
Charles University

Faculty of Mathematics and Physics

Habilitation Thesis

2018 Lubomír Bulej

Charles University

Faculty of Mathematics and Physics

Habilitation Thesis

Lubomír Bulej

Performance Awareness and
Observability on Modern Platforms

Computer Science, Software Systems

Prague, Czech Republic 2018

Contents

1 Introduction 1

1.1 Problem Statement and Goals . 3

1.2 Structure of the Text . 4

2 Overview of Selected Articles 5

2.1 Performance Testing and Performance Awareness 6

2.2 Performance Aspects of Modern Platforms 9

2.3 Construction of Dynamic Program Analysis Tools 16

2.4 Observability on Modern Managed Platforms 18

3 Unit Testing Performance with Stochastic Performance Logic 25

4 Robust Partial-Load Experiments with Showstopper 27

5 On the Limits of Modeling Generational Garbage Collector Performance 29

6 An Empirical Study on Deoptimization in the Graal Compiler 31

7 Workload Characterization of JVM Languages 33

8 EnablingModularity and Re-use in Dynamic ProgramAnalysis Tools for

the JVM 35

9 Comprehensive Multiplatfrom Dynamic Program Analysis for Java and

Android 37

10 Accurate Profiling in the Presence of Dynamic Compilation 39

11 Conclusion and Future Research 41

11.1 Performance Testing . 41

11.2 Dynamic Program Analysis . 43

References 45

Acknowledgment

This thesis presents selected results of research in performance evaluation, performance

modeling, and dynamic program analysis. The research was carried out during my stay

at the Department of Distributed and Dependable Systems of the Faculty of Mathematics

and Physics of the Charles University in Prague, Czech Republic, and the Faculty of

Informatics of Università della Svizzera italiana (USI) in Lugano, Switzerland.

The research results presented in the thesis are necessarily fruits of a collective, rather

than individual effort, and the published papers are but a tip of an iceberg—the results are

backed by software prototypes, use cases, and hundreds of days executing experiments

and collecting and processing data. Due to complexity of modern software systems and

reliance on thorough experimental evaluation, it would be impossible for an individual

to complete such work alone while the topic is still relevant. Therefore, I would like to

express my gratitude to my superiors and colleagues, with whom I had the pleasure and

privilege of working in the last decade (or more), and who have made this work possible.

František Plášil, Petr Tůma, and Tomáš Bureš deserve special credit for (among

other things) shouldering the heavy burden of establishing, leading, and sustaining our

department. Thanks go to my collaborators—Vlastimil Babka, Martin Děcký, Ilias

Gerostathopoulos, Petr Hnětynka, Viliam Holub, Vojtěch Horký, Pavel Ježek, Tomáš

Kalibera, Jaroslav Keznikl, Jan Kofroň, Jaroslav Kotrč, Alena Koubková, Petr Kubát,

Peter Libič, Lukáš Marek, Pavel Parízek, Andrej Podzimek, Petr Stefan, Ondřej Šerý, and

Tomáš Trojánek, as well as to the current and former members of our department—Paolo

Arcaini, Rima Al Ali, Martin Blicha, Jakub Daniel, Vlastimil Dort, David Hauzar, Pavel

Jančík, Michal Kit, Filip Krijt, Michal Malohlava, Vladimír Matěna, Tomáš Pop, Viliam

Šimko, Dominik Škoda, Antonín Steinhouser, Jiří Vinárek, and many others.

Walter Binder deserves a special credit for welcoming me to his research group at

USI in Lugano and for the (now years long) fruitful cooperation. My thanks go to the

current and former members of the Dynamic Analysis Group— Danilo Ansaloni, Omar

Javed, Steven Kell, Andrea Rosà, Luca Salucci, Aibek Sarimbekov, Sebastiano Spicuglia,

Haiyang Sun, Alex Villazón, and Yudi Zheng, as well as to our close collaborators—Lydia

Y. Chen, Thomas Gross, Matthias Hauswirth, Yao Li, Achille Peternier, Zhengwei Qi,

Nathan Ricci, Andreas Sewe, Lukas Stadler, and Thomas Würthinger.

I also gratefully acknowledge the international and national sources of funding which

made this work possible. In particular, these are EU FP7 IP 605442 (ASHLEY), EU FP7

FET 257414 (ASCENS), EU FP7 STREP 215013 (Q-ImPrESS), Sciex-NMSCH 11.109

(DYNASTY), SNF 136225 (FAN), MŠMT INTER-EUREKA LTE117003 (ESTAB-

LISH), GAČR P202/10/J042 (FERDINAND), GAČR 201/09/H057 (Res Informatica),

and Charles University institutional funding (SVV).

1
Introduction

“Software is eating the world.” This now-famous adage [1] is a testament to the

importance of software in a modern world. Software controls the engines in our cars,

pilots planes, provides access to vast amounts of information, collects, mines, and exploits

behavioral data from millions of users, stimulates and influences our social behavior,

powers platforms that connect buyers and sellers (or consumers and advertisers), or

provides citizens with access to state services.

Our reliance on software comes with expectations. The software systems we rely

upon are often required to interact with a huge number of users, to perform their function

without error, and to respond in a timely fashion. Failing that often prevents users or

consumers from accessing the advertised services [17] or products [18], and in more

serious circumstances, prevents citizens from accessing vital services [33, 58, 59].

Meeting these expectations is difficult, because software is notoriously difficult to

develop. Not by accident, but rather as a consequence of what software is. Software

ranks among the most complex human-engineered artifacts, yet contains very little

redundancy—similarities are transformed into new concepts to avoid duplication. Soft-

ware is infinitely malleable and has to be continuously adapted to conform to ever-

changing requirements during its (very long) lifetime. Software is invisible and manifests

itself only through behavior resulting from interactions among thousands of concepts

captured in millions of lines of code at many different levels of abstraction. Software

is discontinuous—a single erroneous statement may cause the system to fail. In other

words, difficulty is inherent to software—there is no silver bullet [7, 48].

Many development processes for general-purpose software systems therefore focus

primarily on managing complexity so as to deliver correctly functioning software on

time [57, 4]. Other aspects of software design and construction, such as performance,

which is an important aspect of the overall user experience, are considered to be secondary

concerns that only need to be dealt with if they are found unsatisfactory. Even though in

software-intensive systems failures are more likely to be caused by performance issues

than by a faulty implementation of some features [60, 20], this approach to performance

is actually a recommended best practice, succinctly captured as another adage known to

most developers: “Premature optimization is the root of all evil.”

Performance of computer systems is difficult to predict, which also applies to impact

of any code changes intended to improve performance. It is also commonly accepted

that developers are mostly wrong about performance if they just follow their instincts

1

1. Introduction

or hunches. An experimental study by Horký et al. suggests that developers only

“see” performance when they consciously decide to investigate it, but often introduce

code patterns or code modifications based on performance assumptions that may be

incorrect, because they are not based on actual performance observations [24]. Given

these circumstances and the complexity of software, the idea of supporting performance-

related design and code changes with evidence has a lot of merit.

But software performance evaluation is surprisingly difficult to do correctly [8, 42, 5].

It may intrude on the code and development work flow, requires deeper understanding

of the execution platform to ensure that the performance measurement code actually

observes and measures the right thing, and interpreting the results requires at least some

familiarity with statistical hypothesis testing.

Considering that all this effort is not likely to provide immediate benefits, it is not

surprising that the old adage (with the word “premature” left out) may have become

an excuse for completely ignoring performance aspects of software, never mind the

difference between (premature) optimization and frugal use of resources [25].

Where and when did it all go wrong? It appears that it has been going on for quite some

time. In his 1974 paper [34], from which the adage originates, Donald E. Knuth was

indeed cautioning against micro-optimizations, but also suggesting that good practice is

to understand the system and its performance well enough to recognize which parts are

critical, so that performance is not given up accidentally or through sloppiness:

We should forget about small efficiencies, say about 97% of the time: pre-

mature optimization is the root of all evil. Yet we should not pass up our

opportunities in that critical 3%.

He also notes that “in established engineering disciplines, 12% performance improve-

ment, easily obtained, is never considered marginal, so why would so many people

pronounce it insignificant?” This would suggest that treating performance as a second-

level concern (if at all) is not entirely new.

We can conjecture that because advances in computer hardware have been steadily

supplying the software industry with “free” performance, dealing with performance in

software design simply was not economical. As software grew in scale and complexity,

performance was a problem being solved mainly by hardware. Performance for the

sake of efficiency did not make economical sense either, because the energy costs of

computing were not an issue (or at least a research topic) until recently. The established

engineering disciplines did not have this luxury.

Another potentially contributing factor is that the complexity and performance of

software is no longer dominated by its core algorithms and data structures, which a

single person or a small team could understand completely. The complexity of large

software-intensive systems is dominated by scale and architecture, and the behavior is a

result of interactions among entities that number in hundreds and thousands. Even though

software behavior is precisely defined in its source code, the scale, complexity, and often

undocumented intent make the code difficult to comprehend. No single developer can

even hope to read, let alone understand, all the code that makes up a software system,

which is why developers have to rely (heavily) on abstraction, which has a tendency to

hide details that are not related to structure and functional correctness.

2

1. Introduction

How can we even identify the “critical 3%” in such systems, when those 3% can

comprise thousands of lines of code spread around libraries and frameworks, passing

through many layers of a modern software stack? Even profiling such a system (if at

all possible) might not provide an actionable result, because the execution time will be

distributed among hundreds of methods, neither of which will stand out in the profile.

In contrast, if we consider the development of real-time systems, where meeting

real-time performance requirements is essential, we can observe that performance is

a primary design concern which permeates the development process and the resulting

system as a whole. Consequently, performance must be designed into the system and

strictly controlled throughout its construction—it cannot be addressed locally or “added”

as an afterthought.

However, adopting the real-time system development process for developing general-

purpose systems is clearly not possible. The size, complexity, and the height of the

software stack used to build general-purpose software-intensive systems typically dwarfs

that of the special-purpose mission- or safety-critical real-time systems. The level of

control that can be exerted over individual elements of real-time systems either does not

scale, or is not possible at all, in addition to performance requirements being usually

much less precise (if any), and not easily expressed in terms of latencies or deadlines.

The productivity of developers during development is also an important aspect. Where

development of real-time systems limits flexibility to maintain control over performance

(by avoiding any features of modern runtime platforms, such as just-in-time compilation

or automatic memory management, unless their performance impact can be sufficiently

controlled), development of general-purpose systems limits the control over performance

to maintain development flexibility (by promoting the use of sophisticated frameworks

and advanced runtime platforms to manage complexity and increase productivity).

Because introducing tight control over performance during development of general-

purpose systems is impractical, we believe that we need to help developers to acquire

certain level of performance awareness. This entails the ability to observe performance

in a systematic way and to act upon these observations, as well as gaining an intuitive

understanding of performance-related aspects of the underlying platform. We believe

that increased performance awareness will improve our ability to construct performant

software-intensive systems without relying on full control over all performance-relevant

aspects of the system.

1.1 Problem Statement and Goals

In summary, performance is an important aspect of software systems, but unlike correct-

ness, performance is largely “invisible” to developers because it is difficult to observe and

reason about. Instead of having developers making design decisions based on intuition

and incorrect assumptions about performance, the recommended software engineering

practice is to deal with performance only if there is evidence that it is inadequate.

However, like good software design, performance is a result of a process—not an

isolated feature. The process relies on developers being able to make good design

3

1. Introduction

decisions based on systematic observation and reasoning about performance, which

is difficult due to the complexity of the underlying hardware and software execution

platforms, and of the software system itself.

Consequently, the general goal of the research presented in this thesis is to make

it easier to understand performance aspects of modern execution platforms, to make

software running on those platforms more observable, and to make performance “visible”

to developers so that it can be managed.

In particular, this thesis provides an overview of related contributions in the fields

of computer system performance evaluation and dynamic program analysis. Specific

topics include performance testing and performance awareness, performance aspects

of modern platforms, construction of dynamic program analyses, and observability of

modern managed platforms.

1.2 Structure of the Text

The thesis is structured as a commented collection of research papers. Chapter 1 provides

a unifying context for the research presented, and Chapter 2 provides an overview of

the papers included in the thesis. The overview is split into four topics covering two

broader research areas, all in some way connected to observing, evaluating, and analyzing

software systems. For each topic, the overview provides additional context for the papers

included in the thesis and references related papers published by the author.

The papers making up the collection are included in their original form as Chap-

ters 3–10. Each chapter starts with a full reference to the paper and cover page of the

proceedings/journal where the paper has been published.

The conclusion focused primarily on future research directions is given in Chapter 11.

4

2
Overview of Selected Articles

The collection presented in this thesis comprises 8 articles, published in international

scientific journals and in proceedings of international peer-reviewed conferences. The

articles were selected to provide a representative (not exhaustive) overview of the author’s

research activities and achievements in the last 5 years.

Topically, the articles span two broader, but related, research areas. The first area

comprises topics related to software performance, and represents work conducted mainly

at the Department of Distributed andDependable Systems of Charles University in Prague,

Czech Republic. The second area comprises topics related to dynamic program analysis

on managed platforms, and represents work conducted mainly at (or in cooperation with)

the Faculty of Informatics of Università della Svizzera italiana in Lugano, Switzerland.

The recurring and unifying theme in the selected articles concerns observation, analysis

and understanding of complex software systems executing on modern platforms. In all

cases, the ultimate goal is to provide software developers and operators with methods

and means to better understand the behavior of a software system at runtime, and thus

contribute to making well-founded decisions during software development and operation.

Each article corresponds to one chapter of the thesis as follows:

[Ch.3] L. Bulej, T. Bureš, V. Horký, J. Kotrč, L. Marek, T. Trojánek, and P. Tůma:

“Unit Testing Performance with Stochastic Performance Logic”. In Au-

tomated Software Engineering 24.1 (2017), pp. 139–187. ISSN: 0928-8910,

1573-7535. DOI: 10.1007/s10515-015-0188-0

[Ch.4] A. Podzimek, L. Bulej, L. Y. Chen, W. Binder, and P. Tůma: “Robust Partial-

Load Experiments with Showstopper”. In Future Generation Computer

Systems 64 (2016), pp. 15–38. ISSN: 0167-739X, 1872-7115. DOI: 10.1016/

j.future.2016.04.020

[Ch.5] P. Libič, L. Bulej, V. Horký, and P. Tůma: “On the Limits of Modeling

Generational Garbage Collector Performance”. In Proc. 5th ACM/SPEC

Intl. Conf. on Performance Engineering (ICPE). ACM, 2014, pp. 15–26.

DOI: 10.1145/2568088.2568097

[Ch.6] Y. Zheng, L. Bulej, and W. Binder: “An Empirical Study on Deoptimiza-

tion in the Graal Compiler”. In Proc. 31st European Conference on Object-

Oriented Programming (ECOOP). Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, 2017, 30:1–30:30. DOI: 10.4230/LIPIcs.ECOOP.2017.30

5

http://dx.doi.org/10.1007/s10515-015-0188-0
http://dx.doi.org/10.1016/j.future.2016.04.020
http://dx.doi.org/10.1016/j.future.2016.04.020
http://dx.doi.org/10.1145/2568088.2568097
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.30

2. Overview of Selected Articles

[Ch.7] A. Sarimbekov, L. Stadler, L. Bulej, A. Sewe, A. Podzimek, Y. Zheng, and W.

Binder: “Workload Characterization of JVM Languages”. In Software:

Practice and Experience 46.8 (2016), pp. 1053–1089. ISSN: 0038-0644,

1097-024X. DOI: 10.1002/spe.2337

[Ch.8] D. Ansaloni, S. Kell, Y. Zheng, L. Bulej, W. Binder, and P. Tůma: “Enabling

Modularity and Reuse in Dynamic Program Analysis Tools for the Java

Virtual Machine”. In Proc. 27th European Conference on Object-Oriented

Programming (ECOOP). LNCS 7920. Springer, 2013, pp. 352–377. DOI:

10.1007/978-3-642-39038-8_15

[Ch.9] Y. Zheng, S. Kell, L. Bulej, H. Sun, and W. Binder: “Comprehensive Multi-

Platform Dynamic Program Analysis for Java and Android”. In IEEE

Software 33.4 (2016), pp. 55–63. ISSN: 0740-7459 1937-4194. DOI: 10.

1109/MS.2015.151

[Ch.10] Y. Zheng, L. Bulej, and W. Binder: “Accurate Profiling in the Presence

of Dynamic Compilation”. In Proc. 30th ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA). ACM, 2015, pp. 433–450. DOI: 10.1145/2814270.

2814281

The article in Chapter 10 received aDistinguished Paper Award as well as an endorsement

from the Artifact Evaluation Committee for having submitted an easy-to-use, well-

documented, consistent, and complete artifact at the OOPSLA 2015 conference, one

of the top publication venues (CORE A*) in the area of programming languages and

software systems. The journal article in Chapter 4 is an extended version of an article

which received the Best Paper Runner-Up Award at the CCGRID 2015 conference, a

premier venue (CORE A) in the fields of cluster, cloud and grid computing. The article

in Chapter 5 received the Best Research Paper Award at the ICPE 2014 conference, a

selective venue in the field of performance engineering.

The article in Chapter 9 has been published in the IEEE Software magazine. Even

though the magazine is not strictly a scientific journal, it aims to be the best source of

reliable and useful information for leading software practitioners and its technical articles

are peer-reviewed to ensure they offer practical and reliable ideas and techniques to a

broad audience of readers. This publication was included in this thesis to demonstrate a

broader perspective and applicability of the research work. The article itself summarizes

results from peer-reviewed articles published at the GPCE 2013 and MODULARITY

2015 conferences, and includes additional case studies.

In the following sections we provide a short overview of each of the topics and put the

articles included in this thesis into a broader research context, with references to other

articles that contribute to a particular topic.

2.1 Performance Testing and Performance Awareness

This topic represents the tip of a long-term research direction focused on automating

discovery of performance problems in software systems. This research has been ongoing

6

http://dx.doi.org/10.1002/spe.2337
http://dx.doi.org/10.1007/978-3-642-39038-8_15
http://dx.doi.org/10.1109/MS.2015.151
http://dx.doi.org/10.1109/MS.2015.151
http://dx.doi.org/10.1145/2814270.2814281
http://dx.doi.org/10.1145/2814270.2814281

2. Overview of Selected Articles

for almost 15 years, evolving from the original concept of regression benchmarking to

the more general concepts of performance testing and performance awareness.

Inspired by our work on performance evaluation of CORBA middleware within the

scope of a project with a major industrial partner (Borland International, Inc.), we pro-

posed regression benchmarking as a method for detecting performance regressions during

middleware development [15, 26, 16]. The general idea behind regression benchmarking

is to execute a set of benchmarks with each version of a particular software system, and

analyze the results to identify potential performance regressions between consecutive

versions. While benchmarks have been commonly used to evaluate performance of

software systems, the important distinction was the requirement for full automation

of the whole process, including analysis of the results, which was intended to enable

incorporating regression benchmarking into software development practice.

Our effort to automate regression benchmarking uncovered a great deal of obstacles

and challenges, including among others the design of a fully automated and resilient envi-

ronment for running benchmarks and performance tests [28, 30], detecting performance

changes when faced with non-determinism and random biases in performance data [29,

27], or efficient use of resources when collecting performance data from benchmarking

experiments [26, 31]. Other researchers have stressed the need for automated approaches

to discovering performance regressions [21, 22], or attempted to tackle the problem of

identifying the actual code changes that caused a performance regression [23].

Some of the challenges remain open to this day and new challenges have surfaced,

reflecting changes in software development practice. Faced with increasing complexity

of software systems, modern software development has embraced software testing to

ensure that software works as expected. Software undergoes testing at different levels

(with different goals and different stakeholders), and is commonly structured into a test

pyramid [19] with a foundation made of many low-level unit tests which ensure that the

basic software building blocks can be relied upon. An important secondary benefit of

unit testing is that it makes it usually easier to adapt software in response to changing

requirements, because developers are less afraid to make changes if they know that low-

level requirements have been captured in unit test code. Even more importantly though,

unit testing creates a demand for better design which is more amenable to changes—

covering substantial portion of software with unit tests requires the software to be testable,

which in turn requires a design that is more flexible and less coupled.

In this context, we can treat regression benchmarking as a form of software testing

focusing on performance instead of functional correctness. However, while both kinds

of testing fall under a common umbrella, there are significant differences that provide

only limited room for analogy.

In both cases, the tests need to be written by developers, but the execution and evalu-

ation of functional unit tests can be easily automated and integrated into development

process, because the binary outcome of a functional unit test is determined by the test

itself. This simplicity and the proven benefits—both primary and secondary—are the

major factors in the widespread adoption of unit testing as a best practice in software

development.

In contrast, performance tests are potentially more difficult to construct and execute,

7

2. Overview of Selected Articles

and their results are much more difficult to evaluate automatically, because the test con-

dition is not evaluated by the test code. Instead, evaluating the outcome of performance

tests requires analyzing the data collected during execution of the test workload. To

avoid misleading results due to interference, the test workload needs to be run multiple

times, necessitating probabilistic rather than deterministic evaluation. Yet automating

statistical analysis and hypothesis testing on such data is difficult, because the underlying

data distributions are typically unknown, often long-tailed and/or multi-modal, with

conditional variance coming from multiple sources.

None of these challenges exist in functional unit testing, but they are inherent to

performance testing, and need to be addressed before we can make performance testing

similarly easy to deploy and adopt as functional testing. This brings us to the article

included in Chapter 3, which presents a performance testing framework that addresses

three major challenges associated with unit testing performance.

The very first challenge encountered when constructing a performance unit test is the

specification of performance requirements, i.e., what performance is expected from the

system. Any test condition very much depends on the test scope. High-level end-to-end

performance requirements can be often naturally expressed using absolute time limits,

but these are much less practical for low-level performance unit tests that typically deal

with performance of individual methods. If the goal of performance unit testing is to

detect small (10% or less) changes in performance, the timing bounds need to be very

tight and independent of the underlying platform. This is very difficult to achieve with

fixed time limits, because not only is it difficult to determine how fast a particular method

should execute, but it is also difficult to scale the limits to account for tests executing on

different platforms.

To address this challenge, our approach relies on Stochastic Performance Logic, a

mathematical formalism for expressing performance requirements either in absolute

terms, or as relations between performance of multiple methods. Test conditions in form

of SPL formulas can be attached to individual methods, which allows the developer to

express performance-related assertions such as “future modifications of method m() must

not introduce performance degradation greater than 5% with respect to this version.”

The second challenge is related to the construction of performance tests. Because

performance unit tests are essentially micro-benchmarks, their construction is prone to

certain design pitfalls (typically giving the compiler the option of optimizing away the

code that is to be exercised) that can produce misleading results. To mitigate the risk of

flawed construction or test execution, our framework provides support for implementing

performance tests which are automatically executed and evaluated—the developer only

needs to provide code of the actual workload of interest.

The third challenge is related to test execution and data collection. While functional

unit tests can be executed in parallel, doing the same with performance unit tests would

produce invalid results due to interference between workloads. Even when executed on

a dedicated machine, various aspects of the operating system (process memory layout)

or the virtual machine (just-in-time compilation, garbage collection) can interfere with

the measurement or cause a random bias in the results obtained from a particular test

execution. To provide sufficiently representative measurements for automatic evaluation,

8

2. Overview of Selected Articles

the testing framework collects measurements from multiple test executions. Besides

increasing test execution time, this also requires the test conditions to be evaluated

probabilistically.

The SPL design reflects this requirement in that SPL formulas are interpreted using

statistical hypothesis testing on the measured data. We provide multiple interpretations

with different requirements on the measurement procedure, and allow the developer to

control the trade-off between test sensitivity, measurement cost, and false alarm rate

through adjustments to the test significance level.

In the context of performance testing, the SPL formalism can be also used to docu-

ment performance of a particular method implementation, or to document performance

expected from the environment or third party code. This leads us to the broader concept

of performance awareness, which can be understood as the ability to evaluate and reason

about performance of a software system and act in response to changes in its performance.

While the performance testing framework presented in the article is intended to enable

increased performance awareness among developers [9], we need not limit ourselves to

human actors—performance awareness may be an ability desired in software systems.

We have explored this research direction within the scope of the ASCENS project [62,

61], which focused on developing a coherent, integrated set of methods and tools to build

software for ensembles of autonomic components. In particular, we applied the SPL

formalism to support performance awareness and adaptive deployment in component-

based systems [12, 11, 10].

The article included in Chapter 3 combines and extends peer-reviewed material pub-

lished at international conferences to provide a comprehensive presentation of our per-

formance testing framework. Specifically, in addition to the basic definitions of the

SPL formalism and the basic SPL interpretations initially published in [14], the article

introduces new SPL interpretations that consider measurements from multiple runs, and

extends experimental evaluation from [24].

2.2 Performance Aspects of Modern Platforms

In addition to capturing and testing performance assumptions, increasing performance

awareness also relies on understanding of performance-related aspects of modern ex-

ecution platforms. These include both virtualized execution environments found in

data centers and virtual machine platforms with managed memory targeted by modern

programming languages. Articles included in Chapters 4–7 deal with various aspects

of modern platforms and provide basis for better understanding of their behavior with

respect to performance.

Specific aspects include impact of partial load on performance and energy efficiency of

different virtualization solutions (Chapter 4), performance impact of garbage collection

(Chapter 5) and deoptimization (Chapter 6) on managed platforms, as well as the effects

of workloads resulting from programs written in different languages targeting a single

managed execution platform (Chapter 7).

9

2. Overview of Selected Articles

Performance and Power Efficiency in Virtualized Environment

Historically, the goal of performance evaluation experiments was to determine the peak

performance a system can achieve at a particular task, with all resources at its disposal.

However, computer systems rarely run at 100% utilization—they are often provisioned

to handle bursts of workloads, at which time they work at full utilization, but most of the

time they consume energy while idling or working at low utilization. That would not be

a problem for a few servers, but large concentration of underutilized machines in data

centers has made power efficiency an important aspects of large-scale computing.

To increase utilization of servers (and thus improve power efficiency), it is necessary

to colocate multiple workloads on the same physical hardware, ideally in such a way that

the peak utilization periods for different workloads do not overlap. While it was always

possible to run multiple workloads on a single machine in the form of multiple processes,

this was not really feasible in multi-tenant environments—such as data centers—due to

security and many other logistical concerns. It was the virtualization and its widespread

adoption which really enabled colocating workloads from multiple tenants on a single

physical machine, thus increasing its utilization.

Even though virtualization potentially1 solves many of the security and logistical

problems, the sharing of the physical machines causes the colocated workloads to interact

in numerous ways that influence their performance. The multitude of possible resource

interactions are difficult to capture comprehensively, and the effects of the interactions are

difficult to predict. Research into methods aiming at reducing performance interference

and increasing power efficiency in workload colocation scenarios therefore requires

certain amount of abstraction to make the problems tractable. Yet to avoid a huge gap

between theoretical assumptions and real system behavior, it is also necessary to evaluate

the impact of those abstractions through experimental evaluation.

However, experimental evaluation in this context involves colocated virtual machines

with varying partial utilization levels, which is a bad match for the classic performance

evaluation techniques. Moreover, evaluating resource interactions in realistic conditions

is an expensive undertaking. Resource utilization depends on workload type in complex

ways and even if we can control the workload, it is not always clear what workload

intensity to use to achieve a particular resource utilization.

Similar to Section 2.1, the article included in Chapter 4 constitutes a comprehensive

presentation of our work on experimental evaluation of partially utilized systems—it

combines and extends previously published conference material, adding more depth to

existing results, and presenting entirely new experiments.

Specifically, the article presents Showstopper, a tool that addresses some of these chal-

lenges and enables systematic experimental evaluation with varying partial utilization of

shared resources. Given arbitrary concurrent workloads, Showstopper accurately controls

the utilization of a selected resource (processor utilization in our case) by controlling the

intensity of the workloads. This removes the need for implementing workload generation

harnesses with configurable workload intensity, and makes it possible to examine system

1Assuming that the underlying hardware is fundamentally secure and not susceptible, e.g., to recent

timing attacks (Meltdown, Spectre) on speculative features of modern CPUs.

10

2. Overview of Selected Articles

behavior at a particular utilization directly. The desired resource utilization can be either

constant, or follow a synthetic or recorded utilization trace. In addition to the basic

concepts and high-level architecture of Showstopper presented in [44, 47], the article

provides a detailed description of the architecture and a wider range of building blocks

that comprise the modular control algorithm at the heart of Showstopper. Besides tool

improvements in form of support for conducting measurements inside Linux LXC con-

tainers in addition to physical machines, the article also presents a quantitative evaluation

of the accuracy of different configurations of the load-control algorithm.

To demonstrate how Showstopper can be used to explore the relationship between

processor utilization and application throughput, the article presents the results of a study

which illustrates the complex nature of this relationship, which is platform dependent,

often non-linear, and in some cases even non-monotonic. In extension of prior work

on transforming load traces to throughput measurements [44], the article introduces

fast-forwarding of resource utilization traces to enable replaying traces captured on

real systems at a faster pace. Subsequent evaluation of the effect of fast-forwarding on

the accuracy of application throughput measurements shows that in most cases, fast-

forwarding a trace does not have a significant impact on the average system throughput,

which enables obtaining measurements at a fraction of the original trace duration.

Finally, the article presents the results of an extensive study of the impact of CPU

pinning (restricting workloads to specific processors) on the performance and energy

efficiency for pairs of colocated workloads. The experiments with different CPU pinning

configurations at varying levels of background load expose a trade-off between workload

isolation and overall system performance, but more importantly, show that the perfor-

mance increase due to pinning configuration at certain background loads increases the

overall energy efficiency of the system.

The study of the impact of CPU pinning on energy efficiency was originally presented

in [45] and received the Best Paper Runner-Up Award at the International Symposium

on Cluster, Cloud and Grid Computing (CCGRID 2015), a premier (CORE A) venue

in the field of cluster, grid, and cloud computing. The article complements the original

results with a study of the overhead observed in the different colocation solutions (KVM

virtual machines and LXC containers) at partial loads.

Impact of Garbage Collector on Performance

Garbage collector (GC) is an essential component of managed runtime platforms and

plays a major role in the overall system performance. Developing software to run on

managed platforms with automatic memory management generally increases developers’

productivity and lowers the rate of memory-related programming errors. In contrast

though, performance engineers have difficulties capturing the overhead of garbage

collection in their performance models, because it is decoupled from program code and

is asynchronous with respect to program execution. As a result, garbage collection is

often modeled as a constant factor for which a model needs to be calibrated.

Our research on garbage collector (GC) performance modeling resulted from our work

in the scope of the Q-ImPrESS project, during which we focused on modeling quality

11

2. Overview of Selected Articles

attributes in service-oriented systems. Specifically, our task was to quantify how the

sharing of various hardware and software resources among components making up such

systems impacts their quality attributes [3]. Because enterprise systems often run on the

Oracle Java Virtual Machine (JVM) platform, the garbage-collected heap was one of the

resources the sharing of which had to be considered and investigated in addition to other

resources, such as processors and their caches, system memory, and file systems.

We therefore investigated the issues related to modeling GC overhead in [37], focusing

on whether the overhead warrants explicit attention in service performance modeling,

whether the overhead can be captured as a calibrated model parameter, and whether it

depends on external factors that could be captured in performance models. The results

have shown that anomalous GC overhead can account for tens of percent of execution

time, indicating that significant differences between modeled and observed performance

can occur due to the GC overhead. In addition, besides memory requirements (GC

overhead is sensitive to low-memory conditions), we identified the allocation speed and

the lifetimes of allocated objects as prominent factors that need to be known if the GC

overhead is to be modeled at all—even using a generic model that does not rely on too

many implementation details.

There are many GC implementations, but none that would work best for all workloads

in all scenarios. Platforms such as Oracle HotSpot JVM actually provide multiple GC

implementations and allow the operator to choose a particular GC and tune it to the

workload at hand. However, due to the complex nature of interactions between the

application and the GC, this is a trial-and-error process for which there are only rough

guidelines. The situation is even worse if we take into account developers, who are

expected to treat the GC as a black box, because the implementation is complex and can

change between platform implementations. Developers feel (or are made) responsible for

performance, but lack the means to relate application-level performance and allocation

behavior to GC performance.

The article included in Chapter 5 therefore investigates GC performance from the

perspective of a developer with basic knowledge knowledge of GC principles (but not

the internals of a particular GC implementation). The goal is to determine whether it is

possible to relate application-level performance to GC performance and vice-versa based

on inputs characterizing application’s object allocation and retention behavior.

To this end, we define simplified models of a one-generation and two-generation GC—

models that a developer could reasonably form based on available information—and

compare the performance behavior of a real GC implementation with the simplified

models implemented in a simulator. We evaluate the prediction accuracy of these models

on a variety of workloads, and perform sensitivity analysis with respect to the input

describing the application workload.

We show that given an almost-complete information about application behavior in form

of allocation traces with object sizes, lifetimes, and reference updates, the simplified GC

model can fairly accurately predict frequency of minor collections in a two-generation

GC. The prediction quality for minor collections remains stable across workloads, and

across inputs ranging from full traces to probabilistic distributions of object sizes and

lifetimes.

12

2. Overview of Selected Articles

However, the prediction of the frequency of full collections turns out to be mediocre

(even when using an allocation trace with all information as simulator input), and grad-

ually deteriorates when using less accurate (summarized) description of application’s

allocation behavior. Ultimately, the prediction quality reflects the ability of the GC model

to evaluate the GC triggering conditions, the details of which are either implementation-

specific or go beyond what we consider implementation-agnostic GC principles captured

in the simplified models. We show that from the perspective of a developer, the GC

implementation found in an industrially relevant real-world managed platform behaves in

a very non-linear fashion, making it very difficult to relate workload changes to changes

in GC performance.

While investigating the causes of such behavior, we point out drawbacks that plague

garbage collection evaluation methods targeting GC implementations on real-world

platforms such as the Oracle JVM. Specifically, when tracing application’s object allo-

cation and retention behavior using bytecode instrumentation techniques, the program

instrumentation interferes with compiler analyses and optimizations such as inlining,

code motion, and scalar replacement. In an unobserved program, the scalar replacement

optimization causes certain objects (those that do not escape the scope of a compilation

unit, i.e., a method with inlined callees) to be allocated on stack. This in turn avoids

having to garbage-collect such objects from the heap later, reducing GC overhead.

By perturbing the compiler optimizations, the instrumentation used to observe applica-

tion’s allocation behavior causes all objects to be allocated on the heap, resulting in an

inaccurate allocation trace. Given the non-linear nature of real-world GC, such a trace

cannot be expected to allow making accurate predictions of GC behavior. We therefore

show that our ability to model real-world GC performance hinges on our ability to obtain

accurate allocation profiles, and that we need better approaches to observing application

behavior on managed platform.

The article included in Chapter 5 received the Best Research Paper Award at the

International Conference on Performance Engineering (ICPE 2014). The problem of

perturbing compiler optimization when observing application behavior was addressed in

further research and published in an article included in Chapter 10.

Impact of Deoptimization on Performance

Another essential component of managed-memory execution platforms is a dynamic (just-

in-time) compiler which these platforms rely on to achieve high performance. On these

platforms, programs are initially executed and profiled by an interpreter, and frequently

executed methods are compiled into machine code by a dynamic optimizing compiler

(or a hierarchy of compilers) to speed up program execution. Because the effects of

dynamic compilation accumulate over time, the goal is to speed up the program as soon

as possible, but without slowing it down by the compilation work. By making a program

run faster, the dynamic compiler frees up computational resources which can be used to

perform more optimizations to achieve higher performance.

Unlike a classic compiler which compiles source to machine code statically and can

generally perform only optimizations that are provably correct, the dynamic compiler

13

2. Overview of Selected Articles

can produce machine code based on assumptions about program behavior that can be

checked at runtime. If a certain assumption about program behavior turns out to be

wrong, the affected code can be recompiled to reflect the new behavior. This allows the

dynamic compiler to safely perform aggressive and speculative optimizations which can

help optimize away a significant portion of the abstraction associated with high-level

object-oriented languages.

Ideally, speculative optimizations will always turn out to be right and provide per-

formance gains that outweigh their cost in terms of compilation time. In reality, some

speculations will fail and trigger deoptimization. Besides switching to interpreted (or

otherwise less optimized) execution mode, deoptimization may also trigger recompilation

of the affected code, thus wasting previous compilation work and adding to the overall

cost of compilation. Even though deoptimization is at the heart of many techniques that

are commonly used to make managed platforms fast, many qualitative and quantitative

aspects of deoptimization have not been well studied in the literature. How often does it

happen and for what reason? How much compilation effort is wasted? What trade-offs

can be made and how does it affect performance?

To answer some of these questions, the article included in Chapter 6 presents a study

of deoptimization behavior of code compiled by the Graal 2 dynamic compiler and the

behavior of the VM runtime in response to the deoptimizations. Graal is a new compiler

which can be optionally used within the Oracle HotSpot JVM, and which is known

to perform more aggressive and speculative optimizations than the classic C2 server

compiler currently used by the HotSpot JVM.

In the article, we characterize the deoptimization causes in the code produced by Graal

for the DaCapo [6], ScalaBench [53], and Octane3 benchmark suites, and show that only

a small fraction (2%) of deoptimization sites is actually triggered, and that most of those

(98%) invalidate the compiled code and reprofile it to avoid triggering the deoptimization

when the code is compiled again later. We also evaluate the trade-offs made by Graal in

its default deoptimization strategy, and show that by avoiding the conservative strategy

provided by the HotSpot VM runtime, Graal gains better startup performance. Finally,

we show that certain workload-specific level of tolerance to deoptimizations can provide

performance benefits, and demonstrate the impact of different tolerances levels on the

performance of selected workloads.

Effects of Workloads Produced by JVM Languages

Different parts of a software system often call for different levels of performance and

developer productivity. Ideally, the core application parts would benefit from the traits of

a statically-typed language, data management would benefit from the expressiveness of

a suitable domain-specific language, and the user interface and would benefit from the

flexibility of a dynamically-typed language. However, such an approach was generally

difficult to adopt in the past, and developers had to choose a single programming language

for the entire project so that it fit the most common/important tasks, and they had to put

2The Graal Project, http://openjdk.java.net/projects/graal/
3Octane 2.0 JavaScript Benchmark, https://developers.google.com/octane/

14

http://openjdk.java.net/projects/graal/
https://developers.google.com/octane/

2. Overview of Selected Articles

up with inconvenience of the language for other tasks.

Modern managed-memory platforms such as the Oracle Java Virtual Machine (JVM)

and the Microsoft .NET Common Language Runtime (CLR) have changed this. In

addition to automatic memory management, high-performance just-in-time compilation,

and a rich class library, these platforms also enable polyglot programming [43], which

allows developers to use different languages best suited for different tasks. Consequently,

the JVM and the CLR have become attractive as execution platforms targeted by designers

of modern programming language compilers, hoping to benefit from their performance,

maturity, and industrial adoption. This is especially true for dynamic programming

languages, which trade the raw performance achievable with languages such as C or C++

for increased productivity, ease of maintenance, and other aspects.

However, the optimizations found in these modern runtimes have been mostly tuned

with a single language in mind, which is especially true for the JVM and Java. By today’s

standards, Java (running on the HotSpot JVM) is considered fast, especially in comparison

to dynamic object-oriented languages. For other languages, even though running on the

JVM provides some immediate benefits, the sought-after benefit of Java-like performance

does not materialize automatically by just running on the JVM. Improving performance of

dynamic JVM languages requires significant effort, which can be aided by understanding

the differences between Java and non-Java workloads running on the JVM.

This can be facilitated by characterization of the workloads originating from other

languages than Java executing on the JVM. Workload characterization uses various

metrics to capture various qualitative and quantitative aspects of a workload, which can

be then used to gain insight into performance-related behavior of the combination of a

particular workload and a particular execution platform. Workload characterization can

be performed using different tools, but existing approaches often provide only incomplete

information or suffer from limited compatibility with standard JVMs. Completeness

and accuracy of the profiles are essential for tasks such as workload characterization,

and compatibility with standard production JVMs is important to ensure that complex

workloads can be executed.

To aid in understanding the differences between programswritten in different languages

executing on the JVM, and to avoid the aforementioned limitations, the article included

in Chapter 7 introduces a new set of dynamic metrics that are sensitive to differences in

the workloads resulting from bytecode produced by different JVM languages, along with

an easy-to-use toolchain to collect the metrics on a standard JVM. We apply the toolchain

to applications written in six JVM languages (Java, Scala, Clojure, Jython, JRuby, and

JavaScript) and discuss the findings. Given the importance of inlining for performance

(inlining increases the scope for many other optimizations), we also analyze the inlining

behavior of the HotSpot JVM when executing bytecode originating from different JVM

languages. We identify several traits in the non-Java workloads that represent potential

opportunities for optimization.

The article included in Chapter 7 combines and extends previously published peer-

reviewed articles [49, 50] to provide a comprehensive presentation of our workload

characterization approach for JVM languages. To ensure compatibility with standard

production JVM, the tool chain relies on our DiSL instrumentation framework and

15

2. Overview of Selected Articles

the ability to observe program behavior on modern platforms, which we discuss in

Sections 2.3 and 2.4.

2.3 Construction of Dynamic Program Analysis Tools

This section marks a transition from the general area of software performance to the

area of dynamic program analysis. In particular, this section deals with construction

of dynamic program analysis (DPA) tools for use with programs executing on modern

managed platforms such as the Java Virtual Machine.

DPA tools are programs that observe the behavior of another program (the base

program) while it is executing, and report on the properties of that particular execution.

This provides developers and software engineers with insight into the dynamics and

behavior of software systems at runtime, which allows them to better understand, debug,

optimize, or refactor such systems. Due to the scale and complexity of modern software,

the insight provided by DPA tools is difficult to obtain by reading the source code, and is

often beyond reach of static program analysis tools. However, constructing DPA tools is

unduly difficult, error-prone, and requires developers with considerable expertise. Our

contributions in this area deal with some of the challenges associated with construction

of DPA tools, and the article included in Chapter 8 represents one such contribution.

Instrumentation Framework for Dynamic Analysis

The first challenge encountered by DPA tool developers is the fact that to observe the

execution of a program, its code needs to be rewritten so that it captures occurrences of

relevant events during program execution. This can be done in different ways in different

contexts, but in the case of managed platforms such as the Java Virtual Machine, most

DPA tools use bytecode instrumentation to modify the base program’s code. Despite the

existence of various libraries that raise the level of abstraction and relieve developers

from handling the lowest-level details, implementing the program-rewriting part of a

DPA tool is error-prone, requires significant developer expertise, and results in code that

is verbose, complex, and difficult to maintain. Even though higher-level code transfor-

mation frameworks exist, they were designed for more general code transformation and

optimization tasks, which does not necessarily help with development of observation-only

code transformations.

To address this challenge, we have developed DiSL [41, 40, 63], a domain-specific

language and framework designed specifically for instrumentation-based dynamic pro-

gram analysis. DiSL is unique among the existing instrumentation frameworks because it

succeeds in reconciling high-level abstractions, flexibility, and efficiency. The allow ex-

pressing instrumentations in a concise matter, DiSL adopts the high-level pointcut/advice

model found in aspect-oriented programming (AOP), rather than relying on low-level

bytecode manipulation constructs. This programming model is easily adopted by de-

velopers, and leads to compact and readable code. To retain the flexibility of low-level

bytecode manipulation libraries, the DiSL framework provides an open join-point model

that allows instrumenting any bytecode sequence, coupled with techniques that extend

16

2. Overview of Selected Articles

the instrumentation coverage to any method with bytecode representation. DiSL also

provides specialized features that enable implementation of efficient instrumentations,

without incurring the overhead caused by using very high-level, but costly, features in

AOP frameworks such as AspectJ. This allows achieving performance and efficiency

that is on par with tools implemented using low-level bytecode manipulation libraries.

DiSL relieves DPA tool developers from having to deal with too many low-level details

associated with program instrumentation, allowing them to instead focus on the dynamic

analysis itself. By lowering the barrier to creating a new DPA tool, DiSL enables rapid

prototyping of novel dynamic analyses. The software-engineering benefits of DiSL

were demonstrated in a small-scale controlled experiment [52], the DiSL framework

served as the basis for a toolchain used in two extensive JVM workload characterization

studies [51, 35] (c.f. Section 2.2 and Chapter 7), and was used to collect application

allocation behavior traces in our research onmodeling Java garbage collector performance

(c.f. Section 2.2 and Chapter 5). DiSL was accepted by the Technology Council of the

OW2 Consortium as an incubator project, and is available4 as open-source software.

DiSL was also accepted into the SPEC Research Group repository5 of peer-reviewed

tools for quantitative system evaluation and analysis.

Modular Composition of Dynamic Analyses

The second challenge associated with construction of DPA tools is that high-level require-

ments must be translated into code reacting to low-level execution events. For example,

when creating a simple context-sensitive memory profiler which counts the allocated

bytes in each method and provides a total for individual call chains, the developer needs

to express the analysis in terms of method entry and method exit events, as well as a

number of object allocation events corresponding to various low-level object allocation

mechanisms. In addition, the developer is responsible for creating instrumentation code

that will be inserted into the base program code to reify those events for the analysis.

In general, instrumentation frameworks (including DiSL) only provide mechanisms

to intercept various control-flow events. Everything else, including abstraction and

aggregation over the captured events, is the responsibility of the developer. This means

that even for dynamic analyses that consume a common subset of events to implement

similar abstractions, the authors of different tools have to repeat the (considerable) effort

necessary for bridging the gap between the high-level tool requirements and the low-level

instrumentation. Arguably, the prevailing approach based on control-flow interposition

is too low-level and does not allow dealing with recurring concerns found in dynamic

analyses at a higher level of abstraction.

To address this problem, the article included in Chapter 8 proposes an alternative

approach based on state-oriented decomposition, which enables more succinct description

of different dynamic analyses. The key idea is to decompose the high-level analysis’

requirements in terms of structures holding the accumulated state of an analysis, and the

semantics with which these structures evolve in response to consumed events.

4http://disl.ow2.org/
5http://research.spec.org/projects/tools.html

17

http://disl.ow2.org/
http://research.spec.org/projects/tools.html

2. Overview of Selected Articles

For example, the state of most profiling tools will consist of structures that represent

event counts, often associated with structures representing a context for the counters.

The state of each of those structures evolves differently. While counters are simply

incremented, another structure keeps track of the current context, and yet another structure

maps the current context to the context-specific counter instance.

The state-oriented decomposition allows extracting the commonality found in different

dynamic analyses into a library of reusable components—generic data structures and

state transformers. A suitably described combination of such library components can be

then used to satisfy recurring dynamic analysis requirements.

The FRANC framework for composition of dynamic analyses—the second major

contribution of the article included in Chapter 8—demonstrates the feasibility of the state-

oriented decomposition approach. The API provided by FRANC lifts dynamic analysis

construction from the level of instrumentation to an event-based publish-subscribe system

with convenient reusable abstractions for data collection and aggregation. The key

aspects of the API are three interfaces which facilitate the state-oriented decomposition:

instrumentations, which reify base-program events; mappers, which route events to the

subset of analysis state to be updated by subsequent events; and updaters, which evolve

the analysis’s output-producing state in response to events. We demonstrate that this

factoring can be used to express a wide variety of distinct dynamic analyses and that

analysis tools constructed using FRANC offer performance that is generally competitive

with tools developed using lower-level frameworks.

2.4 Observability on Modern Managed Platforms

The final section of this overview concerns observability of programs executing on

modern managed platforms. Dynamic program analysis critically depends on the ability

to observe the execution of a program. However, modern managed platforms such as the

Oracle JVM or the Google Dalvik VM (Android) do not make this task particularly easy—

after all, the goal of these virtual machines is to execute programs at peak performance.

This does not necessarily mean that a modern virtual machine is a complete black

box—only some of them, e.g., the Dalvik VM, which was designed for a resource

constrained environment. In contrast, the Oracle JVM provides a Java Platform Debugger

Architecture (JPDA)—a set of interfaces intended for use by debuggers in development

environments running on desktop systems. These interfaces are adequate for debugging

purposes, where neither expressiveness nor performance is expected, but their utility for

dynamic program analysis is limited precisely by these two factors.

Apart from modifying the host system itself, which is very difficult and results in

a non-portable solution, many DPA tools rely on bytecode instrumentation to observe

program execution events relevant to a particular analysis. Most DPA tools use a library

or a framework to manipulate program bytecode. The JPDA interfaces—specifically the

JVM Tooling Interface (JVMTI)—are then used mainly to enable support for on-demand

instrumentation at program load time. Our DiSL and FRANC frameworks discussed in

Section 2.3 are examples of such frameworks.

However, developing instrumentation is merely the first step in developing a DPA tool.

18

2. Overview of Selected Articles

Depending on the instrumentation framework used, it may be more or less difficult, but

developing a high quality DPA tool is still a challenging task. One particular challenge

lies in dealing with mutually antagonistic requirements: isolation, i.e., not influencing

program execution through observation, coverage, i.e., observing all relevant events

during execution, and performance, i.e., minimizing slowdown due to the analysis. The

conflicting requirements lead to a classic dilemma, forcing the developer to choose at

most two of the three desired properties. And even then, achieving the selected properties

requires significant expertise and effort. Like in any physical system, observation is

bound to cause certain kinds of perturbation, and the JVM has been shown to be riddled

with traps for the unwary [32]. Our research in this area focuses on enabling construction

of DPA tools with high level of isolation and coverage. The articles included in Chapters 9

and 10 represent some of our contributions to the state of the art in this area.

The ShadowVM Analysis Framework

Most DPA tools for the JVM use bytecode instrumentation to capture events related

to program execution that are not available through the JVMTI interface. This is the

recommended approach. However, even though the JVMTI documentation endorses a

separate-process design for the analysis to avoid interfering with the normal execution

of the observed program, most tools rely on internal observation, a design in which

the observed program and the analysis execute in the same address space. A likely

explanation of this design choice is that simplicity and performance were the deciding

factors—the recommended approach involving a separate process is more complex and

incurs additional overhead. These factors certainly played an important role in the

single-process design of our DiSL instrumentation framework.

However, the approach based solely on internal observation inevitably leads to prob-

lems when we want to expand analysis coverage and observe activity in all executed

code, including system libraries (Java Class Library). These libraries provide (often the

only) means to perform operations that dynamic analyses need, such as input and output,

accessing reflective metadata, or keeping weak references to program objects. When

these libraries are instrumented, the library-internal resources become shared between

the observed program and the analysis in an uncoordinated fashion. Consequently, even

simple instrumentation scenarios can suffer from state corruption, deadlocks, and memory

exhaustion [32].

The issues associated with internal observation make the development of high-quality

dynamic analyses difficult, and our research in this area addresses some of them. One

of the contributions is ShadowVM [38], a dynamic program analysis framework which

adopts an event-based programming model and realizes dynamic program analysis as a

distributed event-processing system.

The base program executes in the observed VM and produces events which are con-

sumed by the analysis executing in the shadow VM. In the observed VM, instrumentation

inserted into the base program acts as an event producer and emits events required by

the analysis. The event producer programming model adopts the programming model

of DiSL, which allows expressing instrumentation using high-level aspect-oriented ab-

19

2. Overview of Selected Articles

stractions. In addition, the framework generates special events that mark the disposal

of resources (objects, threads, or the VM itself) and provide analyses with triggers that

allow them to clean up internal state or output results.

The analysis code deployed in the shadow VM acts as an event consumer and performs

computations and analysis state updates in response to events from the observed VM.

The analysis developer supplies the instrumentation to generate these events and controls

the payload they carry. The payload can include primitive types and object references;

the latter are exposed to the analysis as shadow objects. These preserve the identity of

the objects from the observed VM, and expose reflective metadata mirroring the class

hierarchy of the base program. Shadow objects do not mirror the contents of the original

objects, but allow attaching and accessing arbitrary analysis state.

Our evaluation of the ShadowVM framework has shown that dynamic analyses can

be written using convenient high-level languages and APIs, retaining the feel of a byte-

code instrumentation system but achieving higher levels of isolation and coverage. By

minimizing interference with the observed program, analyses can observe code in core

classes, from the earliest stages of VM execution. Despite the addition of a process

separation, the performance of ShadowVM is acceptable for many use cases.

In addition to the original publication at GPCE 2013 [39], this work has been summa-

rized in an IEEE Software article included in Chapter 9.

Dynamic Program Analysis on Android

Even though the Java platform is very popular in the enterprise world, the world of mobile

devices has been mostly dominated by the Android platform. This creates demand

for software development tools targeting Android, including program analysis tools

that provide insight into application behavior, e.g., to allow auditing an application’s

use of permissions granted by the user. However, the range of approaches used by

various security analysis tools (OS and VM modifications, various instrumentation

techniques, use of CPU emulator) shows that Android lacks the means to develop DPA

tools using a high-level programming model, without resorting to complex, platform-

specific implementation.

Android poses a specific challenge to classic approaches to dynamic program analysis

based on instrumentation and internal observation in that Android applications (although

written in Java) are split intomultiple components (withmultiple entry points) executing in

multiple virtual machines. While with conventional applications it was often reasonable

(apart from problems with interference) to colocate the analysis with the executing

application, doing the same with Android applications would result in distributing the

analysis state across multiple application components. This might not matter with some

analyses, but in general, partitioning the analysis state would needlessly complicate the

analysis code.

In this context, the ShadowVM approach with the analysis split between an event

producing instrumentation colocated with application code, and an event consuming

analysis code executing in a dedicated virtual machine is a good match for the specifics

of the Android platform. However, the Dalvik Virtual Machine (DVM), which executes

20

2. Overview of Selected Articles

most of the application code on Android, lacks certain features that have enabled im-

plementation of the ShadowVM framework on the JVM—most notably a tool interface

similar to JVMTI.

To enable development of DPA tools for the DVM, we modified the DVM to provide

essential DPA tooling support. This concerns mainly (a) handling of essential events

such as class loading and initialization, (b) tracking of virtual machine, thread, and

object lifecycle, and (c) exportable object identities, application event notifications, and

component communication tracking.

The modifications to the ShadowVM framework and programming model include

mainly support for multi-process applications and inter-process communication. An

analysis observing an Android application needs to handle events from multiple VM

instances. This is enabled by associating the observed events and object identities with a

VM context provided to the analysis with each delivered event. To enable observation of

multi-process applications and their interactions with the wider system, the ShadowVM

framework on Android emits special communication events (in addition to the lifecycle

events) to which an analysis can subscribe, andwhich capture the low-level IPC operations

that Android applications use for communication and control transfer.

Because Android applications execute in a resource-constrained environment (from the

perspective of contemporary server and desktop systems), we execute the analysis VM

on a remote system. This avoids competing for resources with the analyzed application

and allows using any Java features in the analysis code. The ShadowVM programming

model, along with seamless support for both the JVM and the DVM, also enables

development of cross-platform analyses—code executing in the analysis VM can react

to event notifications from any platform-specific front-end. Evaluation of the framework

on several case studies has shown that thanks to the high-level programming model, the

framework reduces development effort for many analysis tools, while providing isolation

and comprehensive bytecode coverage.

In addition to the original publication at MODULARITY 2015 [56], this work has

been summarized in an IEEE Software article included in Chapter 9. The ShadowVM

framework has been also demonstrated at the conference on Systems, Programming,

Languages, and Applications: Software for Humanity (SPLASH 2015) [54], and at the

Asian Symposium on Programming Languages and Systems (APLAS 2015) [55].

Avoiding Perturbations to Compiler Operation

Modern managed platforms rely on tiered compilation and an optimizing dynamic com-

piler to achieve high performance. Programs executing on these platforms are usually

first interpreted (or compiled by a baseline compiler), and frequently executed methods

are later compiled by the optimizing dynamic compiler. State-of-the-art dynamic com-

pilers perform optimizations based on profiling information gathered during program

execution, and many optimization result in machine code that does not even perform

certain operations (method invocations, heap allocations, lock acquisition) present at the

level of bytecode.

Many DPA tools for such platforms rely on bytecode instrumentation (often in combi-

21

2. Overview of Selected Articles

nation with suitable debugging interfaces) to observe the execution of an application—

inserting bytecode that triggers analysis execution into the observed application bytecode.

Because dynamic compilation is transparent, the DPA tools are not aware of the compila-

tion, let alone the optimizations performed by the compiler. Similarly, the compiler is

not aware of the inserted instrumentation code—it will compile and attempt to optimize

the instrumented methods just like any other methods.

This can lead to inaccurate analysis results, because the events reported by the in-

strumentation code may be correspond to actual operations in the compiled code. For

example, if the compiler removes instructions that are being observed but does not re-

move the associated instrumentation code, the (removed) operations will still be reported

to the analysis. Alternatively, because optimization is driven by heuristics, the compiler

may decide not to perform some optimizations—the inserted code may have increased

the method code size, or may have introduced additional data or control flow dependen-

cies. In this case, the analysis may observe operations that are present in the compiled

code even though they would have been removed if only the original (uninstrumented)

application code was being compiled.

We have now discussed two different kinds of perturbation caused by observing

application execution using bytecode instrumentation. The first—caused by sharing of

library-internal resources between an analysis and the observed application—may result

in state corruption, deadlocks, or VM crashes, especially for high-coverage analyses.

The second—caused by mere presence of the instrumentation code in the application

code—may perturb the operation of the dynamic compiler and cause an analysis to report

inaccurate or incorrect results.

In general, when using instrumentation to observe program execution, we cannot

completely eliminate the observer effect—the perturbation of low-level dynamic met-

rics (such as hardware or operating system performance counters) cannot be avoided.

However, the two kinds of perturbation discussed in this section can be avoided. The

ShadowVM framework presented earlier avoids the first kind of perturbation by isolating

the analysis and the observed application from each other, thus eliminating sharing of

library-internal state. An approach to avoiding perturbation of dynamic compilation is

the key contribution of the article included in Chapter 10.

The root of the problem lies in the inability of the dynamic compiler to distinguish

between the inserted instrumentation code and the base program code, and due to the

inability of the inserted code to adapt to the optimizations performed by the dynamic

compiler. The key idea of our approach is to make the compiler aware of the two kinds of

code, and treat them differently. For the base program code, the goal is to let the dynamic

compiler process it in the usual fashion, making optimization decisions and performing

optimizations as if the inserted code was not there. For the inserted code, the goal is

to preserve its purpose and semantics by adapting it in response to the optimizations

performed by the dynamic compiler on the base program code.

Even though our approach has been implemented in a particular state-of-the-art dy-

namic compiler 6, it has been formulated for a method-based dynamic compiler using

a graph-based intermediate representation (IR) in the Static Single Assignment (SSA)

6The Graal Project, http://openjdk.java.net/projects/graal/

22

http://openjdk.java.net/projects/graal/

2. Overview of Selected Articles

form, with optimizations implemented as IR graph transformations. When the dynamic

compiler builds the IR of the method being compiled, we identify the boundaries between

the base program code and the inserted code, and unlink the inserted code from the

base program IR, creating inserted code subgraphs (ICGs) associated with base program

nodes. We then let the dynamic compiler work on the base program IR while tracking

the operations it performs on the IR graph nodes. Whenever the compiler performs an

operation on a node with an associated ICG, we perform a reconciling operation on the

corresponding ICG to preserve its semantics throughout the transformations performed

by the compiler. When the compiler finishes optimizing the base program IR, we splice

the ICGs back into the base program IR—before it is lowered to machine-code level.

An important aspect of our approach is that it allows the inserted code to query and

adapt to the dynamic compiler’s decisions. The queries are represented by invocations

of special methods, query intrinsics, which are recognized and handled by the compiler

similarly to normal intrinsics. The query intrinsics represent an API that provides an

instrumentation developer with the means to determine both compile-time and runtime

compiler decisions, and allows creating an instrumentation that adapts accordingly.

Additional contributions comprise case studies and tools, including an object allocation

and lifetime profiler, a callsite polymorphism profiler, and a compiler testing framework.

These demonstrate that our approach enables collection of accurate information that

faithfully represents the execution of a base program without profiling, and that the

approach is applicable in different scenarios.

This work also provides a solution to an issue identified as a major cause of inaccuracy

of object allocation profiles used for prediction of garbage collection cycles, discussed

in Chapter 5.

The article included in Chapter 10 received the Distinguished Paper Award at the

international conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA 2015), as well as an endorsement from the Artifact Evalua-

tion Committee for having submitted an easy-to-use, well-documented, consistent, and

complete artifact for evaluation.

23

3
Unit Testing Performance with

Stochastic Performance Logic

L. Bulej, T. Bureš, V. Horký, J. Kotrč, L. Marek, T. Trojánek, and P. Tůma: “Unit

Testing Performance with Stochastic Performance Logic”. In Automated Software

Engineering 24.1 (2017), pp. 139–187. ISSN: 0928-8910, 1573-7535. DOI: 10.1007/

s10515-015-0188-0

Extended version of L. Bulej, T. Bureš, J. Keznikl, A. Koubková, A. Podzimek, and

P. Tůma: “Capturing Performance Assumptions Using Stochastic Performance

Logic”. In Proc. 3rd ACM/SPEC International Conference on Performance Engineering

(ICPE). ACM, 2012, pp. 311–322. DOI: 10.1145/2188286.2188345,

and also V. Horký, F. Haas, J. Kotrč, M. Lacina, and P. Tůma: “Performance Regression

Unit Testing: A Case Study”. In Proc. 10th European Performance Engineering

Workshop. EPEW. Springer, 2013, pp. 149–163. DOI: 10.1007/978-3-642-40725-3_12.

25

http://dx.doi.org/10.1007/s10515-015-0188-0
http://dx.doi.org/10.1007/s10515-015-0188-0
http://dx.doi.org/10.1145/2188286.2188345
http://dx.doi.org/10.1007/978-3-642-40725-3_12

4
Robust Partial-Load

Experiments with Showstopper

A. Podzimek, L. Bulej, L. Y. Chen, W. Binder, and P. Tůma: “Robust Partial-Load

Experiments with Showstopper”. In Future Generation Computer Systems 64 (2016),

pp. 15–38. ISSN: 0167-739X, 1872-7115. DOI: 10.1016/j.future.2016.04.020

Extended version of A. Podzimek, L. Bulej, L. Y. Chen,W. Binder, and P. Tůma: “Analyz-

ing the Impact of CPUPinning and Partial CPULoads on Performance andEnergy

Efficiency”. In Proc. 15th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGRID). IEEE, 2015, pp. 1–10. DOI: 10.1109/CCGrid.2015.164.

Best Paper Runner-Up Award

27

http://dx.doi.org/10.1016/j.future.2016.04.020
http://dx.doi.org/10.1109/CCGrid.2015.164

5
On the Limits of Modeling

Generational Garbage Collector

Performance

P. Libič, L. Bulej, V. Horký, and P. Tůma: “On the Limits of Modeling Generational

Garbage Collector Performance”. In Proc. 5th ACM/SPEC Intl. Conf. on Perfor-

mance Engineering (ICPE). ACM, 2014, pp. 15–26. DOI: 10.1145/2568088.2568097

Best Research Paper Award

March 22-26, 2014

Dublin, Ireland

Sponsored by:

ACM SIGMETRICS, ACM SIGSOFT, and SPEC Research

Supported by:

Lero, Cisco, and Intel

ICPE'14
Proceedings of the 5th ACM/SPEC International Conference on

Performance Engineering

29

http://dx.doi.org/10.1145/2568088.2568097

6
An Empirical Study on Deoptimization

in the Graal Compiler

Y. Zheng, L. Bulej, and W. Binder: “An Empirical Study on Deoptimization in the

Graal Compiler”. In Proc. 31st European Conference on Object-Oriented Program-

ming (ECOOP). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, 30:1–30:30.

DOI: 10.4230/LIPIcs.ECOOP.2017.30

31st European Conference on
Object-Oriented Programming

ECOOP’17, June 18–23, 2017, Barcelona, Spain

Edited by

Peter Müller

LIPIcs – Vo l . 74 – ECOOP’17 www.dagstuh l .de/ l ip i c s

31

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.30

7
Workload Characterization of

JVM Languages

A. Sarimbekov, L. Stadler, L. Bulej, A. Sewe, A. Podzimek, Y. Zheng, and W. Binder:

“Workload Characterization of JVM Languages”. In Software: Practice and Experi-

ence 46.8 (2016), pp. 1053–1089. ISSN: 0038-0644, 1097-024X. DOI: 10.1002/spe.2337

Extended version of A. Sarimbekov, A. Podzimek, L. Bulej, Y. Zheng, N. Ricci, and W.

Binder: “Characteristics of Dynamic JVM Languages”. In Proc. 7th ACMWorkshop

on Virtual Machines and Intermediate Languages (VMIL). ACM, 2013, pp. 11–20. DOI:

10.1145/2542142.2542144,

and also A. Sarimbekov, A. Sewe, S. Kell, Y. Zheng, W. Binder, L. Bulej, and D. Ansa-

loni: “A Comprehensive Toolchain for Workload Characterization Across JVM

Languages”. In Proc. 11th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis

for Software Tools and Engineering (PASTE). ACM, 2013, pp. 9–16. DOI: 10.1145/

2462029.2462033.

33

http://dx.doi.org/10.1002/spe.2337
http://dx.doi.org/10.1145/2542142.2542144
http://dx.doi.org/10.1145/2462029.2462033
http://dx.doi.org/10.1145/2462029.2462033

8
Enabling Modularity and Re-use in

Dynamic Program Analysis Tools for

the Java Virtual Machine

D. Ansaloni, S. Kell, Y. Zheng, L. Bulej, W. Binder, and P. Tůma: “EnablingModularity

and Reuse in Dynamic Program Analysis Tools for the Java Virtual Machine”. In

Proc. 27th European Conference on Object-Oriented Programming (ECOOP). LNCS

7920. Springer, 2013, pp. 352–377. DOI: 10.1007/978-3-642-39038-8_15

Giuseppe Castagna (Ed.)

 123

27th European Conference
Montpellier, France, July 2013
Proceedings

ECOOP 2013 –
Object-Oriented
ProgrammingLN

CS
 7

92
0

AR
Co

SS

35

http://dx.doi.org/10.1007/978-3-642-39038-8_15

9
Comprehensive Multiplatfrom

Dynamic Program Analysis

for Java and Android

Y. Zheng, S. Kell, L. Bulej, H. Sun, and W. Binder: “Comprehensive Multi-Platform

Dynamic Program Analysis for Java and Android”. In IEEE Software 33.4 (2016),

pp. 55–63. ISSN: 0740-7459 1937-4194. DOI: 10.1109/MS.2015.151

Summary of L. Marek, S. Kell, Y. Zheng, L. Bulej, W. Binder, P. Tůma, D. Ansaloni,

A. Sarimbekov, and A. Sewe: “ShadowVM: Robust and Comprehensive Dynamic

Program Analysis for the Java Platform”. In Proc. 12th International Conference on

Generative Programming: Concepts & Experiences (GPCE). ACM, 2013, pp. 105–114.

DOI: 10.1145/2517208.2517219,

and also of H. Sun, Y. Zheng, L. Bulej, A. Villazón, Z. Qi, P. Tůma, and W. Binder:

“A ProgrammingModel and Framework for Comprehensive Dynamic Analysis on

Android”. In Proc. 14th International Conference on Modularity (AOSD/MODULAR-

ITY). ACM, 2015, pp. 133–145. DOI: 10.1145/2724525.2724566.

37

http://dx.doi.org/10.1109/MS.2015.151
http://dx.doi.org/10.1145/2517208.2517219
http://dx.doi.org/10.1145/2724525.2724566

10
Accurate Profiling in the Presence of

Dynamic Compilation

Y. Zheng, L. Bulej, and W. Binder: “Accurate Profiling in the Presence of Dynamic

Compilation”. In Proc. 30th ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA). ACM, 2015,

pp. 433–450. DOI: 10.1145/2814270.2814281

Distinguished Paper Award

Evaluated Artifact

October 25–30, 2015
Pittsburgh, PA, USA

OOPSLA’15
Proceedings of the 2015 ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems,
Languages, and Applications

Edited by:
Jonathan Aldrich and Patrick Eugster

Sponsored by:
ACM SIGPLAN

Supported by:
Microsoft, Oracle, NSF, IBM Research, Samsung, HP, Google, Facebook,
Intel, Huawei, DePaul University, Royal Society Publishing

39

http://dx.doi.org/10.1145/2814270.2814281

11
Conclusion and Future Research

The papers included in this thesis provide an overview of contributions to making perfor-

mance a first-class concern in development of general-purpose software systems. This

relies both on understanding performance-related aspects of the underlying execution

platform, but also on the ability to observe and reason about performance-related behavior

of a software system.

One obstacle to making performance a first-class concern is related to the economy

of software development. Historically, developers relied on advances in hardware to

provide more performance to their software. But keeping up with Moore’s Law is

becoming a significant technical and, more importantly, economical challenge even for

the largest processor manufacturers. Software developers therefore cannot expect much

more “free” performance from advances in general-purpose processors. In addition,

energy consumption has become a visible factor in the cost of computing, providing

another incentive for creating more efficient software.

While we believe that the general circumstances are now more in favor of paying

attention to software performance during development, adopting a systematic approach

to dealing with performance during development is still rather difficult. Instead of a

conclusion we therefore offer a view to potential research directions to address some of

the technical and methodological challenges.

11.1 Performance Testing

In modern software development, testing has made functional aspects software quality

visible to developers. Testing drives design and makes refactoring practically viable,

enabling software designs to evolve with changing requirements, ultimately improving

software quality. If unit testing made software quality and correctness visible by making

them testable, we need to make performance visible by making performance requirements

and assumptions testable as well.

However, if performance testing is to be at the heart of performance awareness, then

efficiency and manageability are the key attributes needed for integration into the existing

development processes. We need the developers to adopt the approach and support it

by writing performance tests. In return, they will expect careful attention to the time

they need to invest in the process, to results being available in a timely fashion, and

41

11. Conclusion and Future Research

generally to high accuracy (no false positives) and efficiency over completeness. To this

end, progress is required on a number of open issues.

Limits on expressible constraints. The necessary condition to make a performance

requirement testable is to express it in a machine-readable form that is sufficiently

convenient to produce for human developers. Our contribution to this topic includes

Stochastic Performance Logic (SPL) [13, 14], which allows expressing such requirements

using relative performance of existing code as a reference. However, our approach to

formalizing performance requirements using SPL is currently limited to constraints on

mean execution time. Other desirable metrics include, e.g., scalability and (algorithmic)

complexity, and recently also power consumption, which directly translates to costs

(cloud) or battery life (mobile devices). We need to investigate how to extend the SPL

formalism to support alternative metrics and statistics other than mean.

Construction of relevant workloads. Performance requirements and assumptions

need to be tested on workloads that are relevant to system performance. The most relevant

workloads are those from real deployment, but to ensure that performance awareness

permeates the whole development process, we also need performance requirements or

assumptions that are testable even in early development stages. Currently, workloads

have to be provided by the developers, which is one of the most time-consuming part of

writing a performance test. To make providing relevant workloads less time-consuming,

we need methods and tools for capturing workloads from real deployment and for deriving

workloads from unit tests or test traces.

Timely feedback on test results. By formally describing performance requirements,

developers can capture testable performance assumptions about their or third-party code.

This can increase awareness of performance that can be expected from various elements

of the system, ultimately increasing confidence and correctness of day-to-day decisions

that impact performance. However, the feedback on such requirements needs to be

readily available and easily accessible to developers, which is at odds with the inherently

time-consuming process of collecting and evaluating performance data.

Unlike unit tests, performance tests require more hardware resources to evaluate,

because the tests need to be executed repeatedly to account for multiple sources of

variance in the measured data. In a realistic setting, a continuous testing infrastructure

has (much) less than 24 hours to provide test results, and if there are toomany performance

tests, the infrastructure will be unable to run them all. We need to investigate methods

that enable automatic prioritization and scheduling of the most relevant tests first—based

on the logical structure of the expression capturing the performance assumption, on the

relationship between (changed) code locations and performance tests, or the correlation

of performance observations from different tests.

Accuracy and automation. Determining the outcome of performance tests requires

processing significant amounts of measurement data, where detecting small, isolated

42

11. Conclusion and Future Research

changes in performance is difficult, because the required sensitivity is typically below the

noise level. Current methods try to increase sensitivity by collecting more measurement

data, which takes more time and in the end we usually learn that variation is high, and

therefore performance changes are not detected. However, with multiple commits per

day and each commit having the potential to reduce performance by a small amount, the

performance testing infrastructure should be able to detect accumulated performance

degradation. We need to investigate methods that correlate performance observations

with other indicators, e.g., hardware performance counters, to distinguish essential perfor-

mance changes from noise and thus improve test evaluation results or potentially reduce

the number of experiments that need to be conducted to evaluate a test.

11.2 Dynamic Program Analysis

While performance testing is intended to make performance of a software system “visible”

to developers, dynamic program analysis is intended to allow developers to observe and

gain insight into what a program is doing with respect to the underlying hardware and

software platform.

In dealing with software complexity, developers rely on modern programming lan-

guages and application frameworks which introduce additional layers of abstraction to

hide some of the complexity. These abstractions need to be mapped efficiently to the

underlying hardware and software platforms, and if there is a mismatch between what the

software does and what the platform can do efficiently, performance suffers. Dynamic

program analysis allows to see through layers of abstractions to get insight into what

kind of workload a program imposes on the underlying platform and how the platform

handles it. Together with timing information, program behavior can be correlated with

program or platform performance, contributing to performance awareness.

We have made several contributions to dynamic program analysis that make it easier

to develop and apply dynamic analysis tools, but further progress is necessary in several

research directions.

Observability on modern platforms. The ability to observe program behavior is

crucial for dynamic program analysis and modern runtime platforms make it increasingly

difficult to observe what the software does. This applies in particular to memory-managed

platforms executing higher-level hardware-independent bytecode, such as the Oracle Java

VirtualMachine, the Google Dalvik VirtualMachine, or theMicrosoft Common Language

Runtime. These virtual machines are generally optimized for performance, with program

observation being a secondary concern (if at all), which makes it difficult (or impossible)

to observe certain behavior. We need to focus on making those platforms effectively

(and efficiently) observable. Specific challenges include efficient reconstruction of event

ordering and correlation of low-level performance metrics associated with machine code

executed by the processor with high-level program bytecode executed by the virtual

machine.

43

11. Conclusion and Future Research

Analysis construction. Developing analysis tools requires expertise both in developing

instrumentation for the given platform, as well as in developing analysis algorithms

processing the events coming from the observed programs. This makes construction of

analysis tools difficult, because the knowledge of the underlying platform needed to be

able to successfully instrument a program is substantial. Existing frameworks mainly

assist with the task of instrumentation, but provide limited or no support at all in the way

of analysis composition, forcing analysis authors to re-address recurring requirements.

We need to focus on the software engineering aspects of dynamic program analysis,

specifically on simplifying analysis composition and on composition of hybrid analyses,

where parts of an analysis may execute in different address spaces.

Analysis of concurrent programs. As new hardware platforms appear and software

platforms evolve, new kinds of program behavior become relevant and need to be studied.

This decade is marked with the shift from single-core towards multi-core processors,

and software follows suit to make use of the additional processor cores. Multi-threaded

programming is notoriously difficult and error prone, not only with respect to correctness,

but also with respect to performance. High-level abstractions (and managed-memory

platforms) typically hide details such as data layout, locking, or the use of memory

barriers, but these details may contribute to a misalignment between what the software

does and what the underlying hardware or software platform can do efficiently. We

need to focus on identifying behavior of concurrent programs that is detrimental to

performance on modern multi-core and non-uniform memory access (NUMA) hardware,

and distributed computational platforms.

44

References

[1] M. Andreessen: “Why Software Is Eating The World”. In The Wall Street Jour-

nal (2011).

[2] D. Ansaloni, S. Kell, Y. Zheng, L. Bulej, W. Binder, and P. Tůma: “EnablingMod-

ularity and Reuse in Dynamic Program Analysis Tools for the Java Virtual

Machine”. In Proc. 27th European Conference on Object-Oriented Programming

(ECOOP). LNCS 7920. Springer, 2013, pp. 352–377. DOI: 10.1007/978-3-642-

39038-8_15.

[3] V. Babka, L. Bulej, M. Děcký, J. Kraft, P. Libič, L. Marek, C. Seceleanu, and

P. Tůma: “Q-ImPrESS Project Deliverable D3.3: Resource Usage Modeling”.

Tech. rep. D3.3. Q-ImPrESS Consortium, 2009, p. 210.

[4] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,

J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,

S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas: “Manifesto for Agile

Software Development”. In (2001).

[5] S. M. Blackburn, A. Diwan, M. Hauswirth, P. F. Sweeney, J. N. Amaral, T. Brecht,

L. Bulej, C. Click, L. Eeckhout, S. Fischmeister, D. Frampton, L. J. Hendren,

M. Hind, A. L. Hosking, R. E. Jones, T. Kalibera, N. Keynes, N. Nystrom, and

A. Zeller: “The Truth, TheWhole Truth, and Nothing But the Truth: A Prag-

matic Guide to Assessing Empirical Evaluations”. In ACM Transactions on

Programming Languages and Systems 38.4 (2016), 15:1–15:20. ISSN: 0164-0925,

1558-4593. DOI: 10.1145/2983574.

[6] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R.

Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,

M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D.

von Dincklage, and B. Wiedermann: “The DaCapo Benchmarks: Java Bench-

marking Development and Analysis”. In Proc. 21st ACM SIGPLAN Intl. Conf.

on Object-Oriented Programming Systems, Languages, and Applications (OOP-

SLA). ACM, 2006, pp. 169–190. DOI: 10.1145/1167473.1167488.

[7] F. P. J. Brooks: “No Silver Bullet Essence and Accidents of Software Engineer-

ing”. In Computer 20.4 (1987), pp. 10–19. ISSN: 0018-9162. DOI: 10.1109/MC.

1987.1663532.

45

http://dx.doi.org/10.1007/978-3-642-39038-8_15
http://dx.doi.org/10.1007/978-3-642-39038-8_15
http://dx.doi.org/10.1145/2983574
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1109/MC.1987.1663532

References

[8] A. Buble, L. Bulej, and P. Tůma: “CORBA Benchmarking: A Course with

Hidden Obstacles”. In Proc. 17th International Parallel and Distributed Pro-

cessing Symposium. Intl. W. on Performance Modeling, Evaluation, and Opti-

mization of Parallel and Distributed Systems (PMEO-PDS). 2003, pp. 1–6. DOI:

10.1109/IPDPS.2003.1213501.

[9] L. Bulej: “Performance Testing in Software Development: Getting the Devel-

opers on Board (Invited Talk Abstract)”. In Companion Proc. 7th ACM/SPEC

International Conference on Performance Engineering. 5th Intl. W. on Large-Scale

Testing (LT). ACM, 2016, pp. 9–9. DOI: 10.1145/2859889.2880448.

[10] L. Bulej, T. Bureš, I. Gerostathopoulos, V. Horký, J. Keznikl, L. Marek, M.

Tschaikowski, M. Tribastone, and P. Tůma: “Supporting Performance Aware-

ness in Autonomous Ensembles”. In Software Engineering for Collective Auto-

nomic Systems. LNCS 8998. Springer, 2015, pp. 291–322. DOI: 10.1007/978-3-

319-16310-9_8.

[11] L. Bulej, T. Bureš, V. Horký, and J. Keznikl: “Adaptive Deployment in Ad-Hoc

SystemsUsing Emergent Component Ensembles (Vision Paper)”. In Proc. 4th

ACM/SPEC International Conference on Performance Engineering (ICPE). ACM,

2013, pp. 343–346. DOI: 10.1145/2479871.2479922.

[12] L. Bulej, T. Bureš, V. Horký, J. Keznikl, and P. Tůma: “Performance Aware-

ness in Component Systems (Vision Paper)”. In Proc. 36th IEEE Annual Com-

puter Software and Applications Conference Workshops. 4th IEEE Intl. W. on

Component-Based Design of Resource-Constrained Systems (CORCS). 2012,

pp. 514–519. DOI: 10.1109/COMPSACW.2012.96.

[13] L. Bulej, T. Bureš, V. Horký, J. Kotrč, L. Marek, T. Trojánek, and P. Tůma: “Unit

Testing Performance with Stochastic Performance Logic”. In Automated Soft-

ware Engineering 24.1 (2017), pp. 139–187. ISSN: 0928-8910, 1573-7535. DOI:

10.1007/s10515-015-0188-0.

[14] L. Bulej, T. Bureš, J. Keznikl, A. Koubková, A. Podzimek, and P. Tůma: “Cap-

turing Performance Assumptions Using Stochastic Performance Logic”. In

Proc. 3rd ACM/SPEC International Conference on Performance Engineering

(ICPE). ACM, 2012, pp. 311–322. DOI: 10.1145/2188286.2188345.

[15] L. Bulej, T. Kalibera, and P. Tůma: “Regression Benchmarking with Simple

Middleware Benchmarks”. In Proc. 23rd IEEE International Performance, Com-

puting, and Communications Conference. Intl. W. on Middleware Performance

(IWMP). IEEE, 2004, pp. 771–776. DOI: 10.1109/PCCC.2004.1395179.

[16] L. Bulej, T. Kalibera, and P. Tůma: “Repeated Results Analysis forMiddleware

Regression Benchmarking”. In Performance Evaluation 60.1–4 (2005), pp. 345–

358. ISSN: 0166-5316. DOI: 10.1016/j.peva.2004.10.013.

[17] J. Cheng: “Steve Jobs: MobileMe ”Not up to Apple’s Standards””. Ars Tech-

nica, 2008. URL: http://arstechnica.com/apple/2008/08/steve-jobs-mobileme-not-

up-to-apples-standards/ (visited on 09/12/2016).

46

http://dx.doi.org/10.1109/IPDPS.2003.1213501
http://dx.doi.org/10.1145/2859889.2880448
http://dx.doi.org/10.1007/978-3-319-16310-9_8
http://dx.doi.org/10.1007/978-3-319-16310-9_8
http://dx.doi.org/10.1145/2479871.2479922
http://dx.doi.org/10.1109/COMPSACW.2012.96
http://dx.doi.org/10.1007/s10515-015-0188-0
http://dx.doi.org/10.1145/2188286.2188345
http://dx.doi.org/10.1109/PCCC.2004.1395179
http://dx.doi.org/10.1016/j.peva.2004.10.013
http://arstechnica.com/apple/2008/08/steve-jobs-mobileme-not-up-to-apples-standards/
http://arstechnica.com/apple/2008/08/steve-jobs-mobileme-not-up-to-apples-standards/

References

[18] P. Cohen: “Firefox 3.0 Released, Servers Overwhelmed”. Macworld, 2008.

URL: http : / /www.macworld .com/article /1134018/ firefox .html (visited on

09/12/2016).

[19] M. Cohn: “SucceedingwithAgile: SoftwareDevelopmentUsing Scrum”. Addison-

Wesley Professional, 2009. ISBN: 978-0-321-57936-2.

[20] J. Dean and L. A. Barroso: “The Tail at Scale”. In Commun. ACM 56.2 (2013),

pp. 74–80. ISSN: 0001-0782. DOI: 10.1145/2408776.2408794.

[21] K. Foo, Z. M. Jiang, B. Adams, A. Hassan, Y. Zou, and P. Flora: “Mining Perfor-

mance Regression Testing Repositories for Automated Performance Analy-

sis”. In Proc. QSIC 2010. 2010, pp. 32–41. DOI: 10.1109/QSIC.2010.35.

[22] S. Ghaith, M.Wang, P. Perry, and J. Murphy: “Profile-Based, Load-Independent

Anomaly Detection and Analysis in Performance Regression Testing of Soft-

ware Systems”. In Proc. 17th European Conference on Software Maintenance

and Reengineering. 17th European Conference on Software Maintenance and

Reengineering. 2013, pp. 379–383. DOI: 10.1109/CSMR.2013.54.

[23] C. Heger, J. Happe, and R. Farahbod: “Automated Root Cause Isolation of Per-

formance Regressions During Software Development”. In Proc. ICPE 2013.

ACM/SPEC International Conference on Performance Engineering (ICPE). ACM,

2013, pp. 27–38. DOI: 10.1145/2479871.2479879.

[24] V. Horký, F. Haas, J. Kotrč, M. Lacina, and P. Tůma: “Performance Regression

Unit Testing: A Case Study”. In Proc. 10th European Performance Engineering

Workshop. EPEW. Springer, 2013, pp. 149–163. DOI: 10.1007/978-3-642-40725-

3_12.

[25] R. Hyde: “The Fallacy of PrematureOptimization”. InUbiquity 2009 (February

2009). ISSN: 1530-2180. DOI: 10.1145/1513450.1513451.

[26] T. Kalibera, L. Bulej, and P. Tůma: “Automated Detection of Performance Re-

gressions: TheMono Experience”. In Proc. 20th IEEE International Symposium

on Modeling, Analysis and Simulation of Computer and Telecommunication Sys-

tems (MASCOTS). MASCOTS. IEEE Computer Society, 2005, pp. 183–190. DOI:

10.1109/MASCOT.2005.18.

[27] T. Kalibera, L. Bulej, and P. Tůma: “Benchmark Precision and Random Initial

State”. InProc. International Symposium on Performance Evaluation of Computer

and Telecommunication Systems (SPECTS). SPECTS. SCS, 2005, pp. 853–862.

ISBN: 978-1-62276-350-4.

[28] T. Kalibera, L. Bulej, and P. Tůma: “Generic Environment for Full Automation

of Benchmarking”. In Proc. 1st International Workshop on Software Quality

(SOQUA). GI, 2004, pp. 125–132. ISBN: 3-88579-387-3.

[29] T. Kalibera, L. Bulej, and P. Tůma: “Quality Assurance in Performance: Eval-

uating Mono Benchmark Results”. In Quality of Software Architectures and

Software Quality: Proc. 2nd International Workshop on Software Quality (SO-

QUA). LNCS 3712. Springer, 2005, pp. 271–288. DOI: 10.1007/11558569_20.

47

http://www.macworld.com/article/1134018/firefox.html
http://dx.doi.org/10.1145/2408776.2408794
http://dx.doi.org/10.1109/QSIC.2010.35
http://dx.doi.org/10.1109/CSMR.2013.54
http://dx.doi.org/10.1145/2479871.2479879
http://dx.doi.org/10.1007/978-3-642-40725-3_12
http://dx.doi.org/10.1007/978-3-642-40725-3_12
http://dx.doi.org/10.1145/1513450.1513451
http://dx.doi.org/10.1109/MASCOT.2005.18
http://dx.doi.org/10.1007/11558569_20

References

[30] T. Kalibera, J. Lehotský, D.Majda, B. Repček,M. Tomčányi, A. Tomeček, P. Tůma,

and J. Urban: “Automated Benchmarking and Analysis Tool”. In Proc. 1st Intl.

Conf. on Performance Evaluation Methodolgies and Tools. VALUETOOLS. ACM,

2006. DOI: 10.1145/1190095.1190101.

[31] T. Kalibera and P. Tůma: “Precise Regression Benchmarking with Random

Effects: Improving Mono Benchmark Results”. In Proc. 3rd European Perfor-

mance Engineering Workshop. EPEW. Springer, 2006, pp. 63–77. DOI: 10.1007/

11777830_5.

[32] S. Kell, D. Ansaloni, W. Binder, and L. Marek: “The JVM Is Not Observable

Enough (andWhat to DoAbout It)”. In Proceedings of the Sixth ACMWorkshop

on Virtual Machines and Intermediate Languages. ACM, 2012, pp. 33–38. DOI:

10.1145/2414740.2414747.

[33] K. Kennedy: “Government Did Not Test Health Care Site as Needed”. USA

TODAY , 2013. URL: http://www.usatoday.com/story/news/nation/2013/10/24/

cms-update-healthcaregov-bandwidth/3179545/ (visited on 09/12/2016).

[34] D. E. Knuth: “Structured Programming with Go to Statements”. In ACMCom-

put. Surv. 6.4 (1974), pp. 261–301. ISSN: 0360-0300. DOI: 10.1145/356635.

356640.

[35] W. H. Li, D. R. White, and J. Singer: “JVM-Hosted Languages: They Talk the

Talk, but Do They Walk the Walk?” In Proc. PPPJ 2013. ACM, 2013, pp. 101–

112. DOI: 10.1145/2500828.2500838.

[36] P. Libič, L. Bulej, V. Horký, and P. Tůma: “On the Limits of Modeling Gener-

ational Garbage Collector Performance”. In Proc. 5th ACM/SPEC Intl. Conf.

on Performance Engineering (ICPE). ACM, 2014, pp. 15–26. DOI: 10.1145/

2568088.2568097.

[37] P. Libič, P. Tůma, and L. Bulej: “Issues in Performance Modeling of Appli-

cations with Garbage Collection”. In Proc. 1st Intl. W. on Quality of Service-

Oriented Software Systems (QUASOSS). ACM, 2009, pp. 3–10. DOI: 10.1145/

1596473.1596477.

[38] L. Marek, S. Kell, Y. Zheng, L. Bulej, W. Binder, P. Tůma, D. Ansaloni, A. Sarim-

bekov, and A. Sewe: “ShadowVM: Robust and Comprehensive Dynamic Pro-

gram Analysis for the Java Platform”. In Proc. 12th International Conference

on Generative Programming: Concepts & Experiences (GPCE). ACM, 2013,

pp. 105–114. DOI: 10.1145/2517208.2517219.

[39] L. Marek, S. Kell, Y. Zheng, L. Bulej, W. Binder, P. Tůma, D. Ansaloni, A. Sarim-

bekov, and A. Sewe: “ShadowVM: Robust and Comprehensive Dynamic Pro-

gram Analysis for the Java Platform”. In Proc. 12th International Conference

on Generative Programming: Concepts & Experiences (GPCE). ACM, 2013,

pp. 105–114. DOI: 10.1145/2517208.2517219.

48

http://dx.doi.org/10.1145/1190095.1190101
http://dx.doi.org/10.1007/11777830_5
http://dx.doi.org/10.1007/11777830_5
http://dx.doi.org/10.1145/2414740.2414747
http://www.usatoday.com/story/news/nation/2013/10/24/cms-update-healthcaregov-bandwidth/3179545/
http://www.usatoday.com/story/news/nation/2013/10/24/cms-update-healthcaregov-bandwidth/3179545/
http://dx.doi.org/10.1145/356635.356640
http://dx.doi.org/10.1145/356635.356640
http://dx.doi.org/10.1145/2500828.2500838
http://dx.doi.org/10.1145/2568088.2568097
http://dx.doi.org/10.1145/2568088.2568097
http://dx.doi.org/10.1145/1596473.1596477
http://dx.doi.org/10.1145/1596473.1596477
http://dx.doi.org/10.1145/2517208.2517219
http://dx.doi.org/10.1145/2517208.2517219

References

[40] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder, and Z. Qi: “DiSL: A

Domain-Specific Language for Bytecode Instrumentation”. In Proceedings of

the 11th Annual International Conference on Aspect-Oriented Software Develop-

ment. ACM, 2012, pp. 239–250. DOI: 10.1145/2162049.2162077.

[41] L. Marek, Y. Zheng, D. Ansaloni, L. Bulej, A. Sarimbekov, W. Binder, and P.

Tůma: “Introduction to Dynamic Program Analysis with DiSL”. In Science

of Computer Programming 98, Part 1 (2015), pp. 100–115. ISSN: 0167-6423,

1872-7964. DOI: 10.1016/j.scico.2014.01.003.

[42] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney: “Producing Wrong

Data Without Doing Anything Obviously Wrong!” In ACM SIGPLAN Notices

44.3 (2009), pp. 265–276. ISSN: 0362-1340. DOI: 10.1145/1508284.1508275.

[43] J. K. Ousterhout: “Scripting: Higher Level Programming for the 21st Cen-

tury”. In Computer 31.3 (1998), pp. 23–30. ISSN: 0018-9162. DOI: 10.1109/2.

660187.

[44] A. Podzimek and L. Y. Chen: “Transforming System Load to Throughput

for Consolidated Applications”. In 2013 IEEE 21st International Symposium

on Modelling, Analysis and Simulation of Computer and Telecommunication

Systems. 2013 IEEE 21st International Symposium on Modelling, Analysis and

Simulation of Computer and Telecommunication Systems. 2013, pp. 288–292.

DOI: 10.1109/MASCOTS.2013.37.

[45] A. Podzimek, L. Bulej, L. Y. Chen, W. Binder, and P. Tůma: “Analyzing the

Impact of CPU Pinning and Partial CPU Loads on Performance and Energy

Efficiency”. In Proc. 15th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGRID). IEEE, 2015, pp. 1–10. DOI: 10.1109/CCGrid.

2015.164.

[46] A. Podzimek, L. Bulej, L. Y. Chen,W. Binder, and P. Tůma: “Robust Partial-Load

Experiments with Showstopper”. In Future Generation Computer Systems 64

(2016), pp. 15–38. ISSN: 0167-739X, 1872-7115. DOI: 10.1016/j.future.2016.04.

020.

[47] A. Podzimek, L. Y. Chen, L. Bulej, W. Binder, and P. Tůma: “Showstopper: The

Partial CPU Load Tool (Tool Paper)”. In Proc. 22nd IEEE International Sympo-

sium on Modelling, Analysis Simulation of Computer and Telecommunication Sys-

tems (MASCOTS). IEEE, 2014, pp. 510–513. DOI: 10.1109/MASCOTS.2014.75.

[48] V. Rajlich: “Software Engineering: The Current Practice”. Innovations in Soft-

ware Engineering and Software Development. Chapman and Hall/CRC, 2011.

ISBN: 978-1-4398-4122-8.

[49] A. Sarimbekov, A. Podzimek, L. Bulej, Y. Zheng, N. Ricci, and W. Binder: “Char-

acteristics of Dynamic JVMLanguages”. InProc. 7th ACMWorkshop on Virtual

Machines and Intermediate Languages (VMIL). ACM, 2013, pp. 11–20. DOI:

10.1145/2542142.2542144.

49

http://dx.doi.org/10.1145/2162049.2162077
http://dx.doi.org/10.1016/j.scico.2014.01.003
http://dx.doi.org/10.1145/1508284.1508275
http://dx.doi.org/10.1109/2.660187
http://dx.doi.org/10.1109/2.660187
http://dx.doi.org/10.1109/MASCOTS.2013.37
http://dx.doi.org/10.1109/CCGrid.2015.164
http://dx.doi.org/10.1109/CCGrid.2015.164
http://dx.doi.org/10.1016/j.future.2016.04.020
http://dx.doi.org/10.1016/j.future.2016.04.020
http://dx.doi.org/10.1109/MASCOTS.2014.75
http://dx.doi.org/10.1145/2542142.2542144

References

[50] A. Sarimbekov, A. Sewe, S. Kell, Y. Zheng, W. Binder, L. Bulej, and D. Ansaloni:

“A Comprehensive Toolchain for Workload Characterization Across JVM

Languages”. In Proc. 11th ACM SIGPLAN-SIGSOFT Workshop on Program

Analysis for Software Tools and Engineering (PASTE). ACM, 2013, pp. 9–16.

DOI: 10.1145/2462029.2462033.

[51] A. Sarimbekov, L. Stadler, L. Bulej, A. Sewe, A. Podzimek, Y. Zheng, and W.

Binder: “Workload Characterization of JVM Languages”. In Software: Prac-

tice and Experience 46.8 (2016), pp. 1053–1089. ISSN: 0038-0644, 1097-024X.

DOI: 10.1002/spe.2337.

[52] A. Sarimbekov, Y. Zheng, D. Ansaloni, L. Bulej, L. Marek, W. Binder, P. Tůma,

and Z. Qi: “Dynamic Program Analysis - Reconciling Developer Productivity

and Tool Performance”. In Science of Computer Programming 95, Part 3 (2014),

pp. 344–358. ISSN: 0167-6423. DOI: 10.1016/j.scico.2014.03.014.

[53] A. Sewe, M. Mezini, A. Sarimbekov, and W. Binder: “Da Capo Con Scala: De-

sign and Analysis of a Scala Benchmark Suite for the Java Virtual Machine”.

In Proc. 26th ACM SIGPLAN Intl. Conf. on Object-Oriented Programming Sys-

tems, Languages, and Applications (OOPSLA). ACM, 2011, pp. 657–676. DOI:

10.1145/2048066.2048118.

[54] H. Sun, Y. Zheng, L. Bulej, W. Binder, and S. Kell: “Custom Full-Coverage

Dynamic Program Analysis for Android (Demo Paper)”. In Companion Proc.

2015 ACM SIGPLAN International Conference on Systems, Programming, Lan-

guages and Applications: Software for Humanity (SPLASH). ACM, 2015, pp. 7–8.

DOI: 10.1145/2814189.2814190.

[55] H. Sun, Y. Zheng, L. Bulej, S. Kell, andW. Binder: “AnalyzingDistributedMulti-

Platform Java and Android Applications with ShadowVM (Demo Paper)”.

In Proc. 13th Asian Symposium on Programming Languages and Systems (APLAS).

LNCS 9458. Springer, 2015, pp. 356–365. DOI: 10.1007/978-3-319-26529-2_19.

[56] H. Sun, Y. Zheng, L. Bulej, A. Villazón, Z. Qi, P. Tůma, and W. Binder: “A Pro-

gramming Model and Framework for Comprehensive Dynamic Analysis on

Android”. In Proc. 14th International Conference on Modularity (AOSD/MODU-

LARITY). ACM, 2015, pp. 133–145. DOI: 10.1145/2724525.2724566.

[57] H. Takeuchi and I. Nonaka: “The New New Product Development Game”. In

Harvard Business Review (January 1986). ISSN: 0017-8012.

[58] C. Tran: “Website Crashes as Australians Attempt to Complete Their Census

Online”.Daily Mail Online, 2016. URL: http://www.dailymail.co.uk/news/article-

3731150/Census-website-crashes-thousands-Australians-attempt-complete-form-

online.html (visited on 09/12/2016).

[59] J. Venturová, A. Horáček, P. Ježek, and M. Kolařík: “Nový Centrální Registr

Vozidel Zkolaboval Po Pár Minutách Provozu”. iDNES.cz, 2012. URL: http:

//zpravy.idnes.cz/centralni-registr-vozidel-nefunguje-dsp-/domaci.aspx?c=

A120709_085450_domaci_jpl (visited on 09/13/2016).

50

http://dx.doi.org/10.1145/2462029.2462033
http://dx.doi.org/10.1002/spe.2337
http://dx.doi.org/10.1016/j.scico.2014.03.014
http://dx.doi.org/10.1145/2048066.2048118
http://dx.doi.org/10.1145/2814189.2814190
http://dx.doi.org/10.1007/978-3-319-26529-2_19
http://dx.doi.org/10.1145/2724525.2724566
http://www.dailymail.co.uk/news/article-3731150/Census-website-crashes-thousands-Australians-attempt-complete-form-online.html
http://www.dailymail.co.uk/news/article-3731150/Census-website-crashes-thousands-Australians-attempt-complete-form-online.html
http://www.dailymail.co.uk/news/article-3731150/Census-website-crashes-thousands-Australians-attempt-complete-form-online.html
http://zpravy.idnes.cz/centralni-registr-vozidel-nefunguje-dsp-/domaci.aspx?c=A120709_085450_domaci_jpl
http://zpravy.idnes.cz/centralni-registr-vozidel-nefunguje-dsp-/domaci.aspx?c=A120709_085450_domaci_jpl
http://zpravy.idnes.cz/centralni-registr-vozidel-nefunguje-dsp-/domaci.aspx?c=A120709_085450_domaci_jpl

References

[60] E. J. Weyuker and F. I. Vokolos: “Experience with Performance Testing of Soft-

ware Systems: Issues, an Approach, and Case Study”. In IEEE Transactions

on Software Engineering 26.12 (2000), pp. 1147–1156. ISSN: 0098-5589. DOI:

10.1109/32.888628.

[61] M. Wirsing, M. Hölzl, N. Koch, and P. Mayer, eds.: “Software Engineering for

Collective Autonomic Systems”. LNCS. Springer, 2015. DOI: 10.1007/978-3-

319-16310-9.

[62] M.Wirsing,M.Hölzl,M. Tribastone, and F. Zambonelli: “ASCENS:Engineering

Autonomic Service-Component Ensembles”. In Proceedings of FMCO 2011

(Revised Selected Papers), Turin, Italy. Springer, 2011, pp. 1–24. DOI: 10.1007/

978-3-642-35887-6_1.

[63] Y. Zheng, D. Ansaloni, L. Marek, A. Sewe, W. Binder, A. Villazón, P. Tůma, Z.

Qi, and M. Mezini: “Turbo DiSL: Partial Evaluation for High-Level Bytecode

Instrumentation”. In Intl. Conf. onModelling Techniques and Tools for Computer

Performance Evaluation. TOOLS. Springer, 2012, pp. 353–368. DOI: 10.1007/

978-3-642-30561-0_24.

[64] Y. Zheng, L. Bulej, and W. Binder: “Accurate Profiling in the Presence of Dy-

namic Compilation”. In Proc. 30th ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).

ACM, 2015, pp. 433–450. DOI: 10.1145/2814270.2814281.

[65] Y. Zheng, L. Bulej, and W. Binder: “An Empirical Study on Deoptimization in

the Graal Compiler”. In Proc. 31st European Conference on Object-Oriented

Programming (ECOOP). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

2017, 30:1–30:30. DOI: 10.4230/LIPIcs.ECOOP.2017.30.

[66] Y. Zheng, S. Kell, L. Bulej, H. Sun, and W. Binder: “Comprehensive Multi-

Platform Dynamic Program Analysis for Java and Android”. In IEEE Soft-

ware 33.4 (2016), pp. 55–63. ISSN: 0740-7459 1937-4194. DOI: 10.1109/MS.

2015.151.

51

http://dx.doi.org/10.1109/32.888628
http://dx.doi.org/10.1007/978-3-319-16310-9
http://dx.doi.org/10.1007/978-3-319-16310-9
http://dx.doi.org/10.1007/978-3-642-35887-6_1
http://dx.doi.org/10.1007/978-3-642-35887-6_1
http://dx.doi.org/10.1007/978-3-642-30561-0_24
http://dx.doi.org/10.1007/978-3-642-30561-0_24
http://dx.doi.org/10.1145/2814270.2814281
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.30
http://dx.doi.org/10.1109/MS.2015.151
http://dx.doi.org/10.1109/MS.2015.151

	Introduction
	Problem Statement and Goals
	Structure of the Text

	Overview of Selected Articles
	Performance Testing and Performance Awareness
	Performance Aspects of Modern Platforms
	Construction of Dynamic Program Analysis Tools
	Observability on Modern Managed Platforms

	Unit Testing Performance with Stochastic Performance Logic
	Robust Partial-Load Experiments with Showstopper
	On the Limits of Modeling Generational Garbage Collector Performance
	An Empirical Study on Deoptimization in the Graal Compiler
	Workload Characterization of JVM Languages
	Enabling Modularity and Re-use in Dynamic Program Analysis Tools for the JVM
	Comprehensive Multiplatfrom Dynamic Program Analysis for Java and Android
	Accurate Profiling in the Presence of Dynamic Compilation
	Conclusion and Future Research
	Performance Testing
	Dynamic Program Analysis

	References

