(T, T )− Fut(tn−1, T )] ·
1

M$(T )
·MT = [S$(T )− Fut(tn−1, T )] ·

1

M$(T )
·MT .

Should the price of this payment be zero at time tn−1, we must have

0 = EM
tn−1

[
[S$(T )− Fut(tn−1, T )] ·

1

M$(T )

]
=

1

M$(T )
·
[
EM

tn−1
[S$(T )]− Fut(tn−1, T )

]
.

We have used the fact that the price of the money market account M$(T ) is already
known at the prior time tn−1. The reason is that the interest rate that corresponds
to the time interval [tn−1, tn] is set at time tn−1, so the investor knows the price
M$(tn) of the money market account one period ahead. Therefore

Fut(tn−1, T ) = EM
tn−1

[S$(T )].

Repeating this procedure for the previous times t, we get

Fut(t, T ) = EM
t [S$(T )]. (1.81)

Let us compare the futures price Fut(t, T ) with For(t, T ), the price of the corre-
sponding forward contract. The forward contract F when written on a stock S and
a dollar $ pays off

F (T ) = S(T )−K · $(T ).
This payoff can be rewritten in terms of a bond BT that delivers a dollar $ at time
T as

F (T ) = S(T )−K ·BT (T ).
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The forward price is a number For(t, T ) that corresponds to a choice of K such that
the price of the forward contract F is zero at time T . Thus For(t, T ) satisfies the
equation

0 = ET
t [SBT (T )− For(t, T )].

The natural choice of the reference asset is a bond BT . Solving for For(t, T ), we get

For(t, T ) = ET
t [S$(T )]. (1.82)

We used a simple relationship S$(T ) = SBT (T ) ·BT
$ (T ) = SBT (T ).

Both the futures price Fut(t, T ) and the forward price For(t, T ) are expectations
of the terminal price of the stock S$(T ), but under different probability measures.
The futures price is computed under the risk-neutral measure PM , while the forward
price is computed under the T-forward measure PT . We have already seen that when
the interest rate r(t) is deterministic, the two measures agree: PM = PT . In this
case, the futures price and the forward price agree.

When the interest rate r(t) is stochastic, the two measures PM and PT are in
general different, and the futures price may be different from the forward price. Let
us compute the difference between them:

Fut(0, T ) − For(0, T ) = (1.83)
= EMS$(T )− ETS$(T )

= ET

[
S$(T ) ·

MBT (T )

MBT (0)

]
− ETMBT (T )

MBT (0)
· ETS$(T )

= BT
$ (0)

[
ET [S$(T ) ·M$(T )]− ET [S$(T )] · ET [M$(T )]

]
= BT

$ (0) · covT (S$(T ),M$(T ))

= BT
$ (0) · covT

(
S$(T ), exp

(∫ T

0
r(t)dt

))
.

Thus the difference between Fut(0, T ) and For(0, T ) is proportional to the covariance
between the stock price S$(T ) and the price of the money market account M$(T ).
The covariance is computed in the T-forward measure PT that corresponds to the
bond BT as choice of the reference asset. The price of the money market M$(T ) is
directly related to the interest rate r(t): the higher is the interest rate, the higher
is the price of the money market.

When the covariance between S$(T ) and M$(T ) is positive, the futures price is
higher than the forward price. This can be explained by the following argument.
In the scenarios when the stock price S$(T ) ends up above the initial stock price
S$(0), the corresponding price of the money market M$(T ) will also tend to increase
more than in the scenarios when the stock price S$(T ) ends up lower than S$(0).
This follows from the positive correlation of S$(T ) and M$(T ). When the price of
the stock goes up, the holder of the futures contract will be receiving a positive
cash flow, and this cash flow will tend to earn a higher interest rate r(t) on those

56



scenarios. On the other hand, when the stock goes down, the holder of the futures
contract will be receiving a negative cash flow, and this cash flow will tend to earn
a lower interest rate r(t) on those scenarios. The fact that the resulting cash flow
from the futures contracts earns a favorable interest means that the futures price
should be higher than the corresponding forward price. In contrast to the futures
contract, the forward contract is settled in one single payment at its maturity time,
and thus it cannot benefit from varying interest rate.

The reader can check that the difference between the futures price and the for-
ward price can also be expressed as

Fut(0, T )− For(0, T ) = −BT
$ (0) · covM(S$(T ),

1
M$(T )

)

= −BT
$ (0) · covM

(
S$(T ), exp

(
−
∫ T

0
r(t)dt

))
if we use the risk-neutral measure PM that corresponds to the money market M as
a reference asset. The idea is to follow the computation in (1.83), but apply the
change of measure from PT to PM in the third line of the equation.
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Chapter 2

Diffusion Models

This chapter introduces diffusion models. Under very broad conditions, all no-
arbitrage models of a continuous price evolution are diffusion models. In other
words, every continuous evolution of the price can be expressed as an Ito’s integral.
This result is known as a Martingale Representation Theorem.

Diffusion models of price use Brownian motion to represent market noise. Since
the market noise itself can take negative values, it does not serve as a good model
for the prices. However, we can take the corresponding stochastic exponential which
is a positive martingale, and thus is perfectly suitable for a no-arbitrage model of
a price process. The simplest model assumes a constant volatility that leads to a
geometric Brownian motion. While most of the real price processes do not have
constant volatility, this assumption still results in reasonable models for prices and
hedges of complex financial instruments. Moreover, the prices of many financial
products in the geometric Brownian motion model admit closed form solutions, and
thus they are easy to use.

In order to compute the prices of financial derivatives, we need to determine the
martingale measures that correspond to all the assets relevant to the given contract.
For instance, the Black–Scholes formula for the price of the European call option
uses both probability measures PX and PY that are associated with the assets X
and Y . The probability measure PX can be determined from the evolution of the
inverse price YX(t), and this price has to be a PX martingale. It turns out that the
evolution of the inverse price YX(t) is also a geometric Brownian motion, but the
market noise WX is associated with the reference asset X.

Diffusion models have one important property: every no-arbitrage asset comes
with its own market noise. An asset Y has a market noise W Y , and an asset X has a
market noise WX . Although W Y and WX are perfectly correlated in the geometric
Brownian motion model, we can always identify the market noise that comes with
each individual asset. Even more complicated assets, such as a power option, or an
average asset, come with its own market noise. This fact will be used for pricing
barrier, lookback, and Asian options in the subsequent chapters.
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The first section introduces the geometric Brownian motion model, and studies
the evolution of the prices XY and YX under the corresponding martingale measures
PY and PX . We also show that the measures PY and PX have the interpretation of
how costly a given event is if settled in terms of the asset Y , or in terms of the asset
X, respectively. The second section introduces general European contracts. Euro-
pean contracts are contracts on two assets that are defined by the payoff function,
which can be expressed in terms of each reference asset Y or X. The two payoff
functions are related by a formula known as a perspective mapping. Some contracts
remain the same if the roles of the assets Y and X is switched in the payoff function;
for instance the best of the two assets defined as max(X(T ), Y (T )) is the same as
max(Y (T ), X(T )). The best of the two assets naturally leads to European call and
put options with the payoff

(X(T )−K · Y (T ))+ = max(X(T ), K · Y (T ))−K · Y (T ).

We give examples of European call and put options that appear in different mar-
kets: a stock option, a currency option, an exchange option, or a caplet. Their prices
and the hedging portfolios are given by the Black–Scholes formula. We compute all
prices in terms of the no-arbitrage assets so that we can employ the First Funda-
mental Theorem of Asset Pricing directly. In order to get the prices in terms of a
dollar, an arbitrage asset, we can trivially apply the change of numeraire formula to
the prices computed with respect to no-arbitrage assets.

The price of a contingent claim can be computed by two alternative methods:
by computing the conditional expectation, or by solving the associated partial dif-
ferential equation. The case of European options is usually simple enough to obtain
closed form formulas, but both approaches also work for more complicated products
when no close formula is known. The conditional expectation can be approximated
by Monte Carlo methods, and the partial differential equation can be solved numer-
ically by applying finite difference techniques.

The primary goal of contingent pricing is to find the dollar price of a given con-
tract. Our text suggests to compute the price of a contingent claim with
respect to a no-arbitrage asset first, such as a corresponding bond, and
then convert it to the dollar price using the change of numeraire. This
approach is valid in general, and it has clear computational advantages
when the contingent claim is more complex, such as in the case of exotic
options. However, the dollar prices of European claims also satisfy a certain and
more complicated partial differential equation that is obtained by discounting to
the dollar prices of the underlying assets. But this partial differential equation does
not hold in general, it assumes a deterministic evolution of the interest rate. We
mention it in our text since the partial differential equation in terms of dollars is the
most widely used in practice. For simple contracts, such as for European options,
it does not make a difference to compute the prices under different reference assets
(arbitrage or no-arbitrage) since the price of the contract is simple to determine.
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The only loss when computing the dollar prices directly from the corresponding par-
tial differential equation approach is that the approach does not apply to stochastic
interest rates. In that case one should compute the prices in terms of the bond, and
convert it to dollar prices by changing the numeraire.

For more complex products, such as for barrier, lookback, or Asian options, using
the no-arbitrage asset as a numeraire leads to significant computational advantages.
On the other hand, American options have to use dollar values in order to compare
the intrinsic and the continuation values, and the partial differential equation in
terms of dollars has to be used. In the case of the American option, it is the setup
of the contract that forces us to use the partial differential equation in terms of a
dollar.

We also discuss how to construct the hedging portfolios for European contracts.
The hedging must always be done in the two underlying no-arbitrage assets. We
determine the hedging positions in both assets. We can also get a similar expres-
sion for the hedging positions in terms of the dollar price functions. The hedging
positions for European call options are bounded in both assets; the position in the
asset X is always between zero and one, and the hedging position in the asset Y is
always between minus the strike K and zero.

We also briefly introduce stochastic volatility models. The price of the contract is
still considered to be Markov, but it depends on two parameters: the price XY (t) of
the asset X and stochastic volatility ξ(t). The resulting partial differential equation
for the price of the derivative security becomes two dimensional in space. The
chapter is concluded with an example of a European option contract in the foreign
exchange market which is just a special case of the general approach presented in
the previous text.

2.1 Geometric Brownian Motion
Assume that the two assets X and Y are no-arbitrage assets. We have seen that the
price XY (t) must be a PY martingale in order to prevent any arbitrage opportunity.
In continuous time, a general martingale can be written as a sum of a martingale
with continuous paths and a purely discontinuous martingale:

M(t) = Mc(t) +Md(t). (2.1)

Continuous martingales adapted to a filtration FW
t generated by a Brownian motion

W are in fact diffusions; they can be represented as stochastic integrals with respect
to Brownian motion. Thus

Mc(t) = Mc(0) +

∫ t

0

ϕ(s)dW (s), (2.2)

where ϕ(t) is adapted to FW
t . This result is known as a Martingale Representa-

tion Theorem.
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This chapter focuses on price models with continuous paths. The process XY (t)
must have the form

dXY (t) = ϕ(t)dW (t).

Let us start with the simple but very popular model when

ϕ(t) = σXY (t).

The price process XY (t) follows

dXY (t) = σXY (t)dW
Y (t), (2.3)

which is known as a geometric Brownian motion. The parameter σ is referred to
as volatility. Volatility is inherent to diffusion models. Similar to price, volatility
is a pairwise relationship between two assets X and Y . The price XY of the asset X
with respect to a reference asset Y may have very different volatility than the price
XZ with respect to a different reference asset Z. For instance, a typical dollar stock
price S$ is more volatile than a stock price SI taken with respect to a market index
I. Sometimes we will denote by σxy the volatility that corresponds to the assets X
and Y .

A natural question is how the measure PY is determined. Under PY , the driving
process W Y (t) is a Brownian motion. Also the above stochastic differential equation
has the following solution:

XY (t) = XY (0) · exp
(
σW Y (t)− 1

2
σ2t
)
. (2.4)

Note that XY (t) is a PY martingale.

In order to compute the prices of European options and other derivative securi-
ties, we also need to determine the probability measure PX . The role of X and Y
should be exchangeable in models that preserve the symmetry between both assets.
Mathematically, this requirement translates to

LY
t

(
XY (T )

XY (t)

)
= LX

t

(
YX(T )

YX(t)

)
, (2.5)

meaning that the price increment XY (T )
XY (t)

under the probability measure PY should
have the same distribution as the price increment YX(T )

YX(t)
under the probability mea-

sure PX . Therefore we need to have a description of the dynamics of the inverse
price, YX(t), that would be analogous to the dynamics of the original price XY (t).
Ideally, the evolution of this price should have the same form as (2.3), but the
dynamics are already determined by Ito’s formula (see Appendix):

dYX(t) = dXY (t)
−1 = −XY (t)

−2dXY (t) +
1
2
· 2XY (t)

−3d2XY (t)

= −σYX(t)dW
Y (t) + σ2YX(t)dt

= σYX(t) ·
(
−dW Y (t) + σdt

)
. (2.6)
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Given the exchangeability argument of X and Y , we should also have

dYX(t) = σYX(t)dW
X(t), (2.7)

which is the same stochastic differential equation as (2.3) with X and Y flipped,
and with a different Brownian motion WX(t) under the measure PX . The solution
of the above stochastic differential equation is given by

YX(t) = YX(0) · exp
(
σWX(t)− 1

2
σ2t
)
. (2.8)

In diffusion models, each reference asset Y has its own market noise that is
represented by one or several Brownian motions W i,Y (t). Other reference assets,
such as an asset X, have different market noise that is represented by Brownian
motions W i,X(t). Obviously, the Brownian motions W Y and WX are related. In the
above case, we just have one Brownian motion for each asset, and the relationship
between WX(t) and W Y (t) follows from the equation

dYX(t) = σYX(t) ·
(
−dW Y (t) + σdt

)
= σYX(t)dW

X(t). (2.9)

Thus we must have
dWX(t) = −dW Y (t) + σdt,

or in other words,
WX(t) = −W Y (t) + σt. (2.10)

Note that a symmetric relationship holds as well

W Y (t) = −WX(t) + σt. (2.11)

Remark 2.1 Some authors define dWX(t) as dW Y (t) + σdt which is an equivalent
definition since the Brownian motion is symmetric and thus dW Y (t) has the same
distribution as −dW Y (t). However, such a definition would break the symmetry of
the price formulas for X and Y , and thus it is more appropriate to use dWX(t) =
−dW Y (t) + σdt.

The two Brownian motions W Y (t) and WX(t) are perfectly correlated with a
correlation coefficient of -1:

dW Y (t) · dWX(t) = −1 · dt.

This makes sense since when XY (t) goes up, the inverse price YX(t) goes down, and
vice versa.

From the financial representation of the Radon–Nikodým derivative we have

Z(t) =
dPX

t

dPY
t

=
XY (t)

XY (0)
= exp

(
σW Y (t)− 1

2
σ2t
)
= exp

(
−σWX(t) + 1

2
σ2t
)
. (2.12)

The concept of equivalent treatment of both X and Y is also supported by the
following theorem.
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Theorem 2.2 (Girsanov.) Let W Y (t) be a PY Brownian motion. Then WX(t) =

−W Y (t) + σt is a PX Brownian motion, where Z(t) =
dPX

t

dPY
t

= XY (t)
XY (0)

=

exp
(
σW Y (t)− 1

2
σ2t
)
.

Remark 2.3 The two measures PY and PX may disagree on the drift of the Brow-
nian motion. More specifically,

EY [WX(t)] = EY [−W Y (t) + σt] = σt,

but
EX [WX(t)] = 0.

The last statement can be proved by a change of the measure argument (1.63)

EX [WX(t)] = EX [−W Y (t) + σt] = EY [(−W Y (t))Z(t)] + σt

= EY [−W Y (t) · exp
(
σW Y (t)− 1

2
σ2t
)
] + σt

= − exp(−1
2
σ2t) · EY [W Y (t) · exp

(
σW Y (t)

)
] + σt

= − exp(−1
2
σ2t) · d

dσ
EY [exp

(
σW Y (t)

)
] + σt

= − exp(−1
2
σ2t) · d

dσ
[exp(1

2
σ2t)] + σt

= 0.

Note that we have
d2XY (t)

XY (t)2
= σ2dt, (2.13)

as well as
d2YX(t)

YX(t)2
= σ2dt, (2.14)

and thus the volatility of XY (t) is the same as the volatility of YX(t). It does not
matter which of the two assets, X or Y , is chosen as a numeraire. For instance
the volatility of the dollar/euro exchange rate is the same as the volatility of the
euro/dollar exchange rate. This is true even when the volatility is stochastic.

Having the closed form expressions for the price XY (T ) from Equation (2.3)
and for the price YX(T ) from Equation (2.8), we can determine the prices of digital
options that pay off either IA(ω) units of an asset Y at time T , or IA(ω) units of an
asset X at the same time. Let us consider events A of the form

A = {ω ∈ Ω : XY (T, ω) ≥ K}

for a given constant K. A is a set of scenarios where the terminal price of XY (T )
exceeds a level K. Let us determine the price of a contract U that pays off

U(T ) = IA(ω) · Y (T ).

Since the price of this contract is a martingale under the PY measure, we have

UY (t) = EY
t [IA(ω)] = PY

t (A).
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The event
A = {XY (T ) ≥ K}

is equivalent to

XY (t) · exp
(
σ(W Y (T )−W Y (t))− 1

2
σ2(T − t)

)
≥ K,

or in other words

−W Y (T )−W Y (t)√
T − t

≤ 1

σ
√
T − t

· log
(

XY (t)
K

)
− 1

2
σ
√
T − t.

Since −WY (T )−WY (t)√
T−t

has a normal distribution with zero mean and a unit variance
N(0, 1) under the probability measure PY , the probability of the event A is given
by

PY
t (A) = PY

t (XY (T ) ≥ K) = N
(

1
σ
√
T−t

· log
(

XY (t)
K

)
− 1

2
σ
√
T − t

)
, (2.15)

where N(·) is a cumulative distribution function of a standard normal variable

N(x) =

∫ x

−∞

1√
2π

· e−
y2

2 dy.

We can determine the price of the digital option V that pays off IA(ω) units of X
at time T in a similar fashion. At time T we have

V (T ) = IA(ω) ·X(T ).

The price VX(t) is a PX martingale, and thus

VX(t) = EX
t [IA(ω)] = PX

t (A).

The event
A = {XY (T ) ≥ K}

is equivalent to

XY (t) · exp
(
−σ(WX(T )−WX(t)) + 1

2
σ2(T − t)

)
≥ K.

Here we used the fact that

XY (T ) =
1

YX(T )
=

1

YX(t) · exp
(
σ(WX(T )−WX(t))− 1

2
σ2(T − t)

)
= XY (t) · exp

(
−σ(WX(T )−WX(t)) + 1

2
σ2(T − t)

)
.

We need to express the price of XY (T ) in terms of the Brownian motion WX(t) in
order to determine the probability of the event A using the PX measure. The event
A is equivalent to

WX(T )−WX(t)√
T − t

≤ 1

σ
√
T − t

· log
(

XY (t)
K

)
+ 1

2
σ
√
T − t.

Therefore

PX
t (A) = PX

t (XY (T ) ≥ K) = N
(

1
σ
√
T−t

· log
(

XY (t)
K

)
+ 1

2
σ
√
T − t

)
. (2.16)
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Remark 2.4 It is interesting to note that when K = XY (0), we have

PY (XY (T ) ≥ XY (0)) = N
(
−1

2
σ
√
T
)
< 1

2
,

and
PX(XY (T ) ≥ XY (0)) = N

(
1
2
σ
√
T
)
> 1

2
.

A delivery of a unit of Y when the price XY of the asset X moves up requires less
than a 1

2
unit of Y to start with. On the other hand, a delivery of a unit of X on the

same event requires more than a 1
2

unit of an asset X. In this sense, the asset Y is
“cheaper” (it requires a smaller fraction of the underlying asset) to deliver than the
asset X on the up movement of the price XY .

2.2 General European Contracts
A general European-type contract pays off either fY (XY (T )) units of an asset Y , or
fX(YX(T )) units of an asset X at time T . In order that these two payoffs correspond
to the same contract, we must have

fY (XY (T )) · Y = fX (YX(T )) ·X

or in other words,

fY (XY (T )) · Y = fX

(
1

XY (T )

)
·XY (T ) · Y.

Therefore the two payoff functions fY and fX are linked by the following symmetric
relationship

fY (x) = fX
(
1
x

)
· x, or fX(x) = fY

(
1
x

)
· x, (2.17)

which is valid for 0 < x < ∞, meaning that neither the asset X nor the asset Y
is worthless. Note that the payoff function depends on a choice of the reference
asset. The formulas that link functions fY and fX are known as a perspective
mapping. A financial contract with a non-negative payoff function fY (x) is known
as an option. Note that fY (x) ≥ 0 is equivalent to fX(x) ≥ 0, so the definition
of the option does not depend on the choice of the reference asset. An option of
this type is also known as a plain vanilla option. The perspective mapping also
preserves convexity; fY (x) is convex if and only if fX(x) is convex.

Example 2.5 (The best asset and the worst asset) The simplest contract on
two assets one can think of is the best of the two assets, or the worst of the two
assets. The best of the two assets contract pays off max(X(T ), Y (T )) at time T ;
the worst of the two assets contract pays off min(X(T ), Y (T )) at time T . These
contracts are completely symmetric since

max(X(T ), Y (T )) = max(Y (T ), X(T )),

and
min(X(T ), Y (T )) = min(Y (T ), X(T )).
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When the best of the two assets contract is settled in the asset Y , the contract pays
off max (XY (T ), 1) units of Y . Similarly, when the best of the two assets contract is
settled in the asset X, the contract pays off max (YX(T ), 1) units of X. The payoff
functions for the best of the two assets are thus given by

fY (x) = max(x, 1),

and
fX(x) = fY ( 1

x
) · x = max( 1

x
, 1) · x = max(1, x).

Note that we have fX(x) = fY (x). Analogously, the payoff functions for the worst
of the two assets are given by

fY (x) = min(x, 1),

fX(x) = fY ( 1
x
) · x = min(x, 1).

Note that the payoff of the best asset contract can be re-expressed in the following
form

max(X(T ), Y (T )) = (X(T )− Y (T ))+ + Y (T ) = (Y (T )−X(T ))+ +X(T ),

where x+ = max(x, 0), leading us to contracts known as the call and the put options.

The most typical traded contract that has the feature of paying the best as-
set is a convertible bond. One of the payments of the convertible bond is
max(S(T ), K ·BT (T )), so the holder of this contract can choose between the equity
position in the asset S, and K units of the bond BT at the expiration time T .

However, the logic of the financial markets is to allow for maximal leverage,
and in this respect, the contract that delivers the best asset is not ideal as it ties
down a portion of the capital of the investor that can be used otherwise. Instead,
one can trade just the differences between the best asset and the asset itself, which
requires significantly less capital. The contract on the difference of the best asset
and the asset itself is known as a call option. Formally, a European call option
V EC(X,K · Y, T ) is a contract that pays off

(X(T )−K · Y (T ))+, (2.18)

where X and Y are two assets. The constant K is known as the strike. The
relationship between the European call option and the contract that delivers the
best asset is given by

max(X(T ), K · Y (T )) = (X(T )−K · Y (T ))+ +K · Y (T ).

In the contract that delivers we may rescale one of the assets by a factor of K to
achieve a better proportionality of the assets X and Y . Note that the European call
option is a combination of two digital options

(X(T )−K · Y (T ))+ = I(XY (T ) ≥ K) ·X −K · I(XY (T ) ≥ K) · Y. (2.19)
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The first digital option pays off I(XY (T ) ≥ K) units of the asset X, the second
digital option pays off I(XY (T ) ≥ K) units of the asset Y .

A closely related contract to a European call option is a European put option
V EP (K · Y,X, T ) with a payoff

(K · Y (T )−X(T ))+. (2.20)

The put option is also related to the contract that delivers the best asset by

max(X(T ), K · Y (T )) = (K · Y (T )−X(T ))+ +X(T ).

The only difference between the call and the put option is which of the two available
assets is chosen to be subtracted from the payoff of the contract on the best asset.
Since this choice is arbitrary, the call option on assets X and K · Y is the same
contract as a put option on assets K · Y and X. This relationship is known as the
put-call duality:

V EC(X,K · Y, T ) = V EP (K · Y,X, T ) = K · V EP (Y, X
K
, T ). (2.21)

Another simple relationship between European call and European put options is
a put-call parity. Note that

X(T )−K · Y (T ) = (X(T )−K · Y (T ))+ − (K · Y (T )−X(T ))+, (2.22)

where X(T ) − K · Y (T ) is a payoff of a forward contract F (X,K · Y, T ). The
relationship between the forward contract and the corresponding call and put options
holds at all times t ≤ T :

F (X,K · Y, T ) = V EC(X,K · Y, T )− V EP (X,K · Y, T ). (2.23)

A European call option payoff can be written in the following equivalent ways

(X(T )−K · Y (T ))+ = (XY (T )−K)+ · Y (T ) = (1−K · YX(T ))
+ ·X(T ). (2.24)

When the European call option is settled in the asset Y , the payoff is given by

(XY (T )−K)+ · Y (2.25)

which corresponds to a payoff function fY (x) = (x − K)+. The holder receives
(XY (T )−K)+ units of Y at time T . Similarly, the European call option settled in
the asset X has the payoff

(1−K · YX(T ))
+ ·X (2.26)
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which corresponds to a payoff function fX(x) = (1−K ·x)+. Note that fX( 1
x
) ·x =

(1−K · 1
x
)+ · x = (x−K)+ = fY (x). The holder receives (1−K · YX(T ))

+ units of
X at time T .

European-type contracts can always be expressed in terms of two no-arbitrage
assets.

Remark 2.6 (European option as a contract on two no-arbitrage assets)

A European option can always be expressed as a contract on two no-arbitrage assets.
The payoff of a European option is defined as fY (XY (T )) units of an asset Y , or
fX (YX(T )) units of an asset X at time T for general assets with positive price X
and Y . When X or Y is an arbitrage asset, such as the dollar $, we can substitute
an arbitrage asset X (or Y ) with a corresponding no-arbitrage asset U or V that
delivers a unit of an asset X or an asset Y at time T . In particular, we have

U(T ) = X(T ), V (T ) = Y (T ).

Thus the European option payoff can be re-expressed as fY (UV (T )) = fV (UV (T ))
units of an asset V , or fX (VU(T )) = fU (VU(T )) units of an asset U at time T for
two no-arbitrage assets U and V . This substitution is not possible when there is no
fixed delivery of the option payoff such as in the case of American options.

Example 2.7 (European call option in different markets)

Stock option When the asset X is a stock S, and the asset Y is a dollar $, we
have a European stock option

(S(T )−K · $(T ))+. (2.27)

Note that the existing literature typically omits the fact that the strike is in fact
multiplied by the dollar $. This notation means that the holder of the option
has the right to increase his position in the stock S by one unit, and decrease
his position in the dollar $ by K units at time T .

Should the contract be settled in dollars, one can write the payoff as

(S$(T )−K)+ · $(T ). (2.28)

The holder receives (S$(T ) − K)+ units of the dollar $ at time T . As noted
earlier, the European option on a stock may also be settled in terms of a bond
BT , a contract that delivers 1 $ at time T , so that BT (T ) = 1$(T ). In this
case, the payoff of the option may be written as

(S(T )−K ·BT (T ))+. (2.29)

This fact is useful in the pricing of this option. In contrast to the dollar, the
bond does not create arbitrage opportunities in time. Therefore it can be used
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as a natural reference asset for pricing this option. The option can be settled
entirely in the bond

(SBT (T )−K)+ ·BT (T ), (2.30)
or in the stock (

1−K ·BT
S (T )

)+ · S(T ). (2.31)

Exchange option When the asset X is a stock S1, and the asset Y is another
stock S2, the corresponding European call option

(S1(T )−K · S2(T ))+ (2.32)

is known as an exchange option. The natural reference asset for pricing
this option is either the stock S1, or the stock S2. Adding another reference
asset, such as a dollar $, for pricing this option would only increase the
dimensionality of the problem.

Currency option When the asset X is a euro e, and the asset Y is a dollar $ (or
any other currencies), we have a European currency option

(e(T )−K · $(T ))+. (2.33)

A European currency option can be settled in the dollar or in the euro only

(e(T )−K · $(T ))+ = (e$(T )−K)+ · $(T ) = (1−K · $e(T ))+ · e(T ).

In order to express the payoff in terms of no-arbitrage assets only, we can take
a foreign bond Be,T that delivers a unit of a foreign currency e at time T ,
and a domestic bond BT that delivers a unit of a domestic currency $ at time
T . The payoff of the currency option is equivalent to

(e(T )−K · $(T ))+ = (Be,T (T )−K ·BT (T ))+.

Caplet A caplet is an option on a LIBOR that pays off

(L(T, T )−K)+ · $(T + δ). (2.34)

The LIBOR L(T, T ) is observed at time T , but the contract is settled at a later
time T +δ in a dollar $. Here it is not entirely obvious what the corresponding
assets X and Y should be. But from the definition of the LIBOR

L(T, T ) =
BT

$ (T )−BT+δ
$ (T )

δBT+δ
$ (T )

= [BT −BT+δ]δBT+δ(T ),

and using the fact that BT+δ(T + δ) = $(T + δ), we can rewrite the payoff as

(L(T, T )−K)+ · $(T + δ)

=
(
[BT −BT+δ]δBT+δ(T )−K

)+
·BT+δ(T + δ)

= 1
δ
·
(
[BT −BT+δ](T )−K · δBT+δ(T + δ)

)+
.

Thus the asset X is a combination of two bonds [BT − BT+δ], and the asset
Y is δBT+δ.
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Remark 2.8 (European call option price) We have already seen that a Euro-
pean call option is just a combination of two digital options

(X(T )−K · Y (T ))+ = I(XY (T ) ≥ K) ·X(T )−K · I(XY (T ) ≥ K) · Y (T ). (2.35)

The first digital option costs PX
t (XY (T ) ≥ K) units of the asset X, the second digital

option costs PY (XY (T ) ≥ K) units of the asset Y . Therefore we have the following
result:

Theorem 2.9 (Black–Scholes formula) The price of a European option con-
tract V EC(X,K · Y, T ) with the payoff (X(T )−K · Y (T ))+ is given by

V EC(X,K · Y, T ) = PX
t (XY (T ) ≥ K) ·X −KPY

t (XY (T ) ≥ K) · Y. (2.36)

Recall from the previous section (Equations (2.16) and (2.15)) that for the geo-
metric Brownian motion model, we have

PX
t (XY (T ) ≥ K) = N

(
1

σ
√
T−t

· log
(

XY (t)
K

)
+ 1

2
σ
√
T − t

)
,

and
PY
t (XY (T ) ≥ K) = N

(
1

σ
√
T−t

· log
(

XY (t)
K

)
− 1

2
σ
√
T − t

)
.

Thus in the geometric Brownian motion model, the Black–Scholes formula simplifies
to

V EC(X,K · Y, T ) = [N (d+)] ·X(t) + [−K ·N (d−)] · Y (t), (2.37)

where
d± = 1

σ
√
T−t

· log
(

1
K
·XY (t)

)
± 1

2
σ
√
T − t. (2.38)

Remark 2.10 (Money as a reference asset) We have seen that European-type
contracts can be expressed in terms of two no-arbitrage assets X and Y which also
serve as natural reference assets for pricing a given European option V . Thus for
pricing a general European contract, one first determines the price VY (t) or VX(t) in
terms of the no-arbitrage assets Y or X. The dollar price V$(t) follows immediately
from the change of numeraire formula

V$(t) = VY (t) · Y$(t) = VX(t) ·X$(t).

Let us illustrate how to compute the dollar price of a European call option on a stock
and a dollar with a payoff

V EC(T ) = (S(T )−K · $(T ))+.

Since a dollar does not have a martingale measure P$, we have to compute the price
of the European call option using the First Fundamental Theorem of Asset Pricing
either in terms of a stock S, or a bond BT . This leads to the Black–Scholes formula
(2.37), which takes the following form:

V EC(t) = [N (d+)] · S(t) + [−K ·N (d−)] ·BT (t),
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where
d± = 1

σ
√
T−t

· log
(

1
K
· SBT (t)

)
± 1

2
σ
√
T − t.

We can rewrite the Black–Scholes formula in terms of prices with respect to a bond
BT as

V EC
BT (t) = N (d+) · SBT (t)−K ·N (d−) .

Multiplying the above equation by the dollar price of the bond BT
$ (t) and using the

change of numeraire formula, we obtain the dollar price of the European call option

V EC
$ (t) = V EC

BT (t) ·BT
$ (t)

= N (d+) · SBT (t) ·BT
$ (t)−K ·N (d−) ·BT

$ (t)

= N (d+) · S$(t)−K ·N (d−) ·BT
$ (t).

The formula for d± can also be expressed in terms of dollar prices as

d± = 1
σ
√
T−t

· log
(

1
K
· S$(t) · $BT (t)

)
± 1

2
σ
√
T − t.

If we further assume a deterministic term structure evolution with a constant interest
rate r,

BT (t) = e−r(T−t) · $(t),

the above relationships simplify to

V EC
$ (t) = S$(t) ·N (d+)−K · e−r(T−t) ·N (d−) , (2.39)

with
d± = 1

σ
√
T−t

·
[
log
(

1
K
· S$(t)

)
+
(
r ± 1

2
σ2
)
(T − t)

]
. (2.40)

This is the Black–Scholes formula expressed in terms of the dollar prices. Note that
we had to assume a deterministic interest rate r in order to simplify the Black–
Scholes formula (2.37) that applies also to stochastic interest rates.

Table 2.1 summarizes payoffs of various contracts. Options with the power and
the logarithmic payoff do not appear directly on the market, but they are related
to barrier and lookback options as we will see in the following text. Note that the
payoff function fY (x) that corresponds to Y being chosen as a reference asset may
have a different form than the payoff function fX(x) that corresponds to X being
chosen as a reference asset. But the two payoff functions fY and fX represent the
same contract. One can think of switching roles of the assets X and Y , in which case
we would get a new contract with a payoff fX(XY (T )) units of Y . This is a dual
contract to the original contract that pays off fY (XY (T )) units of Y . When we
know the price of an original contract, we also know the price of the dual contract
by switching the roles of X and Y .

We have already seen that the call option with a payoff fY (x) = (x−K)+ is a dual
contract to the put option with a payoff fX(x) = (1−K ·x)+. The contract that pays
off the best asset max(X(T ), Y (T )) is dual to itself as fY (x) = fX(x) = max(x, 1).
The role of X and Y can be switched and it does not change the contract as
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Table 2.1: Contracts on two assets.
Contract Payoff fY (x) fX(x)

Digital IA(XY (T )) · Y (T ) IA(x) IA( 1x) · x
Best Asset max(X(T ), K · Y (T )) max(x,K) max(K · x, 1)
Worst Asset min(X(T ), K · Y (T )) min(x,K) min(K · x, 1)
Call (X(T )−K · Y (T ))+ (x−K)+ (1−K · x)+

Put (K · Y (T )−X(T ))+ (K − x)+ (K · x− 1)+

Forward X(T )−K · Y (T ) x−K 1−K · x
Power [XY (T )]

α · Y (T ) xα x1−α

Logarithm log(XY (T )) · Y (T ) log(x) −x · log(x)

max(X(T ), Y (T )) = max(Y (T ), X(T )). Similarly, the worst asset min(X(T ), Y (T ))
is also dual to itself. The following example illustrates the concept of the dual con-
tracts of the power options.

Example 2.11 (Dual contracts of power options) A power option R(α)

pays off
R(α)(T ) = [XY (T )]

α · Y (T ).

Power options are useful in pricing barrier and lookback options. The dual contract
switches the roles of the assets X and Y ; it pays off

[YX(T )]
α ·X(T ).

This can be rewritten as

[YX(T )]
α ·X(T ) = [XY (T )]

−α ·XY (T ) · YT = [XY (T )]
1−α · Y (T ).

Thus the payoff function xα has a dual payoff function x1−α.

Note that when α = 0, the corresponding power option R(0) coincides with the
asset Y . When α = 1, the corresponding power option R(1) is the asset X. This
suggests that for α ∈ (0, 1), the resulting power option R(α) creates an asset that is
a combination of the assets X and Y . When α > 1, the power option R(α) leverages
the position in the asset X. Similarly, when α < 0, the power option R(α) leverages
the position in the asset Y . This is supported by the following argument. When X
is comparable to Y in terms of price, meaning XY (T ) ≈ 1, we have

[XY (T )]
α ≈ 1 + α(XY (T )− 1) = (1− α) + αXY (T )

according to the first order Taylor expansion around 1. Rewriting this relationship
in terms of the assets, we have

R(α)(T ) ≈ (1− α) · Y (T ) + α ·X(T ). (2.41)
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Clearly, when α ∈ (0, 1), the power option is approximately a linear combination
of the assets X and Y with positive weights. In particular, the power option R(1/2)

corresponding to a square root asset is approximately just an average of the two
assets X and Y . The square root asset is the only power option that is dual to itself,
meaning that one can swap the roles of the assets X and Y without changing the
contract.

When α > 1, the power option corresponds to having a long position in the asset
X, and a short position in the asset Y . When α < 0, the situation is reversed, and
the power option represents a long position in the asset Y , and a short position in
the asset X. The hedging position ∆X(t) of the power option indeed has the same
sign as α, and the hedging position ∆Y (t) has the same sign as 1−α. This confirms
that the approximation from (2.41) is reasonable.

2.3 Price as an Expectation
For pricing a general European claim V , we can use either reference asset Y or X
in order to determine the price of V :

V = VY (t) · Y = VX(t) ·X.

In Markovian models, which include geometric Brownian motion, we can express
these prices in terms of the price functions uY and uX defined as

VY (t) = uY (t,XY (t)), VX(t) = uX(t, YX(t)).

The functions uY and uX are linked by

uY (t,XY (t)) = uX(t, YX(t)) ·XY (t),

or by
uX(t, YX(t)) = uY (t,XY (t)) · YX(t).

Therefore we have the following symmetric relationship

uY (t, x) = uX(t, 1
x
) · x, or uX(t, x) = uY (t, 1

x
) · x (2.42)

for 0 < x < ∞, which is known as a perspective mapping. Note that we have
uY (T, x) = fY (x), and uX(T, x) = fX(x), so the terminal price of the contract
agrees with the payoff function. We have already seen that fY (x) = fX( 1

x
) · x, and

fX(x) = fY ( 1
x
) ·x, which is just a special case of the relationship between the prices

uY (t, x), and uX(t, x).

Recall that the payoff of European options can always be written in terms of
two no-arbitrage assets: U that agrees to deliver an asset X at time T , and V that
agrees to deliver an asset Y at time T . It is easy to see that the contract to deliver
a no-arbitrage asset is the asset itself, so the substitution of the underlying for a
no-arbitrage asset makes sense only when one of the underlying assets is an arbitrage
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asset, such as in the case of the dollar or other currencies. Therefore without loss
of generality, we may assume that the European option is settled in terms of two
no-arbitrage assets.

Given that European options can be expressed in terms of two no-arbitrage
assets, the First Fundamental Theorem of Asset Pricing states that the price of V
in terms of the reference asset Y is a PY martingale, and the price of V in terms of
the reference asset X is a PX martingale. This gives us a stochastic representation
of the contingent claim price

VY (t) = EY
t [VY (T )] = EY

t

[
fY (XY (T ))

]
, (2.43)

when the asset Y is used as a numeraire, and

VX(t) = EX
t [VX(T )] = EX

t

[
fX (YX(T ))

]
, (2.44)

when the asset X is used as a numeraire. The number of units EY
t

[
fY (XY (T ))

]
of

Y that is needed in order to acquire the contract V is the price of the contract in
terms of the reference asset Y . Similarly, the number of units EX

t

[
fX (YX(T ))

]
of

X that is needed in order to acquire the contract V is the price of the contract in
terms of the reference asset X.

When the prices VY (t) and VX(t) are Markovian in the prices XY (t) and YX(t),
the price functions uY and uX have the following representations

uY (t, x) = EY
[
fY (XY (t)) |XY (t) = x

]
, (2.45)

and
uX(t, x) = EX

[
fX (YX(t)) |YX(t) = x

]
. (2.46)

The price processes VY and VX are indeed Markovian in the geometric Brownian
motion model.

When the price processes XY (t) and YX(t) are geometric Brownian motions, we
can compute the price functions uY and uX directly by computing the conditional
expected value. For the function u we have

uY (t, x) = EY
[
fY (XY (T )) |XY (t) = x

]
(2.47)

= EY
[
fY
(
XY (t) · exp

(
σW Y (T − t)− 1

2
σ2(T − t)

))
|XY (t) = x

]
= EY

[
fY
(
x · exp

(
σW Y (T − t)− 1

2
σ2(T − t)

))
|XY (t) = x

]
=

∫ ∞

−∞
fY
(
x · exp

(
σy

√
T − t− 1

2
σ2(T − t)

))
· 1√

2π
exp

(
−y2

2

)
dy.

We have used the fact that

XY (T ) = XY (t) · exp
(
σW Y (T − t)− 1

2
σ2(T − t)

)
,

and that WY (T−t)√
T−t

has a normal distribution N(0, 1).
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Similarly, the function uX can be determined from the following formula:

uX(t, x) = EX
[
fX (YX(T )) |YX(t) = x

]
(2.48)

= EX
[
fX
(
YX(t) · exp

(
σWX(T − t)− 1

2
σ2(T − t)

))
|YX(t) = x

]
= EX

[
fX
(
x · exp

(
σWX(T − t)− 1

2
σ2(T − t)

))
|YX(t) = x

]
=

∫ ∞

−∞
fX
(
x · exp

(
σy

√
T − t− 1

2
σ2(T − t)

))
· 1√

2π
exp

(
−y2

2

)
dy.

Example 2.12 Consider a European call option with a payoff (X(T )−K ·Y (T ))+.
When Y is chosen as a reference asset, the payoff function is given by fY (x) =
(x−K)+. Thus we have

uY (t, x) =

∫ ∞

−∞
fY
(
x · exp

(
σy

√
T − t− 1

2
σ2(T − t)

))
· 1√

2π
exp

(
−y2

2

)
dy

=

∫ ∞

−∞

(
x · exp

(
σy

√
T − t− 1

2
σ2(T − t)

)
−K

)+
× 1√

2π
exp

(
−y2

2

)
dy

= x ·N
(

1
σ
√
T−t

·
[
log
(

x
K

)
+ 1

2
σ2(T − t)

])
−K ·N

(
1

σ
√
T−t

·
[
log
(

x
K

)
− 1

2
σ2(T − t)

])
.

When X is chosen as a reference asset, the payoff function is given by fX(x) =
fY ( 1

x
) · x = (1−K · x)+, and thus we have

uX(t, x) =

∫ ∞

−∞
fX
(
x · exp

(
σy

√
T − t− 1

2
σ2(T − t)

))
· 1√

2π
· exp

(
−y2

2

)
dy

=

∫ ∞

−∞

(
1−K · x · exp

(
σy

√
T − t− 1

2
σ2(T − t)

))+
× 1√

2π
exp

(
−y2

2

)
dy

= N
(

1
σ
√
T−t

·
[
log
(

1
K·x

)
+ 1

2
σ2(T − t)

])
−K · x ·N

(
1

σ
√
T−t

·
[
log
(

1
K·x

)
− 1

2
σ2(T − t)

])
.

The reader may check that the price functions uY and uX indeed satisfy uX(t, x) =
uY (t, 1

x
) · x.

2.4 Connections with Partial Differential Equa-
tions

Let us assume that the price XY (t) follows the geometric Brownian motion model

dXY (t) = σXY (t)dW
Y (t).

We point out in this section that the price functions uY and uX satisfy a certain
partial differential equation.
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Theorem 2.13 The price function uY (t, x) = EY
[
fY (XY (T )) |XY (t) = x

]
satisfies

the partial differential equation

uY
t (t, x) +

1
2
σ2x2uY

xx(t, x) = 0 (2.49)

with the terminal condition
uY (T, x) = fY (x), (2.50)

and the boundary condition
uY (t, 0) = fY (0). (2.51)

The price function uX(t, x) = EX
[
fX (YX(T )) |YX(t) = x

]
satisfies the partial dif-

ferential equation
uX
t (t, x) +

1
2
σ2x2uX

xx(t, x) = 0 (2.52)

with the terminal condition
uX(T, x) = fX(x), (2.53)

and the boundary condition
uX(t, 0) = fX(0). (2.54)

Remark 2.14 The partial differential equations (2.49) and (2.52) are also known
as the Black–Scholes partial differential equations.

Proof: Let
uY (t, x) = EY

[
fY (XY (T )) |XY (t) = x

]
be the price of the contract with respect to the reference asset Y . According to Ito’s
formula, the option price has the following dynamics:

duY (t,XY (t)) = uY
t (t,XY (t)) dt+ uY

x (t,XY (t)) dXY (t)

+1
2
uY
xx (t,XY (t)) d

2XY (t)

=
[
uY
t (t,XY (t)) +

1
2
σ2XY (t)

2uY
xx (t,XY (t))

]
dt

+uY
x (t,XY (t)) dXY (t).

Since uY (t,XY (t)) is a PY martingale, the dt term of this equation must vanish for
all values of XY (t), and thus the following partial differential equation for the price
of the option must hold:

uY
t (t, x) +

1
2
σ2x2uY

xx(t, x) = 0,

with the terminal condition
uY (T, x) = fY (x).

The case when x = 0 represents the situation when XY (t) = 0 (the asset X becomes
worthless), and thus the value of XY (T ) will also be zero. Thus the payoff of the
option will be fY (0) units of an asset Y at time T . Thus the value of the contract
at time t is uY (t, 0) = fY (0).

We can apply the same technique using the no-arbitrage asset X as a numeraire
when the payoff of the contract is fX (YX(T )) units of an asset X, leading to the
partial differential equation (2.52).
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Remark 2.15 (The prices of X and Y satisfy the Black–Scholes partial
differential equation)

Partial differential equation (2.49)

uY
t (t, x) +

1
2
σ2x2uY

xx(t, x) = 0

has two trivial solutions that correspond to the payoff functions fY (x) = 1 and
fY (x) = x. When the payoff function is fY (x) = 1, the price function uY (t, x) is
also identically equal to one, and the partial differential equation (2.49) is satisfied.
In financial terms, the payoff function fY (x) = 1 corresponds to the delivery of a
unit of an asset Y at time T . This is a contract to deliver an asset Y , and its price
at any given time t ≤ T is one unit of an asset Y . Thus we have uY (t, x) = 1 as
a solution. When the payoff function is fY (x) = x, the price function uY (t, x) is
also equal to x, and the partial differential equation (2.49) is satisfied. In financial
terms, the payoff function fY (x) = x corresponds to the delivery of a unit of an
asset X at time T (it is XY (t) units of an asset Y ). This is a contract to deliver
an asset X at time T and its price at any given time t ≤ T is one unit of an asset
X. Thus we have uY (t, x) = x as a solution.

Similarly, the partial differential equation (2.52)

uX
t (t, x) +

1
2
σ2x2uX

xx(t, x) = 0

also has two trivial solutions that correspond to the payoff functions fX(x) = 1 and
fX(x) = x. In financial terms, the payoff function fX(x) = 1 corresponds to the
delivery of an asset X, the payoff function fX(x) = x corresponds to the delivery of
an asset Y .

Example 2.16 The European option V with a payoff V (T ) = (X(T )−K · Y (T ))+

has an associated payoff function fY (x) = (x−K)+, or fX(x) = (1−K · x)+. The
VY (t) = uY (t,XY (t)) price satisfies the partial differential equation (2.49) and the
VX(t) = uX(t, YX(t)) price satisfies the partial differential equation (2.52). When
the asset X becomes worthless, or in other words when XY (t) = 0, the option will
also be worthless as fY (0) = 0, giving us the boundary condition uY (t, 0) = 0. The
asset X will not serve as a reference asset in this case, but the price of the contract
can still be expressed in terms of the asset Y . On the other hand, when the asset Y
becomes worthless, YX(t) = 0, the option will pay off a unit of the asset X, which
corresponds to fX(0) = 1. This gives the boundary condition uX(t, 0) = 1, the asset
X can still be used as a numeraire. Note that the boundary conditions when one of
the prices is zero do not have a perspective mapping counterpart as the perspective
mapping applies only to cases when the prices are positive. When one of the assets
becomes worthless, it still makes sense to use the remaining asset with a positive
price as a numeraire, but the pricing problem cannot be solved using the worthless
asset.
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2.5 Money as a Reference Asset
It is also possible to write the Black–Scholes partial differential equation in terms
of the dollar $ as a reference asset. Let X be a stock S, and Y be a bond BT . A
contract V that pays off fT (SBT (T )) units of a bond BT at time T can equivalently
be expressed as

V (T ) = fT (SBT (T )) ·BT (T ) = f $(S$(T )) · $(T ),

a contract that pays off f $(S$(T )) units of a dollar $ at time T . The payoff functions
in terms of a bond BT and a dollar $ agree: fT (x) = f $(x). The contract V at time
t can be also expressed in the following equivalent ways:

V (t) = VBT (t) ·BT (t) = V$(t) · $(t) = VS(t) · S(t).

Let uT (t, SBT (t)) = VBT (t) be the price of the contract V in terms of a bond BT ,
and let

v$(t, S$(t)) = V$(t) (2.55)
be the price of the contract V in terms of a dollar $. We are using a different
letter v for the dollar price in order to distinguish it from the prices u that use only
no-arbitrage assets. Let us also assume BT

$ (t) = e−r(T−t). Since

V (t) = uT (t, SBT (t)) ·BT (t) = v$(t, S$(t)) · $(t),

we get the following relationship between uT and v$:

v$(t, x) = e−r(T−t) · uT (t, er(T−t)x), (2.56)

and
uT (t, x) = er(T−t) · v$(t, e−r(T−t)x). (2.57)

We have seen that the price function uT satisfies the partial differential equation

uT
t (t, x) +

1
2
σ2x2uT

xx(t, x) = 0.

Using the relationship between the functions uT and v$, we find that

uT
t (t, x) = er(T−t) ·

(
−rv$(t, e−r(T−t)x) + v$t (t, e

−r(T−t)x)

+ r
(
e−r(T−t)x

)
v$x(t, e

−r(T−t)x)

)
,

and
uT
xx(t, x) = er(T−t)

(
e−r(T−t)

)2
v$xx(t, e

−r(T−t)x).

After substitution of x for e−r(T−t)x, we conclude that v$ satisfies the following
partial differential equation

−rv$(t, x) + v$t (t, x) + rxv$x(t, x) +
1
2
σ2x2v$xx(t, x) = 0. (2.58)
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The terminal condition is given by

v$(T, x) = fT (x) = f $(x), (2.59)

and the boundary condition is

v$(t, 0) = e−r(T−t) · uT (t, 0) = e−r(T−t) · fT (0). (2.60)

The Black–Scholes partial differential equation in the form of (2.58) is widely used
since it directly determines the price of a contract in terms of a dollar. However,
the partial differential equation (2.58) has two limitations. First, it ap-
plies only when the interest rate r is deterministic. Second, its form
is more complicated than the Black–Scholes partial differential equation
(2.49) obtained for two no-arbitrage assets S and BT . The pricing of Euro-
pean options is still relatively straightforward, so the advantage of using no-arbitrage
assets for pricing is small. Therefore using no-arbitrage assets in pricing is more im-
portant for complex financial products, such as exotic options.

Example 2.17 We have seen that the price of the European call option with a payoff
(S(T )−K ·BT (T ))+ is given by

uT (t, x) = x ·N
(

1
σ
√
T−t

·
[
log
(

x
K

)
+ 1

2
σ2(T − t)

])
−K ·N

(
1

σ
√
T−t

·
[
log
(

x
K

)
− 1

2
σ2(T − t)

])
. (2.61)

Using the relationship v$(t, x) = e−r(T−t) · uT (t, er(T−t)x), we can express the dollar
price of the option as

v$(t, x) = x ·N
(

1
σ
√
T−t

·
[
log
(

x
K

)
+ (r + 1

2
σ2)(T − t)

])
−Ke−r(T−t) ·N

(
1

σ
√
T−t

·
[
log
(

x
K

)
+ (r − 1

2
σ2)(T − t)

])
. (2.62)

This is the best-known form of the Black–Scholes formula. One can verify that
v$(t, x) from (2.62) satisfies the Black–Scholes partial differential equation (2.58).

Similarly, we can define the price function vS in terms of $ and S as a reference
asset by

V (t) = vS(t, $S(t)) · S(t). (2.63)
The relationship between V S and the price function uS defined as

V (t) = uS(t, BT
S (t)) · S(t) (2.64)

is given by

vS(t, x) = uS(t, e−r(T−t)x), uS(t, x) = vS(t, er(T−t)x). (2.65)

Using the relationship between the price functions vS and uS, we can obtain a partial
differential equation for vS. Since uS satisfies the partial differential equation

uS
t (t, x) +

1
2
σ2x2uS

xx(t, x) = 0,
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the function vS satisfies the partial differential equation

vSt (t, x)− rxvSx (t, x) +
1
2
σ2x2vSxx(t, x) = 0. (2.66)

The terminal condition is

vS(T, x) = uS(T, x) = fS(x), (2.67)

and the boundary condition is

vS(t, 0) = uS(t, 0) = fS(0). (2.68)

2.6 Hedging
Let us determine the hedging portfolio for a general European option contract V .

Theorem 2.18 The hedging portfolio P (t) of the European option is given by

P (t) =
[
uY
x (t,XY (t))

]
·X +

[
uY (t,XY (t))− uY

x (t,XY (t)) ·XY (t)
]
· Y, (2.69)

or equivalently by

P (t) =
[
uX(t, YX(t))− uX

x (t, YX(t)) · YX(t)
]
·X +

[
uX
x (t, YX(t))

]
· Y. (2.70)

Proof: The hedging portfolio is in the form

P (t) = ∆X(t) ·X +∆Y (t) · Y,

and has dynamics of the form

dPY (t) = ∆X (t,XY (t)) dXY (t).

We also have
dVY (t) = duY (t,XY (t)) = uY

x (t,XY (t)) dXY (t).

In order to have
P (t) = V (t),

at all times, the hedge of this contract must satisfy

∆X (t,XY (t)) = uY
x (t,XY (t)) =

∂VY (t)

∂XY (t)
. (2.71)

The hedging position ∆X in the asset X is the sensitivity of the price of the contract
VY (t) to the changes of the underlying price XY (t). The hedge position ∆Y in the
asset Y follows from

∆Y (t) = PY (t)−∆X(t) ·XY (t) = uY (t,XY (t))− uY
x (t,XY (t)) ·XY (t).
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When X is chosen as a reference asset, the price dynamics of the hedging portfolio
P are given by

dPX(t) = ∆Y (t, YX(t)) dYX(t).

We also have
dVX(t) = duX (t, YX(t)) = uX

x (t, YX(t)) dYX(t),

and thus in order to have
P (t) = V (t),

the hedging position ∆Y must satisfy

∆Y (t, YX(t)) = uX
x (t, YX(t)) =

∂VX(t)

∂YX(t)
. (2.72)

The hedging position ∆X(t) in the asset X follows from

∆X(t) = PX(t)−∆Y (t) · YX(t) = uX(t, YX(t))− uX
x (t, YX(t)) · YX(t).

Recall that the prices in terms of the functions uY and uX are related by the
following symmetric relationship known as a perspective mapping:

uY (t, x) = uX(t, 1
x
) · x, or uX(t, x) = uY (t, 1

x
) · x.

We can connect the pricing partial differential equations for uY and uX through the
above relationship. The function uY solves Equation (2.49):

uY
t (t, x) +

1
2
σ2x2uY

xx(t, x) = 0.

We can rewrite this partial differential equation in terms of uX using the following
identities:

uY
t (t, x) = uX

t (t,
1
x
) · x,

uY
x (t, x) = uX(t, 1

x
)− 1

x
· uX

x (t,
1
x
),

uY
xx(t, x) = − 1

x2 · uX
x (t,

1
x
) + 1

x2 · uX
x (t,

1
x
) + 1

x3 · uX
xx(t,

1
x
)

= 1
x3 · uX

xx(t,
1
x
).

Substituting for uY
t (t, x) and uY

xx(t, x) in (2.49) we get

uY
t (t, x) +

1
2
σ2x2uY

xx(t, x) = uX
t (t,

1
x
) · x+ 1

2
σ2x2 1

x3 · uX
xx(t,

1
x
) = 0,

which leads to
uX
t (t,

1
x
) + 1

2
σ2 1

x2 · uX
xx(t,

1
x
) = 0.

After making the substitution 1
x
→ x, we can rewrite the above partial differential

equation as
uX
t (t, x) +

1
2
σ2x2uX

xx(t, x) = 0,

which is Equation (2.52). This is an independent derivation of this partial differ-
ential equation using the relationship between uY and uX . Note that the partial

82



differential equation for uY and uX takes the same form, so it is completely sym-
metric with respect to the choice of the reference asset. This is not the case for more
complex products, such as for Asian options.

We have previously seen that the hedging portfolio is given by

P (t) = ∆X(t) ·X +∆Y (t) · Y =
[
uY
x (t,XY (t))

]
·X +

[
uX
x (t, YX(t))

]
· Y,

when using both price functions uY and uX , or in other words,

P (t) =

[
∂VY (t)

∂XY (t)

]
·X +

[
∂VX(t)

∂YX(t)

]
· Y. (2.73)

Using the relationship between uY and uX :

uY
x (t, x) = uX(t, 1

x
)− 1

x
· uX

x (t,
1
x
),

or
uX
x (t, x) = uY (t, 1

x
)− 1

x
· uY

x (t,
1
x
),

we can also write

P (t) =
[
uY
x (t,XY (t))

]
·X +

[
uY (t,XY (t))− uY

x (t,XY (t)) ·XY (t)
]
· Y,

or equivalently

P (t) =
[
uX(t, YX(t))− uX

x (t, YX(t)) · YX(t)
]
·X +

[
uX
x (t, YX(t))

]
· Y.

This confirms Theorem 2.18.

Example 2.19 (Hedging of the forward contract) The forward contract pays
off X(T ) − K · Y (T ), which corresponds to the payoff functions fY (x) = x − K,
and fX(x) = 1 − K · x. The price of the forward contract is trivially given by
uY (t, x) = x−K, and uX(t, x) = 1−K · x. Therefore the hedging portfolio is given
by

P (t) =
[
uY
x (t, x)

]
·X(t) +

[
uX
x (t, x)

]
· Y (t) = X(t)−K · Y (t).

The hedge is static; one buys one unit of the asset X and sells K units of Y . The
forward contract can be thought of as a combination of two contracts to deliver: one
that delivers a unit of an asset X and one that delivers −K units (or in other words
shorts K units) of an asset Y . A contract to deliver an asset X at time T is trivial:
it is the asset X itself. One simply buys the asset and holds it until expiration. A
similar argument applies to the asset Y . Note that the hedge of the forward contract
is model independent; it does not depend on the evolution of the price XY (t).

Example 2.20 (Hedging of the European call option)
We have seen that the hedging position of a general European option in the asset X
is given by

∆X (t,XY (t)) = uY
x (t,XY (t)) .
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This further simplifies when the payoff function is given by fY (x) = (x−K)+. We
have that

uY
x (t, x) = d

dx
EY

t (XY (T )−K)+

= d
dx
EY

[(
x · XY (T )

XY (t)
−K

)+
|XY (t) = x

]
= d

dx
EX

[(
x−K · YX(T )

YX(t)

)+
|XY (t) = x

]
= PX

t (XY (T ) ≥ K).

Thus we have

∆X(t) = PX
t (XY (T ) ≥ K) = N

(
1

σ
√
T−t

· log
(

1
K
·XY (t)

)
+ 1

2
σ
√
T − t

)
. (2.74)

Similarly we get

∆Y (t) = −K · PY
t (XY (T ) ≥ K)

= −K ·N
(

1
σ
√
T−t

· log
(

1
K
·XY (t)

)
− 1

2
σ
√
T − t

)
. (2.75)

Hedging of an option that has a dollar as an underlying asset has to be done in
a stock S and in the bond BT (or equivalently in the money market M). Thus the
hedging portfolio P (t) is in the form

P (t) = ∆S(t) · S +∆T (t) ·BT .

We have already seen that

∆S(t) = uT
x (t, SBT (t)) , and ∆T (t) = uS

x

(
t, BT

S (t)
)
.

We can also express the hedging positions in terms of the price functions v$ and vS.
Since uT (t, x) = er(T−t) · v$(t, e−r(T−t)x), we have

uT
x (t, x) = v$x(t, e

−r(T−t)x),

and thus

∆S(t) = uT
x (t, SBT (t)) = uT

x (t, S$(t) · $BT (t))

= uT
x

(
t, er(T−t) · S$(t)

)
= v$x (t, S$(t)) .

The hedging position in the bond BT can be obtained from the dollar price of the
hedging portfolio

P$(t) = ∆S(t) · S$(t) + ∆T (t) ·BT
$ (t),

or in other words,

v$ (t, S$(t)) = v$x (t, S$(t)) · S$(t) + ∆T (t) · e−r(T−t).

Thus we have

∆T (t) = er(T−t) ·
[
v$ (t, S$(t))− v$x (t, S$(t)) · S$(t)

]
.
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Similarly, we can express the hedging portfolio in terms of the price function vS.
Since uS(t, x) = vS(t, er(T−t)x), we have

uS
x(t, x) = vSx (t, e

r(T−t)x) · er(T−t),

and thus

∆T (t) = uS
x

(
t, BT

S (t)
)
= uS

x

(
t, $S(t) ·BT

$ (t)
)

= uS
x

(
t, e−r(T−t) · $S(t)

)
= er(T−t) · vSx (t, $S(t)) .

The hedging position ∆S(t) can be obtained from

∆S(t) = PS(t)−∆T (t) ·BT
S (t)

= vS (t, $S(t))− er(T−t) · vSx (t, $S(t)) · $S(t) ·BT
$ (t)

= vS (t, $S(t))− vSx (t, $S(t)) · $S(t).

Corollary 2.21 The hedging portfolio is given by

P (t) =
[
v$x (t, S$(t))

]
· S

+
[
er(T−t) ·

[
v$ (t, S$(t))− v$x (t, S$(t)) · S$(t)

]]
·BT , (2.76)

or

P (t) =
[[
vS (t, $S(t))− vSx (t, $S(t)) · $S(t)

]]
· S

+
[
er(T−t) · vSx (t, $S(t))

]
·BT . (2.77)

Assuming that M$(t) = 1, or equivalently stated, M(t) = er(T−t) ·BT (t), we can also
express the hedging portfolio in term of the stock S and the money market M as

P (t) =
[
v$x (t, S$(t))

]
· S +

[
v$ (t, S$(t))− v$x (t, S$(t)) · S$(t)

]
·M, (2.78)

or

P (t) =
[[
vS (t, $S(t))− vSx (t, $S(t)) · $S(t)

]]
· S +

[
vSx (t, $S(t))

]
·M. (2.79)

2.7 Properties of European Call and Put Options
An option is in the money at time t if fY (XY (t)) > 0. If the option were to expire
immediately at time t, its holder would collect a positive payoff. An option is deep
in the money if it is in the money and fY (XY (T )) > 0 with high probability,
meaning that the option is likely to expire with a positive payoff. An option is out
of the money at time t if fY (XY (t)) = 0. An option is deep out of the money if
it is out of the money, and fY (XY (T )) = 0 with high probability, meaning that the
option is likely to expire worthless. An option is at the money if fY (XY (t)+ϵ) > 0
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and fY (XY (t) − ϵ) = 0 for ϵ > 0. An at the money option is a boundary case be-
tween in the money and out of the money option.

Given the hedge representation for a European call option

∆X(t) = PX
t (XY (T ) ≥ K),

and
∆Y (t) = −K · PY

t (XY (T ) ≥ K),

we can see that

0 ≤ ∆X(t) ≤ 1, and −K ≤ ∆Y (t) ≤ 0.

Moreover, if the option is deep out of the money, the option is almost worthless,
and the corresponding hedge is ∆X(t) ≈ 0, and ∆Y (t) ≈ 0. On the other hand, if
the option is deep in the money, ∆X(t) ≈ 1, ∆Y (t) ≈ −K, and the European option
contract is close to a forward X(t)−K · Y (t).

Another interesting observation is to see what happens when the maturity of the
option approaches infinity, or equivalently, when the volatility approaches infinity.
Recall that the price of a European call option is given by

V EC(0, X,K · Y, T ) = N (d+) ·X −K ·N (d−) · Y,

where
d± = 1

σ
√
T
· log

(
1
K
·XY (0)

)
± 1

2
σ
√
T ,

and so the price is a function of a factor σ
√
T . For instance, doubling the volatility

has the same effect on the option price as quadrupling time. When maturity T → ∞,
we simply have

lim
T→∞

V EC
Y (0, X,K · Y, T ) = XY (0)

since d+ → ∞, and d− → −∞. Therefore for large T , VY (0) ≈ XY (0), and the
hedge is to hold a unit of an asset X and have no position in the asset Y . Figure
2.1 shows the price VY of a European call option with a payoff (X(T )− 1

2
Y (T ))+ as

a function of the price XY (t) of the underlying asset X, and time to maturity T − t.
Note that when t = T , the price of the contract is simply the payoff (x − 1

2
)+. On

the other hand, for large maturities the price of the contract is approximately XY ,
so the price of VY becomes approximately linear in XY .

Figures 2.2 and 2.3 show the corresponding hedging positions in the underlying
assets X and Y as a function of the price XY (t) and time to maturity T − t. Note
that the hedging position in the asset X is between 0 and 1, and the hedging posi-
tion in the asset Y is between −1

2
and 0. For short maturities, the hedging position

in the asset X should be close to 1 when the option is in the money, but it should
be close to 0 when the option is out of the money. There is a jump in the hedging
position at the strike price at the time of maturity. For large maturities, the hedging
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Figure 2.1: The price VY (t) of a European option contract with a payoff (X(T ) −
K · Y (T ))+ with parameters K = 1

2
, σ = 0.2, as a function of price XY (t), and time

to maturity T . We have considered unrealistically large maturities in order to show
the limiting behavior of the option price.

position in the asset X should be close to 1.

Similarly, for short maturities, the hedging position in the asset Y should be
close to −1

2
when the option is in the money, and it should be close to 0 when the

option is out of the money. For long maturities, the hedging position in the asset Y
should be close to 0.

Figure 2.4 shows a sample path of XY in a geometric Brownian motion model,
and the corresponding price of the European option VY . Figure 2.5 shows the
corresponding hedging position in the underlying assets X and Y . Note that the
hedging positions start to change dramatically when the time is close to maturity.
The reason is that the price of the underlying asset happens to be near the strike
price when the option is close to maturity, and the corresponding hedging position
in the asset X takes the values close to 0 or 1 depending whether the option is out of
the money or in the money. We observe a similar behavior for the hedging position
in the asset Y .
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Figure 2.2: The hedging position in the asset X for the European option contract
(X(T ) − K · Y (T ))+ with parameters K = 1

2
, σ = 0.2, as a function of the price

XY (t) and time to maturity T − t. Note that the hedging position in the asset X is
between 0 and 1.

Figure 2.3: The hedging position in the asset Y for the European option contract
(X(T ) − K · Y (T ))+ with parameters K = 1

2
, σ = 0.2, as a function of the price

XY (t) and time to maturity T − t. Note that the hedging position in the asset Y is
between −1

2
and 0.
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Figure 2.4: The price XY (t) of an asset X in terms of the reference asset Y (top),
and the price VY (t) of a European option contract with a payoff (X(T )−K ·Y (T ))+

with parameters XY (0) =
1
2
, K = 1

2
, σ = 0.2, T = 1 (bottom).
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Figure 2.5: The hedging position in the asset X (top) and Y (bottom) for the
European option contract (X(T )−K ·Y (T ))+ with parameters XY (0) =

1
2
, K = 1

2
,

σ = 0.2, T = 1. Note that the hedging position in the asset X is between 0 and 1,
and the hedging position in the asset Y is between −1

2
and 0.
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Remark 2.22 (Greeks) Greeks measure sensitivities of the prices of the portfolio
(or in particular a single financial contract) to the changes of the parameters of the
model. They describe how the price of the portfolio would change if the parameters
change. Note that the price of the portfolio is given relative to the reference asset,
so one can define portfolio sensitivities for any price function. The traditional defi-
nition of greeks applies to the price function v$, but it would make even better sense
to apply it to the price function uY , or uX . The assets Y and X have no time value
(in contrast to a dollar $), and thus the corresponding greeks would not be influenced
by the time decay of the reference asset.

Delta is the sensitivity of the price uY with respect to the price of the underlying
XY :

∆(t) = uY
x (t,XY (t)) =

∂uY (t,XY (t))

∂XY (t)
. (2.80)

Gamma is the sensitivity of ∆ with respect to the price of the underlying XY , which
is the same as the second derivative of uY with respect to XY :

Γ(t) = uY
xx(t,XY (t)) =

∂2uY (t,XY (t))

∂X2
Y (t)

. (2.81)

Theta is the sensitivity of the price uY with respect to time t:

Θ(t) = uY
t (t,XY (t)) =

∂uY (t,XY (t))

∂t
. (2.82)

Vega is the sensitivity of the price uY with respect to the volatility σ:

ν(t) = uY
σ (t,XY (t)) =

∂uY (t,XY (t))

∂σ
. (2.83)

Rho is the sensitivity of the price uY with respect to the interest rate r:

ρ(t) = uY
r (t,XY (t)) =

∂uY (t,XY (t))

∂r
. (2.84)

Example 2.23 Consider an option with a payoff (X(T )−K · Y (T ))+. Its price is
given by the Black–Scholes formula

uY (t,XY (t)) = xN
(

1
σ
√
T−t

· log
(

XY (t)
K

)
+ 1

2
σ
√
T − t

)
−KN

(
1

σ
√
T−t

· log
(

XY (t)
K

)
− 1

2
σ
√
T − t

)
.

The corresponding greeks are given by

∆(t) = N
(

1
σ
√
T−t

· log
(

XY (t)
K

)
+ 1

2
σ
√
T − t

)
,

Γ(t) =
1

XY (t)σ
√
T − t

· ϕ
(

1
σ
√
T−t

· log
(

XY (t)
K

)
+ 1

2
σ
√
T − t

)
,

θ(t) = −1
2
· σXY (t)√

T − t
· ϕ
(

1
σ
√
T−t

· log
(

XY (t)
K

)
+ 1

2
σ
√
T − t

)
,

ν(t) = XY (t)
√
T − t · ϕ

(
1

σ
√
T−t

· log
(

XY (t)
K

)
+ 1

2
σ
√
T − t

)
,

ρ(t) = 0.
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The sensitivity ρ turns out to be zero since the price evolution XY is not influenced
by the changes of the interest rate (assets X and Y have no time value). The changes
of the interest rate would influence contracts that depend on the assets with time
value, such as a dollar $.

2.8 Stochastic Volatility Models
When we have a contingent claim V whose payoff depends on the assets X and Y ,
its price VY (t) can depend on the entire price evolution XY (s) up to time t. It can
also depend on several additional external processes ξi(s), such as a random process
that represents stochastic volatility. In this case we can write

VY (t) = uY (t, {XY (s)}ts=0, {ξi(s)}ts=0).

While this expression would explain the price process VY (t) in full, it would be pro-
hibitively complicated to model the price of VY (t) using infinitely many possible
values from {XY (s)}ts=0 and {ξi(s)}ts=0. Thus it is desirable to express such depen-
dence using only a small number of factors that would explain the price evolution
VY (t) sufficiently well.

A common approach to price modeling is to use the Markov property:

VY (t) = uY (t, {XY (s)}ts=0, {ξi(s)}ts=0) = uY (t,XY (t), ξ
i(t)),

which says that the only relevant information about the future evolution of the pro-
cess VY (t) is given by the present values of the underlying processes XY (t) and ξi(t).

The simplest models that we considered in the previous text assume no external
processes ξi(t), and the price of the contract V can be written as

V (t) = uY (t,XY (t)) · Y = uX(t, YX(t)) ·X.

More general models of the asset prices consider a stochastic evolution of volatility.
The price of a contract V depends on the price of the underlying asset XY (t), and
on a process ξ(t) that represents the volatility

V (t) = uY (t,XY (t), ξ(t)) · Y = uX(t, YX(t), ξ(t)) ·X.

This model has two sources of uncertainty, and it is not possible in general to hedge
such contracts perfectly with only two assets X and Y . A general rule for a complete
market is to have n+1 assets for n sources of noise, which is not the case here. Thus
stochastic volatility models are not complete in general and a perfect replication of
an arbitrary contingent claim may no longer be possible. As mentioned earlier, the
volatility is the same for both XY (t) and YX(t).

Let us assume that the price process follows

dXY (t) = g(t, ξ(t))XY (t)dW
Y (t), (2.85)
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where ξ(t) is a stochastic process in the form

dξ(t) = α(t, ξ(t))dt+ β(t, ξ(t))dW ξ(t). (2.86)

We assume that the two Brownian motions W Y and W ξ are correlated:

dW Y (t) · dW ξ(t) = ρdt.

Note that the price process XY (t) is a PY martingale. The process ξ(t) is a parameter
of the model, and as such it can have an arbitrary evolution. In particular, it does
not need to be a martingale.

Example 2.24 A popular stochastic volatility model is the Heston model, which
is given by the following choice of the functions g, α, and β:

g(t, ξ) =
√

ξ, α(t, ξ) = a− b · ξ, β(t, ξ) = σ
√
ξ.

In this case we can write

dXY (t) =
√

ξ(t) ·XY (t)dW
Y (t),

and
dξ(t) = (a− b · ξ(t))dt+ σ

√
ξ(t)dW ξ(t).

Let V be a contingent claim whose price VY (t) depends only on XY (t) and on
ξ(t). We can write

VY (t) = uY (t,XY (t), ξ(t)).

Since VY (t) is a PY martingale, we can obtain a partial differential equation for the
price function uY . We have

duY (t,XY (t), ξ(t)) = uY
t dt+ uY

x dXY (t) + uY
ξ dξ(t)

+1
2
uY
xxd

2XY (t) + uY
xξdXY (t)dξ(t) +

1
2
uY
ξξd

2ξ(t)

=
[
uY
t + α(x, ξ)uY

ξ + 1
2
g2XY (t)

2uY
xx

+ρβgXY (t)u
Y
xξ +

1
2
β2uY

ξξ

]
dt

+gXY (t)u
Y
x + βuY

ξ dW
ξ(t).

Since the dt term must be zero, we get a partial differential equation for uY :

uY
t (t, x, ξ) + α(t, ξ)uY

ξ (t, x, ξ) +
1
2
g(t, ξ)2x2uY

xx(t, x, ξ)

+ ρβ(t, ξ)g(t, ξ)xuY
xξ(t, x, ξ) +

1
2
β(t, ξ)2uY

ξξ(t, x, ξ) = 0. (2.87)

Similarly, we can study the evolution of the inverse price that takes the same
form

dYX(t) = g(t, ξ(t)) · YX(t)dW
X(t),

where
dWX(t) = −dW Y (t) + g(t, ξ(t))dt.
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This follows from Ito’s formula

dYX(t) = dXY (t)
−1 = −YX(t)

2dXY (t) +
1
2
· 2YX(t)

3d2XY (t)

= −g(t, ξ(t)) · YX(t)dW
Y (t) + g(t, ξ(t))2 · YX(t)dt

= g(t, ξ(t)) · YX(t)dW
X(t).

The correlation between WX(t) and W ξ(t) is given by

dWX(t) · dW ξ(t) = (−dW Y (t) + g(t, ξ(t))dt) · dW ξ(t) = −ρdt.

The only difference is that the correlation coefficient takes an opposite sign. Thus
if we have

VX(t) = uX(t, YX(t), ξ(t)),

the partial differential equation for uX differs only in the sign that corresponds to
the correlation coefficient. Therefore uX satisfies

uX
t (t, x, ξ) + α(x, ξ)uX

ξ (t, x, ξ) +
1
2
g(t, ξ)2x2uX

xx(t, x, ξ)

− ρβ(t, ξ)g(t, ξ)xuX
xξ(t, x, ξ) +

1
2
β(t, ξ)2uX

ξξ(t, x, ξ) = 0. (2.88)

2.9 Foreign Exchange Market
This section studies contracts traded on foreign exchange markets. Let an asset X
be the domestic currency $, and an asset Y be the foreign currency e. Let

e$(t)

denote the amount of a domestic currency that is needed to acquire a unit of a
foreign currency at time t. The quantity e$(t) is known as an exchange rate, but
in fact this is just a special case of the price XY (t), where X = e, and Y = $. Thus
we can apply the results we have obtained in the previous sections for the case of
the foreign exchange market.

The foreign exchange market is an excellent example to illustrate the relative
concept of prices since both the domestic and the foreign currencies are legitimate
choices for the reference asset. Whether a currency is domestic or foreign depends
on which country one lives in. For some people $ is the domestic currency and e is
the foreign currency, but for other people e is the domestic currency and $ is the
foreign currency. Thus it makes perfect sense to study the inverse exchange rate

1

e$(t)
= $e(t).

Note that e$(t) and $e(t) are prices, not assets that could be bought or sold. More-
over, the currencies themselves are arbitrage assets, and thus one needs to immedi-
ately acquire a suitable no-arbitrage asset for it in order not to lose value, such as
a bond that is denominated in the corresponding currency.
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2.9.1 Forwards
Let us consider first a forward contract on the foreign exchange with a payoff

e(T )−K · $(T ) = (e$(T )−K) · $(T ) = (1− $e(T )) · e(T ).

at time T . Let us write this contract in terms of no-arbitrage assets. There is a
corresponding foreign bond that delivers one e at time T . We will denote this no-
arbitrage asset by Be,T . Similarly, there is a domestic bond BT that delivers one $
at time T . Therefore the forward contract is equivalent to the contract with a payoff

Be,T (T )−K ·BT (T ).

Let us denote the forward contract by F (Be,T , K · BT , T ), and let us compute
its price. The contract depends on two no-arbitrage assets, namely on Be,T , and
BT . A possible numeraire for pricing is BT , a domestic bond maturing at time T .
We have

FBT (t) = ET
t

[(
Be,T −K ·BT

)
BT (T )

]
= Be,T

BT (t)−K. (2.89)

The last identity follows from the fact that the price of the bond Be,T in terms of
the bond BT is a martingale under the T-forward measure that corresponds to BT

as a reference asset. Thus we conclude that the forward contract is equal to

F (t, Be,T , K ·BT , T ) = Be,T (t)−K ·BT (t). (2.90)

Note that this is a model-independent formula (we have not assumed any particular
dynamics). A forward exchange rate is a choice of K̄ that makes the forward
contract equal to zero:

F (0, Be,T , K̄ ·BT , T ) = 0. (2.91)
Solving this equation, we get

K̄ = Be,T
BT (0). (2.92)

If we assume constant interest rates for both the domestic and the foreign zero
coupon bond, we can express the above relationship in terms of the exchange rate
e$(0). The domestic bond price in terms of the domestic currency is

BT (t) = e−r(T−t) · $(t),

and the foreign bond price in terms of the foreign currency is

Be,T (t) = e−rF (T−t) · e(t).

Thus we can write

Be,T
BT (t) = Be,Te (t) · e$(t) · $BT (t)

= e−rF (T−t) · e$(t) · er(T−t) = e(r−rF )(T−t) · e$(t).

In other words,
K̄ = Be,T

BT (0) = e(r−rF )T · e$(0). (2.93)
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We can consider a similar contract on the inverse exchange rate $e(T )

$(T )−Kf · e(T ) =
(
$e(T )−Kf

)
· e(T ) = (1−Kf · e$(T )) · $(T ).

The corresponding no-arbitrage assets are BT and Be,T . We can rewrite the payoff
of the contract as

BT (T )−Kf ·Be,T (T ).

If we denote this contract by F (BT , Kf · Be,T , T ), and choose the corresponding
foreign bond Be,T as a numeraire, we get

FBe,T (t) = Ee,Tt

[(
BT −Kf ·Be,T

)
Be,T

(T )
]
= BT

Be,T (t)−Kf . (2.94)

The last equation follows from the fact that the price of BT in terms of Be,T is a
martingale under the measure that corresponds to Be,T as a numeraire. The forward
contract is equal to

F (t, BT , Kf ·Be,T , T ) = BT (t)−Kf ·Be,T (t). (2.95)

The corresponding forward exchange rate from the point of view of the foreign
currency is a choice of K̄f that makes the value of the forward contract zero:

F (0, BT , K̄f ·Be,T , T ) = 0. (2.96)

Solving for K̄f , we get

K̄f = BT
Be,T (0) = e(r

F−r)T · $e(0) =
1

K̄
. (2.97)

Note that the forward exchange rates as seen from the domestic currency and from
the foreign currency point of view are linked through K̄ = 1

K̄f .

2.9.2 Options
European-type contracts on foreign exchange are special cases of general European
contracts where the roles of the no-arbitrage assets X and Y are played by no-
arbitrage assets Be,T and BT . For instance, a call option with payoff

(e(T )−K · $(T ))+

can be rewritten in terms of the no-arbitrage assets as

(Be,T (T )−K ·BT (T ))+.

We have a special case of the Black–Scholes formula that is also known as Garman–
Kohlhagen formula.
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Remark 2.25 (Garman–Kohlhagen formula)
The value V EC(t, Be,T , KBT , T ) of a European option contract with a payoff(
Be,T (T )−K ·BT (T )

)+ is given by

V EC(t, Be,T , KBT , T ) = Pe,Tt (Be,T
BT (T ) ≥ K) ·Be,T (t)

−K · PT
t (B

e,T
BT (T ) ≥ K) ·BT (t) (2.98)

= Pe,Tt (e$(T ) ≥ K) · e−rf (T−t) · e(T )
−K · PT

t (e$(T ) ≥ K) · e−r(T−t) · $(T ).

Moreover, the corresponding deltas are given in the geometric Brownian motion
model by

∆e,T (t) = Pe,Tt (Be,T
BT (T ) ≥ K) = Pe,Tt (e$(T ) ≥ K), (2.99)

and
∆T (t) = −K · PT

t (B
e,T
BT (T ) ≥ K) = −K · PT

t (e$(T ) ≥ K). (2.100)
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Chapter 3

Asian Options

Asian options are contracts that depend on underlying assets X and Y and upon
the average of the price process XY (t). The average price process is captured by a
no-arbitrage contract A called the average asset. The payoff of the average asset
is defined as

A(T ) =

[∫ T

0

XY (t)µ(dt)

]
· Y (T ). (3.1)

The average asset is a contract that pays off a number of units of an asset Y , where
the number of units is the weighted average price of an asset X with respect to
the asset Y . The weights are determined by the weighting measure µ which can
represent both continuous or discrete averaging. Our definition of the average asset
guarantees that its price is always positive, and thus the average asset can be used as
a numeraire. The average asset is analogous to the maximal asset M∗ that appears
in pricing of lookback options. The important difference is that the average asset A
turns out to be a no-arbitrage asset in contrast to the maximal asset M∗.

The average asset is typically not traded, but we can still use it as a numeraire in
order to derive the pricing equations for Asian options. The pricing techniques for
Asian options do not require the existence of the average asset as a traded contract.
We will express all hedging positions in terms of assets X and Y only. Moreover
as we will show in the following text, the Asian forward can be perfectly replicated
by trading in the underlying assets X and Y , and the hedge is model independent.
Therefore A itself is a no-arbitrage asset.

We can apply the First Fundamental Theorem of Asset Pricing as long as the
assets X and Y are no-arbitrage assets. This is not the case when X is a stock S
and Y is dollars $, when the average asset contract becomes

A(T ) =

[∫ T

0

S$(t)µ(dt)

]
· $(T ).

However, we can still rewrite this contract in terms of no-arbitrage assets when the
bond price follows a deterministic term structure BT (t) = e−r(T−t)$(t) as

A(T ) =

[∫ T

0

SBT (t)e−r(T−t)µ(dt)

]
·BT (T ),
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which is of the form of (3.1), with the underlying two no-arbitrage assets S and
BT . Note that hedging must be done in no-arbitrage assets exclusively as opposed
to arbitrage assets such as currencies. A typical Asian option contract uses equal
weights. A continuously sampled average asset pays off

A(T ) = 1
T

[∫ T

0

S$(t)dt

]
· $(T ),

which corresponds to an averaging of the form

µ(dt) = 1
T
e−r(T−t)dt,

when expressed in terms of S and BT . A discretely sampled average asset pays off

A(T ) = 1
n

n∑
k=1

S$(
k
n
T ),

which corresponds to an averaging of the form

µ(dt) = 1
n

n∑
k=1

δ( k
n
T )(t)e

−r(T−t)dt

when expressed in terms of S and BT .

Let us define the most general form of an Asian option.

Definition 3.1 An Asian option is a contract that pays off one of the following:

• fY (XY (T ), AY (T )) units of an asset Y ,

• fX (YX(T ), AX(T )) units of an asset X,

• fA (XA(T ), YA(T )) units of an asset A.

When the payoff functions are linked by the perspective mapping fY (x, y) =
fX( 1

x
, y
x
) · x = fA(x

y
, 1
y
) · y, the three payoffs represent the same contract.

Example 3.2 The Asian call option with a fixed strike pays off

(A(T )−K · Y (T ))+. (3.2)

This corresponds to the payoff functions fY (x, y) = (y−K)+, fX(x, y) = (y−K ·x)+,
or fA(x, y) = (1−K · y)+ in the above definition of the Asian option. This means
that the payoff can be settled in three equivalent ways:

(AY (T )−K)+ · Y = (AX(T )−K · YX(T ))
+ ·X = (1−K · YA(T ))

+ · A.

The Asian call option with a floating strike pays off

(A(T )−K ·X(T ))+ , (3.3)
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which corresponds to the payoff functions fY (x, y) = (y − K · x)+, fX(x, y) =
(y−K)+, or fA(x, y) = (1−K ·x)+. The payoff can be settled in the following three
ways:

(AY (T )−KXY (T ))
+ · Y = (AX(T )−K)+ ·X = (1−K ·XA(T ))

+ · A.

Asian options with the fixed or the floating strike are the two most typical Asian
option contracts.

It is interesting to note that the prices of the Asian fixed strike and the Asian
floating strike options can be written as a Black–Scholes formula. The price of the
fixed strike option is simply

PA
t (AY (T ) ≥ K)−K · PY

t (AY (T ) ≥ K), (3.4)

and the price of the floating strike option is

PA
t (AX(T ) ≥ K)−K · PX

t (AX(T ) ≥ K). (3.5)

This follows from the fact that the Asian option can be written as a combination of
two digital options whose price is given by the above expressions. However, the hard
part is that the prices AY (T ) and AX(T ) do not have a simple analytical distribution
as opposed to the case of XY (T ) which has a known density, and thus determination
of the corresponding probabilities is a nontrivial task. Semianalytical representations
of these probabilities exist for continuous averaging, but they still require significant
computational effort to obtain any numerical result. In our text we present the
partial differential equations that correspond to the Asian option pricing problem
which applies to both discrete and continuous averaging. These partial differential
equations can be solved numerically in a straightforward way.

The foreign exchange market also trades contracts written on the harmonic
average of the price. The harmonic average is defined as the reciprocal of the
arithmetic average of the reciprocals:

1∫ T

0
1

XY (t)
µ(dt)

=
1∫ T

0
YX(t)µ(dt)

.

If we denote by

Ã(T ) =

[∫ T

0

YX(t)µ(dt)

]
·X(T )

the average asset where the roles of the assets X and Y are flipped, we can define
the harmonic average asset as

H(T ) =

[
1∫ T

0
YX(t)µ(dt)

]
· Y (T ) =

1

ÃX(T )
· Y (T ).

Natural contracts to consider are the harmonic Asian option with a fixed strike with
payoff

(H(T )−K · Y (T ))+ =

(
1

ÃX(T )
· Y (T )−K · Y (T )

)+
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and the harmonic Asian option with a floating strike with payoff

(H(T )−K ·X(T ))+ =

(
1

ÃX(T )
· Y (T )−K ·X(T )

)+

.

We can also write the payoffs in terms of the original average asset A(T ) if we flip
the roles of the assets Y and X (it is just a matter of naming the assets). In this
case the harmonic Asian option with a fixed strike has payoff(

1
AY (T )

·X(T )−K ·X(T )
)+

, (3.6)

which corresponds to the payoff functions fY (x, y) = (x
y
− K · x)+, fX(x, y) =

(x
y
− K)+, and fA(x, y) = (x · y − K · x)+. The harmonic Asian option with a

floating strike has payoff (
1

AY (T )
·X(T )−K · Y (T )

)+
, (3.7)

which corresponds to the payoff functions fY (x, y) = (x
y
− K)+, fX(x, y) =

(x
y
−K · x)+, and fA(x, y) = (x · y −K · y)+.

We can also consider more exotic payoffs, such as Asian powers fX(x, y) = yα.
The advantage of this contract is that it admits a closed form solution for integer
valued α, and thus it can be used for calibrating numerical schemes. This payoff
corresponds to fY (x, y) = yα · x1−α, or equivalently to fA(x, y) = x1−α. We can
write the payoff as

AX(T )
α ·X = AY (T )

α · (XY (T ))
1−α · Y = (XA(T ))

1−α · A.

Let V denote an Asian option contract. The price of this contract can be ex-
pressed in the following ways:

V = VY (t) · Y = VX(t) ·X = VA(t) · A.

In the Markovian model, we can also write

V (t) = uY (t,XY (t), AY (t)) · Y = uX (t, YX(T ), AX(T )) ·X
= uA (t,XA(T ), YA(T )) · A,

giving us the following relationships between uY , uX , and uA via the perspective
mapping:

uY (t, x, y) = uX(t, 1
x
, y
x
) · x, uX(t, x, y) = uY (t, 1

x
, y
x
) · x, (3.8)

uY (t, x, y) = uA(t, x
y
, 1
y
) · y, uA(t, x, y) = uY (t, x

y
, 1
y
) · y, (3.9)

uX(t, x, y) = uA(t, 1
y
, x
y
) · y, uA(t, x, y) = uX(t, y

x
, 1
x
) · x. (3.10)
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When X and Y are no-arbitrage assets, then A is a no-arbitrage asset (shown
below), and from the First Fundamental Theorem of the Asset Pricing we have the
following stochastic representations:

uY (t, x, y) = EY [VY (T )|XY (t) = x,AY (t) = y]

= EY
[
fY (XY (T ), AY (T )) |XY (t) = x,AY (t) = y

]
, (3.11)

uX(t, x, y) = EX [VX(T )|YX(t) = x,AX(t) = y]

= EX
[
fX (YX(T ), AX(T )) |YX(t) = x,AX(t) = y

]
, (3.12)

uA(t, x, y) = EA [VA(T )|XA(t) = x, YA(t) = y]

= EA
[
fA (XA(T ), YA(T )) |XA(t) = x, YA(t) = y

]
. (3.13)

Let us show that the average asset A is indeed a no-arbitrage asset.

Theorem 3.3 Let X and Y be two no-arbitrage assets. Then the replicating port-
folio for the average asset contract that pays off

A(T ) =

[∫ T

0

XY (t)µ(dt)

]
· Y (T ) (3.14)

is given by

A(t) =

[∫ T

t

µ(ds)

]
·X +

[∫ t

0

XY (s)µ(ds)

]
· Y. (3.15)

This result does not depend on the dynamics of the price XY (t). In particular,

dAY (t) =

[∫ T

t

µ(ds)

]
dXY (t). (3.16)

Proof: Let A(t) = ∆̄X(t)X(t) + ∆̄Y (t)Y (t) be the replicating portfolio of the
average asset. Then

dAY (t) = ∆̄X(t)dXY (t).

Using the product rule, this can be rewritten as

dAY (t) = ∆̄X(t)dXY (t) = d
(
∆̄X(t) ·XY (t)

)
−XY (t)d∆̄

X(t).

Integrating this equation, we get

AY (T ) = AY (0) + ∆̄X(T ) ·XY (T )− ∆̄X(0) ·XY (0)−
∫ T

0

XY (t)d∆̄
X(t).

Since the terminal position of the average asset is completely invested in the asset
Y , and has a zero position in the asset X, we have ∆̄X(T ) = 0. We thus have the
following identity:(∫ T

0

XY (t)µ(dt)

)
= AY (0)− ∆̄X(0) ·XY (0)−

∫ T

0

XY (t)d∆̄
X(t).
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The only way to match the payoff is when

0 = AY (0)− ∆̄X(0) ·XY (0),

which is equivalent to
A(0) = ∆̄X(0)X(0),

and ∫ T

0

XY (t)µ(dt) = −
∫ T

0

XY (t)d∆̄
X(t).

This implies
−d∆̄X(t) = µ(dt),

which is the same as

∆̄X(t) = −
∫ T

t

d∆̄X(s) =

∫ T

t

µ(ds).

The hedging position ∆̄Y (t) in the asset Y follows from the identity

AY (t) = ∆̄X(t)XY (t) +

∫ t

0

XY (s)µ(ds)

which concludes the proof.

Remark 3.4 Note that the hedging position ∆̄X(t) in the asset X is deterministic:

∆̄X(t) =

∫ T

t

µ(ds). (3.17)

For instance, when µ(dt) = 1
T
e−r(T−t)dt, we get

∆̄X(t) =

∫ T

t

µ(ds) =

∫ T

t

1
T
e−r(T−s)ds = 1

rT

(
1− e−r(T−t)

)
.

In the case of uniform weighting µ(dt) = 1
T
dt, the hedge of the average asset simplifies

to
∆̄X(t) =

∫ T

t

µ(ds) =

∫ T

t

1
T
ds =

(
1− t

T

)
.

For discrete averaging when µ(dt) = 1
n

∑n
k=1 δ( k

n
T )(t)e

−r(T−t)dt, we get

∆̄X(t) =

∫ T

t

µ(ds) = 1
n

∫ T

t

n∑
k=1

δ( k
n
T )(s)e

−r(T−s)ds

= 1
n

n∑
k=

[
nt
T

]
+1

exp
(
−r(n−k

n
)T
)
,

where [·] denotes the integer part function. This simplifies to

∆̄X(t) = 1− 1
n

[
n t

T

]
(3.18)

when the averaging is uniform, i.e. when µ(dt) = 1
n

∑n
k=1 δ( k

n
T )(t)dt.
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The insight of this result is the following: the trader who is replicating the
average asset contract starts with a hedging portfolio of

∫ T

0
µ(dt) units of X and no

units of Y :
∆̄(0) = (∆̄X(0), ∆̄Y (0)) =

(∫ T

0

µ(dt), 0

)
.

The amount of
∫ T

0
µ(dt) units of the asset X is used for replicating the average of the

price. The trader then gradually liquidates his position in the asset X, keeping just∫ T

t
µ(dt) fraction of it at time t, and the rest of the portfolio is invested in the asset

Y . The position in the asset Y corresponds to the running average
∫ t

0
XY (s)µ(ds).

At the final time T , the hedge becomes

∆̄(T ) = (∆̄X(T ), ∆̄Y (T )) =

(
0,

∫ T

0

XY (t)µ(dt)

)
,

so the asset X is completely unloaded, and the position in the asset Y is the number
that corresponds to the average price.

3.1 Pricing in the Geometric Brownian Motion
Model

The prices of assets should be martingales under their corresponding numeraire
measures. Since we have three underlying assets X, Y and A, we have six price
processes to consider: XY (t), AY (t), YX(t), AX(t), XA(t), and YA(t). The price
processes XY (t) and AY (t) are PY martingales, the price processes YX(t) and AX(t)
are PX martingales, and the price processes XA(t) and YA(t) are PA martingales.

In the geometric Brownian motion model we assume the following price dynam-
ics:

dXY (t) = σXY (t)dW
Y (t), (3.19)

and a similar evolution for the inverse price

dYX(t) = σYX(t)dW
X(t). (3.20)

The evolution of AY (t) follows from the hedging formula for the average asset:

dAY (t) = ∆̄X(t)dXY (t) = σ∆̄X(t)XY (t)dW
Y (t). (3.21)

Note that this evolution is not Markovian in AY (t) since it depends on another
process XY (t), but it is Markovian in the pair (XY (t), AY (t)). Thus even when
the Asian option contract payoff depends only on AY (t), the corresponding pricing
partial differential equation would depend on both prices.
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The evolution of the average asset price under the reference asset X can be
expressed as

dAX(t) = ∆̄Y (t)dYX(t)

=
[
AY (t)− ∆̄X(t) ·XY (t)

]
dYX(t)

=
[
AY (t)− ∆̄X(t) ·XY (t)

]
σYX(t)dW

X(t)

= σ
[
AX(t)− ∆̄X(t)

]
dWX(t).

The second equality ∆̄Y (t) = AY (t) − ∆̄X(t) · XY (t) follows from the relationship
A(t) = ∆̄X(t) ·X+∆̄Y (t) ·Y . The reason to write the evolution of AX(t) in terms of
∆̄X(t) rather than in terms of ∆̄Y (t) is that ∆̄X(t) is deterministic, while ∆̄Y (t) is
stochastic. This means that unlike the price evolution of AY (t), the price evolution
of AX(t) is Markovian in just one variable, and thus contracts whose payoff depends
only on AX(T ) admit a simpler partial differential equation with one spatial variable.
Thus

dAX(t) = σ
[
AX(t)− ∆̄X(t)

]
dWX(t). (3.22)

Let us determine the evolution of the remaining prices: YA(t), and XA(t). From
Ito’s formula we have

dYA(t) = dAY (t)
−1 = −AY (t)

−2dAY (t) + AY (t)
−3d2AY (t)

= −YA(t)
2σ∆̄X(t)XY (t)dW

Y (t)

+YA(t)
3σ2∆̄X(t)2XY (t)

2dt

= σ∆̄X(t)YA(t)XA(t)
[
− dW Y (t) + σ∆̄X(t)XA(t)dt

]
.

According to the First Fundamental Theorem of Asset Pricing, the evolution of
YA(t) has to be a martingale under the corresponding PA measure. Thus we have

dYA(t) = σ∆̄X(t)YA(t)XA(t)dW
A(t), (3.23)

where WA(t) is a Brownian motion under PA measure. Similarly,

dXA(t) = dAX(t)
−1 = −AX(t)

−2dAX(t) + AX(t)
−3d2AX(t)

= −XA(t)
2σ
[
AX(t)− ∆̄X(t)

]
dWX(t)

+XA(t)
3σ2
[
AX(t)− ∆̄X(t)

]2
dt

= σXA(t) ·
[
∆̄X(t)XA(t)− 1

]
·
[
dWX(t)− σ

[
1− ∆̄X(t)XA(t)

]
dt
]
.

Therefore
dXA(t) = σXA(t)

[
∆̄X(t)XA(t)− 1

]
dWA(t), (3.24)

which is a martingale under the PA measure.

The price of the Asian option is determined in the next theorem.
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Theorem 3.5 The price function

uY (t, x, y) = EY
[
fY (XY (T ), AY (T )) |XY (t) = x,AY (t) = y

]
,

satisfies partial differential equation

uY
t (t, x, y) +

1
2
σ2x2

[
uY
xx(t, x, y)

+ 2∆̄X(t)uY
xy(t, x, y) + ∆̄X(t)2uY

yy(t, x, y)
]
= 0 (3.25)

with the terminal condition

uY (T, x, y) = fY (x, y). (3.26)

The price function

uX(t, x, y) = EX
[
fX (YX(T ), AX(T )) |YX(t) = x,AX(t) = y

]
,

satisfies partial differential equation

uX
t (t, x, y) +

1
2
σ2
[
x2uX

xx(t, x, y)

+ 2x(y − ∆̄X(t))uX
xy(t, x, y) + (y − ∆̄X(t))2uX

yy(t, x, y)
]
= 0, (3.27)

with the terminal condition

uX(T, x, y) = fX(x, y). (3.28)

The price function

uA(t, x, y) = EA
[
fA (XA(T ), YA(T )) |XA(t) = x, YA(t) = y

]
satisfies partial differential equation

uA
t (t, x, y) +

1
2
σ2x2

(
[x∆̄X(t)− 1]2 · uA

xx(t, x, y)

+ 2y∆̄X(t)[x∆̄X(t)− 1] · uA
xy(t, x, y) + y2(∆̄X(t))2 · uA

yy(t, x, y)
)
= 0, (3.29)

with the terminal condition

uA(T, x, y) = fA(x, y). (3.30)

Proof: The price of the Asian option with respect to the reference asset Y ,
uY (t,XY (t), AY (t)), is a PY martingale, and thus duY has a zero dt term. Using
Ito’s formula, we get

duY = uY
t dt+ uY

x dXY (t) + uY
y dAY (t)

+1
2

[
uY
xxd

2XY (t) + 2uY
xydXY (t)dAY (t) + uY

yyd
2AY (t)

]
= [uY

t + 1
2
σ2x2(uY

xx + 2∆̄X(t)uY
xy + ∆̄X(t)2uY

yy)]dt

+uY
x dXY (t) + uY

y dAY (t).
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Since the dt term is zero, we obtain the following partial differential equation:

uY
t (t, x, y) +

1
2
σ2x2

[
uY
xx(t, x, y) + 2∆̄X(t)uY

xy(t, x, y) + ∆̄X(t)2uY
yy(t, x, y)

]
= 0.

The terminal condition is given by

uY (T, x, y) = fY (x, y).

Similarly, the price of the Asian option with respect to the reference asset X,
uX(t, YX(t), AX(t)), is a PX martingale, and thus the dt term of duX is zero. Using
the evolution of the price of the average asset under the reference asset X, we get

duX = uX
t dt+ uX

x dYX(t) + uX
y dAX(t)

+1
2

[
uX
xxd

2YX(t) + 2uX
xydYX(t)dAX(t) + uX

yyd
2AX(t)

]
= [uX

t + 1
2
σ2(x2uX

xx + 2x(y − ∆̄X(t))uX
xy + (y − ∆̄X(t))2uX

yy)]dt

+uX
x dYX(t) + uX

y dAX(t).

Since the dt term is zero, we have the following partial differential equation

uX
t (t, x, y) +

1
2
σ2
[
x2uX

xx(t, x, y)

+ 2x(y − ∆̄X(t))uX
xy(t, x, y) + (y − ∆̄X(t))2uX

yy(t, x, y)
]
= 0,

with the terminal condition

uX(T, x, y) = fX(x, y).

Finally, the price of the Asian option with respect to the reference asset A,
uA(t,XA(t), YA(t)), is a PA martingale, and thus the dt term of duA is zero. Us-
ing the evolution of the prices of X and Y under the reference asset A, we get

duA = uA
t dt+ uA

x dXA(t) + uA
y dYA(t)

+1
2

[
uA
xxd

2XA(t) + 2uA
xydXA(t)dYA(t) + uA

yyd
2YA(t)

]
=

[
uA
t + 1

2
σ2x2[[x∆̄X(t)− 1]2 · uA

xx

+2y∆̄X(t)[x∆̄X(t)− 1] · uA
xy + y2∆̄X(t)2 · uA

yy]
]
dt

+uA
x dXA(t) + uA

y dYA(t).

Since the dt term is zero, we have the following partial differential equation

uA
t (t, x, y) +

1
2
σ2x2

(
[x∆̄X(t)− 1]2 · uA

xx(t, x, y)

+ 2y∆̄X(t)[x∆̄X(t)− 1] · uA
xy(t, x, y) + y2∆̄X(t)2 · uA

yy(t, x, y)
)
= 0,

with the terminal condition

uA(T, x, y) = fA(x, y). (3.31)
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3.2 Hedging of Asian Options
Since Asian options depend on three assets: X, Y , and the Asian forward A, the
hedge should take positions in all these assets. The hedging portfolio should be of
the form

P (t) = ∆X(t) ·X +∆Y (t) · Y +∆A(t) · A. (3.32)
However, the average asset itself can be hedged by assets X and Y :

A(t) = ∆̄X(t) ·X + ∆̄Y (t) · Y, (3.33)

and thus the Asian option hedge can be reduced to positions in just two assets, X
and Y :

P (t) = [∆X(t) + ∆A(t) · ∆̄X(t)] ·X + [∆Y (t) + ∆A(t) · ∆̄Y (t)] · Y. (3.34)

The hedging position in the underlying assets X and Y has two components: one
part (∆X(t) or ∆Y (t)) represents the usual delta sensitivity of the Asian option price
with respect to the price of the underlying asset, and the other part represents the
delta sensitivity of the Asian option price with respect to the average asset price
(∆A(t)), multiplied by the hedge of the average asset in terms of the assets X and
Y (∆̄X(t), or ∆̄Y (t)). This feature is rather unique among contingent claims. The
exact forms of the hedging portfolio are given in the following theorem. Recall that

∆̄X(t) =

∫ T

t

µ(ds),

and
∆̄Y (t) =

∫ t

0

XY (s)µ(ds).

Theorem 3.6 The hedging portfolio P (t) of the Asian option admits each of the
following equivalent represenations:

P (t) =

[
uY
x (t,XY (t), AY (t)) + ∆̄X(t) · uY

y (t,XY (t), AY (t))

]
·X

+

[
uY (t,XY (t), AY (t))−XY (t) · uY

x (t,XY (t), AY (t))

+
(
∆̄Y (t)− AY (t)

)
· uY

y (t,XY (t), AY (t))

]
· Y, (3.35)

P (t) =

[
uX (t, YX(t), AX(t))− YX(t) · uX

x (t, YX(t), AX(t))

+
(
∆̄X(t)− AX(t)

)
· uX

y (t, YX(t), AX(t))

]
·X

+

[
uX
x (t, YX(t), AX(t)) + ∆̄Y (t) · uX

y (t, YX(t), AX(t))

]
· Y, (3.36)
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P (t) =

[[
uA (t,XA(t), YA(t))− uA

y (t,XA(t), YA(t)) · YA(t)
]
· ∆̄X(t)

+ uA
x (t,XA(t), YA(t)) ·

[
1− ∆̄X(t)XA(t)

]]
·X

+

[[
uA (t,XA(t), YA(t))− uA

x (t,XA(t), YA(t)) ·XA(t)
]
· ∆̄Y (t)

+ uA
y (t,XA(t), YA(t)) ·

[
1− ∆̄Y (t)YA(t)

]]
· Y. (3.37)

Proof: Let us find a hedge for the Asian option of the form

P (t) = ∆X(t) ·X +∆Y (t) · Y.

Using the fact that the process uY (t,XY (t), AY (t)) has a zero dt term, we get

duY = uY
x · dXY (t) + uY

y · dAY (t)

=
(
uY
x + ∆̄X(t)uY

y

)
· dXY (t).

Thus the hedging position in the asset X is given by the formula

∆X (t,XY (t), AY (t)) = uY
x (t,XY (t), AY (t)) + ∆̄X(t)uY

y (t,XY (t), AY (t)) . (3.38)

Similarly, using the evolution of uX (t, YX(t), AX(t))

duX = uX
x · dYX(t) + uX

y · dAX(t)

=
(
uX
x + ∆̄Y (t) · uX

y

)
· dYX(t),

we get the following representation of the hedging position in the asset Y :

∆Y (t, YX(t), AX(t)) = uX
x (t, YX(t), AX(t)) + ∆̄Y (t)uX

y (t, YX(t), AX(t)) . (3.39)

Therefore the hedging portfolio takes the following form

P (t) =
[
uY
x (t,XY (t), AY (t)) + ∆̄X(t)uY

y (t,XY (t), AY (t))
]
·X

+
[
uX
x (t, YX(t), AX(t)) + ∆̄Y (t)uX

y (t, YX(t), AX(t))
]
· Y. (3.40)

We can also rewrite the above representation of the hedging portfolio using the
function uY of the function uX only. From

uX(t, x, y) = uY (t, 1
x
, y
x
) · x,

we get
uX
x (t, x, y) = uY (t, 1

x
, y
x
)− 1

x
· uY

x (t,
1
x
, y
x
)− y

x
· uY

y (t,
1
x
, y
x
),

and
uX
y (t, x, y) = uY

y (t,
1
x
, y
x
).
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Substituting into (3.40), we get

P (t) =

[
uY
x (t,XY (t), AY (t)) + ∆̄X(t) · uY

y (t,XY (t), AY (t))

]
·X

+

[
uY (t,XY (t), AY (t))−XY (t) · uY

x (t,XY (t), AY (t))

+
(
∆̄Y (t)− AY (t)

)
· uY

y (t,XY (t), AY (t))

]
· Y.

Similarly, from
uY (t, x, y) = uX(t, 1

x
, y
x
) · x,

we get
uY
x (t, x, y) = uX(t, 1

x
, y
x
)− 1

x
· uX

x (t,
1
x
, y
x
)− y

x
· uX

y (t,
1
x
, y
x
),

and
uY
y (t, x, y) = uX

y (t,
1
x
, y
x
).

Substituting to (3.40), we get

P (t) =

[
uX (t, YX(t), AX(t))− YX(t) · uX

x (t, YX(t), AX(t))

+
(
∆̄X(t)− AX(t)

)
· uX

y (t, YX(t), AX(t))

]
·X

+

[
uX
x (t, YX(t), AX(t)) + ∆̄Y (t) · uX

y (t, YX(t), AX(t))

]
· Y.

Finally, from
duA = uA

x dXA(t) + uA
y dYA(t),

we get a hedging portfolio representation of the form

P (t) = uA · A(t) = uA
x ·X(t) + uA

y · Y (t)

+
[
uA −XA(t) · uA

x − YA(t) · uA
y

]
· A(t).

Using the fact that A(t) = ∆̄X(t) ·X + ∆̄Y (t) · Y , we conclude that

P (t) =

[[
uA (t,XA(t), YA(t))− uA

y (t,XA(t), YA(t)) · YA(t)
]
· ∆̄X(t)

+ uA
x (t,XA(t), YA(t)) ·

[
1− ∆̄X(t)XA(t)

]]
·X

+

[[
uA (t,XA(t), YA(t))− uA

x (t,XA(t), YA(t)) ·XA(t)
]
· ∆̄Y (t)

+ uA
y (t,XA(t), YA(t)) ·

[
1− ∆̄Y (t)YA(t)

]]
· Y.
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3.3 Reduction of the Pricing Equations
When the Asian option contract depends only on the assets A and X, such as in
the case of an Asian call option with a floating strike that has a payoff (A(T ) −
K · X(T ))+, the option pricing problem depends only on the price process AX(t),
and thus the corresponding partial differential equations depend only on one spatial
variable. In this case the pricing equation (3.27) does not depend on the variable x
that represents the price YX(t) that is irrelevant to this problem, and thus it reduces
to the partial differential equation

uX
t (t, y) +

1
2
σ2(y − ∆̄X(t))2uX

yy(t, y) = 0, (3.41)

with the terminal condition
uX(T, y) = fX(y), (3.42)

where
uX(t, y) = EX [fX(AX(T ))|AX(t) = y].

We keep the notation y (as opposed to x) for the only spatial variable in order to
be consistent with the pricing problem (3.27). Similarly, when A is a reference asset
and the payoff depends only on XA(T ), the pricing equation (3.29) does not depend
on the variable y, and the partial differential equation simplifies to

uA
t (t, x) +

1
2
σ2x2[x∆̄X(t)− 1]2 · uA

xx(t, x) = 0, (3.43)

with the terminal condition
uA(T, x) = fA(x), (3.44)

where
uA(t, x) = EA[fA(XA(T ))|XA(t) = x].

The formulas for the hedging portfolio given in Equations (3.36) and (3.37) also
simplify to

P (t) =

[
uX (t, AX(t)) +

(
∆̄X(t)− AX(t)

)
· uX

y (t, AX(t))

]
·X

+

[
∆̄Y (t) · uX

y (t, AX(t))

]
· Y, (3.45)

and

P (t) =

[
∆̄X(t) · uA (t,XA(t)) + uA

x (t,XA(t)) ·
[
1− ∆̄X(t)XA(t)

]]
·X

+

[
∆̄Y (t) ·

[
uA (t,XA(t))− uA

x (t,XA(t)) ·XA(t)
]]

· Y. (3.46)
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The pricing equation (3.25) does not reduce in this case, and it is strictly suboptimal
to employ it for pricing Asian options that do not depend on the asset Y .

When the contract depends on the assets A and Y only, such as in the case of
the Asian call option with a fixed strike that has a payoff (A(T )−K · Y (T ))+, the
reduction of the pricing equations is possible only in special cases, not in general.
The reason is that the evolution of the price process AY (t) depends on both prices
AY (t) and XY (t) (in contrast to the evolution of the price AX(t) that depends only
on itself), and thus the partial differential equation (3.25) cannot be reduced to only
one spatial variable. However, when the payoff of the contract is only a function of
the asset F known as the Asian forward defined as

F (T ) = A(T )−K1Y (T ), (3.47)

a reduction of the pricing problem similar to Equation (3.41) is possible when the
asset X is taken as a numeraire. Consider a contract that pays off fX(FX(T )) units
of an asset X, where K1 in (3.47) is a constant. When the payoff function is given
by fX(x) = (x−K2)

+, the contract that corresponds to it is

[FX(T )−K2]
+ ·X = (AX(T )−K1YX(T )−K2)

+ ·X
= (A(T )−K1Y (T )−K2X(T ))+,

which covers both the floating strike option when K1 = 0, and the fixed strike option
when K2 = 0.

Let us define
uX(t, x) = EX [fX(FX(T ))|FX(t) = x].

In order to get the partial differential equation for uX , we need to determine dFX(t).
Note that

dFX(t) = d [AX(t)−K1YX(t)]

=
[
∆̄Y (t)−K1

]
· dYX(t)

=
[
AY (t)− ∆̄X(t) ·XY (t)−K1

]
· dYX(t)

=
[
AY (t)− ∆̄X(t) ·XY (t)−K1

]
σYX(t)dW

X(t)

= σ
[
[AX(t)−K1YX(t)]− ∆̄X(t)

]
dWX(t)

= σ
[
FX(t)− ∆̄X(t)

]
dWX(t).

Therefore
dFX(t) = σ

[
FX(t)− ∆̄X(t)

]
dWX(t),

which is identical to an evolution of the average asset A. Therefore the pricing
partial differential equation takes the same form as (3.41):

uX
t (t, x) +

1
2
σ2(x− ∆̄X(t))2uX

xx(t, x) = 0 (3.48)

with the terminal condition
uX(T, x) = fX(x). (3.49)
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Thus we can also efficiently solve the Asian call option with the fixed strike using
the above partial differential equation. Note the important difference from Equation
(3.41). In the previous case, the basic price process was AX(t), the price of the
average asset A in terms of the reference asset X. The partial differential equation
(3.48) applies to the price process FX(t), the price of the Asian forward F in terms
of the reference asset X. The corresponding spatial variables are shifted by the
factor K1YX(t) as

AX(t)− FX(t) = AX(t)− AX(t) +K1YX(t) = K1YX(t).

Note that while AX(t) is always positive, FX(t) can become zero or even become
negative, and thus the Asian forward F cannot be used as a reference asset for the
purposes of pricing. Thus in contrast to the case of the average asset A, there is no
partial differential equation where F serves as a reference asset.

The hedging portfolio agrees with (3.45), but the value of AX(t) is replaced by
FX(t):

P (t) =

[
uX (t, FX(t)) +

(
∆̄X(t)− FX(t)

)
· uX

x (t, FX(t))

]
·X

+

[
∆̄Y (t) · uX

x (t, FX(t))

]
· Y. (3.50)

References and Further Reading
The approach to Asian options presented in this text extends previous works of
Vecer [79, 80] which used the average asset as the natural asset for pricing. The
characterization of the Asian option price with partial differential equations was
known even earlier; see for instance Rogers and Shi [71], but the asset that was
considered for pricing was the running average which is an arbitrage asset, and
the corresponding partial differential equation had extra terms that appear in the
connection with the time value of the running average. Use of the average asset for
pricing Asian options is not limited to the geometric Brownian motion. It is possible
to generalize this approach to other martingale models of the price as shown by
Fouque and Han [27] for stochastic volatility or for models with jumps as shown in
Vecer and Xu [84], and later by Bayraktar and Xing [5]. Hoogland and Neumann
[41] and Henderson and Wojakowski [38] pointed out the symmetries between the
fixed and the floating strike Asian options. Other relevant papers include Geman
and Yor [31], Curran [17], Linetsky [56], Dufresne [24], D’Halluin et al. [21], Milevsky
and Posner [63], or Nielsen and Sandmann [66].
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